Field-based version of 3/8 method for solving ODE.

This commit is contained in:
Luc Maisonobe 2015-11-15 11:54:32 +01:00
parent e0c0398cad
commit b41ef1abd1
2 changed files with 229 additions and 0 deletions

View File

@ -0,0 +1,77 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
/**
* This class implements the 3/8 fourth order Runge-Kutta
* integrator for Ordinary Differential Equations.
*
* <p>This method is an explicit Runge-Kutta method, its Butcher-array
* is the following one :
* <pre>
* 0 | 0 0 0 0
* 1/3 | 1/3 0 0 0
* 2/3 |-1/3 1 0 0
* 1 | 1 -1 1 0
* |--------------------
* | 1/8 3/8 3/8 1/8
* </pre>
* </p>
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
* @see GillfieldIntegrator
* @see MidpointFieldIntegrator
* @see LutherFieldIntegrator
* @param <T> the type of the field elements
* @since 3.6
*/
public class ThreeEighthesFieldIntegrator<T extends RealFieldElement<T>>
extends RungeKuttaFieldIntegrator<T> {
/** Time steps Butcher array. */
private static final double[] STATIC_C = {
1.0 / 3.0, 2.0 / 3.0, 1.0
};
/** Internal weights Butcher array. */
private static final double[][] STATIC_A = {
{ 1.0 / 3.0 },
{ -1.0 / 3.0, 1.0 },
{ 1.0, -1.0, 1.0 }
};
/** Propagation weights Butcher array. */
private static final double[] STATIC_B = {
1.0 / 8.0, 3.0 / 8.0, 3.0 / 8.0, 1.0 / 8.0
};
/** Simple constructor.
* Build a 3/8 integrator with the given step.
* @param field field to which the time and state vector elements belong
* @param step integration step
*/
public ThreeEighthesFieldIntegrator(final Field<T> field, final T step) {
super(field, "3/8", STATIC_C, STATIC_A, STATIC_B, new ThreeEighthesFieldStepInterpolator<T>(), step);
}
}

View File

@ -0,0 +1,152 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
/**
* This class implements a step interpolator for the 3/8 fourth
* order Runge-Kutta integrator.
*
* <p>This interpolator allows to compute dense output inside the last
* step computed. The interpolation equation is consistent with the
* integration scheme :
* <ul>
* <li>Using reference point at step start:<br>
* y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
* + &theta; (h/8) [ (8 - 15 &theta; + 8 &theta;<sup>2</sup>) y'<sub>1</sub>
* + 3 * (15 &theta; - 12 &theta;<sup>2</sup>) y'<sub>2</sub>
* + 3 &theta; y'<sub>3</sub>
* + (-3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
* ]
* </li>
* <li>Using reference point at step end:<br>
* y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
* - (1 - &theta;) (h/8) [(1 - 7 &theta; + 8 &theta;<sup>2</sup>) y'<sub>1</sub>
* + 3 (1 + &theta; - 4 &theta;<sup>2</sup>) y'<sub>2</sub>
* + 3 (1 + &theta;) y'<sub>3</sub>
* + (1 + &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
* ]
* </li>
* </ul>
* </p>
*
* where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
* evaluations of the derivatives already computed during the
* step.</p>
*
* @see ThreeEighthesFieldIntegrator
* @param <T> the type of the field elements
* @since 3.6
*/
class ThreeEighthesFieldStepInterpolator<T extends RealFieldElement<T>>
extends RungeKuttaFieldStepInterpolator<T> {
/** Simple constructor.
* This constructor builds an instance that is not usable yet, the
* {@link
* org.apache.commons.math3.ode.sampling.AbstractFieldStepInterpolator#reinitialize}
* method should be called before using the instance in order to
* initialize the internal arrays. This constructor is used only
* in order to delay the initialization in some cases. The {@link
* RungeKuttaFieldIntegrator} class uses the prototyping design pattern
* to create the step interpolators by cloning an uninitialized model
* and later initializing the copy.
*/
ThreeEighthesFieldStepInterpolator() {
}
/** Copy constructor.
* @param interpolator interpolator to copy from. The copy is a deep
* copy: its arrays are separated from the original arrays of the
* instance
*/
ThreeEighthesFieldStepInterpolator(final ThreeEighthesFieldStepInterpolator<T> interpolator) {
super(interpolator);
}
/** {@inheritDoc} */
@Override
protected ThreeEighthesFieldStepInterpolator<T> doCopy() {
return new ThreeEighthesFieldStepInterpolator<T>(this);
}
/** {@inheritDoc} */
@Override
protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
final T time, final T theta,
final T oneMinusThetaH) {
final T coeffDot3 = theta.multiply(0.75);
final T coeffDot1 = coeffDot3.multiply(theta.multiply(4).subtract(5)).add(1);
final T coeffDot