Field-based version of 3/8 method for solving ODE.
This commit is contained in:
parent
e0c0398cad
commit
b41ef1abd1
|
@ -0,0 +1,77 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math3.ode.nonstiff;
|
||||
|
||||
import org.apache.commons.math3.Field;
|
||||
import org.apache.commons.math3.RealFieldElement;
|
||||
|
||||
/**
|
||||
* This class implements the 3/8 fourth order Runge-Kutta
|
||||
* integrator for Ordinary Differential Equations.
|
||||
*
|
||||
* <p>This method is an explicit Runge-Kutta method, its Butcher-array
|
||||
* is the following one :
|
||||
* <pre>
|
||||
* 0 | 0 0 0 0
|
||||
* 1/3 | 1/3 0 0 0
|
||||
* 2/3 |-1/3 1 0 0
|
||||
* 1 | 1 -1 1 0
|
||||
* |--------------------
|
||||
* | 1/8 3/8 3/8 1/8
|
||||
* </pre>
|
||||
* </p>
|
||||
*
|
||||
* @see EulerFieldIntegrator
|
||||
* @see ClassicalRungeKuttaFieldIntegrator
|
||||
* @see GillfieldIntegrator
|
||||
* @see MidpointFieldIntegrator
|
||||
* @see LutherFieldIntegrator
|
||||
* @param <T> the type of the field elements
|
||||
* @since 3.6
|
||||
*/
|
||||
|
||||
public class ThreeEighthesFieldIntegrator<T extends RealFieldElement<T>>
|
||||
extends RungeKuttaFieldIntegrator<T> {
|
||||
|
||||
/** Time steps Butcher array. */
|
||||
private static final double[] STATIC_C = {
|
||||
1.0 / 3.0, 2.0 / 3.0, 1.0
|
||||
};
|
||||
|
||||
/** Internal weights Butcher array. */
|
||||
private static final double[][] STATIC_A = {
|
||||
{ 1.0 / 3.0 },
|
||||
{ -1.0 / 3.0, 1.0 },
|
||||
{ 1.0, -1.0, 1.0 }
|
||||
};
|
||||
|
||||
/** Propagation weights Butcher array. */
|
||||
private static final double[] STATIC_B = {
|
||||
1.0 / 8.0, 3.0 / 8.0, 3.0 / 8.0, 1.0 / 8.0
|
||||
};
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a 3/8 integrator with the given step.
|
||||
* @param field field to which the time and state vector elements belong
|
||||
* @param step integration step
|
||||
*/
|
||||
public ThreeEighthesFieldIntegrator(final Field<T> field, final T step) {
|
||||
super(field, "3/8", STATIC_C, STATIC_A, STATIC_B, new ThreeEighthesFieldStepInterpolator<T>(), step);
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,152 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math3.ode.nonstiff;
|
||||
|
||||
import org.apache.commons.math3.RealFieldElement;
|
||||
import org.apache.commons.math3.ode.FieldEquationsMapper;
|
||||
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
|
||||
import org.apache.commons.math3.util.MathArrays;
|
||||
|
||||
/**
|
||||
* This class implements a step interpolator for the 3/8 fourth
|
||||
* order Runge-Kutta integrator.
|
||||
*
|
||||
* <p>This interpolator allows to compute dense output inside the last
|
||||
* step computed. The interpolation equation is consistent with the
|
||||
* integration scheme :
|
||||
* <ul>
|
||||
* <li>Using reference point at step start:<br>
|
||||
* y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>)
|
||||
* + θ (h/8) [ (8 - 15 θ + 8 θ<sup>2</sup>) y'<sub>1</sub>
|
||||
* + 3 * (15 θ - 12 θ<sup>2</sup>) y'<sub>2</sub>
|
||||
* + 3 θ y'<sub>3</sub>
|
||||
* + (-3 θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
|
||||
* ]
|
||||
* </li>
|
||||
* <li>Using reference point at step end:<br>
|
||||
* y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h)
|
||||
* - (1 - θ) (h/8) [(1 - 7 θ + 8 θ<sup>2</sup>) y'<sub>1</sub>
|
||||
* + 3 (1 + θ - 4 θ<sup>2</sup>) y'<sub>2</sub>
|
||||
* + 3 (1 + θ) y'<sub>3</sub>
|
||||
* + (1 + θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
|
||||
* ]
|
||||
* </li>
|
||||
* </ul>
|
||||
* </p>
|
||||
*
|
||||
* where θ belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
|
||||
* evaluations of the derivatives already computed during the
|
||||
* step.</p>
|
||||
*
|
||||
* @see ThreeEighthesFieldIntegrator
|
||||
* @param <T> the type of the field elements
|
||||
* @since 3.6
|
||||
*/
|
||||
|
||||
class ThreeEighthesFieldStepInterpolator<T extends RealFieldElement<T>>
|
||||
extends RungeKuttaFieldStepInterpolator<T> {
|
||||
|
||||
/** Simple constructor.
|
||||
* This constructor builds an instance that is not usable yet, the
|
||||
* {@link
|
||||
* org.apache.commons.math3.ode.sampling.AbstractFieldStepInterpolator#reinitialize}
|
||||
* method should be called before using the instance in order to
|
||||
* initialize the internal arrays. This constructor is used only
|
||||
* in order to delay the initialization in some cases. The {@link
|
||||
* RungeKuttaFieldIntegrator} class uses the prototyping design pattern
|
||||
* to create the step interpolators by cloning an uninitialized model
|
||||
* and later initializing the copy.
|
||||
*/
|
||||
ThreeEighthesFieldStepInterpolator() {
|
||||
}
|
||||
|
||||
/** Copy constructor.
|
||||
* @param interpolator interpolator to copy from. The copy is a deep
|
||||
* copy: its arrays are separated from the original arrays of the
|
||||
* instance
|
||||
*/
|
||||
ThreeEighthesFieldStepInterpolator(final ThreeEighthesFieldStepInterpolator<T> interpolator) {
|
||||
super(interpolator);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected ThreeEighthesFieldStepInterpolator<T> doCopy() {
|
||||
return new ThreeEighthesFieldStepInterpolator<T>(this);
|
||||
}
|
||||
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
|
||||
final T time, final T theta,
|
||||
final T oneMinusThetaH) {
|
||||
|
||||
final T coeffDot3 = theta.multiply(0.75);
|
||||
final T coeffDot1 = coeffDot3.multiply(theta.multiply(4).subtract(5)).add(1);
|
||||
final T coeffDot2 = coeffDot3.multiply(theta.multiply(-6).add(5));
|
||||
final T coeffDot4 = coeffDot3.multiply(theta.multiply(2).subtract(1));
|
||||
final T[] interpolatedState = MathArrays.buildArray(theta.getField(), previousState.length);
|
||||
final T[] interpolatedDerivatives = MathArrays.buildArray(theta.getField(), previousState.length);
|
||||
|
||||
if ((previousState != null) && (theta.getReal() <= 0.5)) {
|
||||
final T s = theta.multiply(h).divide(8);
|
||||
final T fourTheta2 = theta.multiply(theta).multiply(4);
|
||||
final T coeff1 = s.multiply(fourTheta2.multiply(2).subtract(theta.multiply(15)).add(8));
|
||||
final T coeff2 = s.multiply(theta.multiply(5).subtract(fourTheta2)).multiply(3);
|
||||
final T coeff3 = s.multiply(theta).multiply(3);
|
||||
final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3)));
|
||||
for (int i = 0; i < interpolatedState.length; ++i) {
|
||||
final T yDot1 = yDotK[0][i];
|
||||
final T yDot2 = yDotK[1][i];
|
||||
final T yDot3 = yDotK[2][i];
|
||||
final T yDot4 = yDotK[3][i];
|
||||
interpolatedState[i] = previousState[i].
|
||||
add(coeff1.multiply(yDot1)).add(coeff2.multiply(yDot2)).
|
||||
add(coeff3.multiply(yDot3)).add(coeff4.multiply(yDot4));
|
||||
interpolatedDerivatives[i] = coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2)).
|
||||
add(coeffDot3.multiply(yDot3)).add(coeffDot4.multiply(yDot4));
|
||||
|
||||
}
|
||||
} else {
|
||||
final T s = oneMinusThetaH.divide(8);
|
||||
final T fourTheta2 = theta.multiply(theta).multiply(4);
|
||||
final T thetaPlus1 = theta.add(1);
|
||||
final T coeff1 = s.multiply(fourTheta2.multiply(2).subtract(theta.multiply(7)).add(1));
|
||||
final T coeff2 = s.multiply(thetaPlus1.subtract(fourTheta2)).multiply(3);
|
||||
final T coeff3 = s.multiply(thetaPlus1).multiply(3);
|
||||
final T coeff4 = s.multiply(thetaPlus1.add(fourTheta2));
|
||||
for (int i = 0; i < interpolatedState.length; ++i) {
|
||||
final T yDot1 = yDotK[0][i];
|
||||
final T yDot2 = yDotK[1][i];
|
||||
final T yDot3 = yDotK[2][i];
|
||||
final T yDot4 = yDotK[3][i];
|
||||
interpolatedState[i] = currentState[i].
|
||||
subtract(coeff1.multiply(yDot1)).subtract(coeff2.multiply(yDot2)).
|
||||
subtract(coeff3.multiply(yDot3)).subtract(coeff4.multiply(yDot4));
|
||||
interpolatedDerivatives[i] = coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2)).
|
||||
add(coeffDot3.multiply(yDot3)).add(coeffDot4.multiply(yDot4));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
return new FieldODEStateAndDerivative<T>(time, interpolatedState, yDotK[0]);
|
||||
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue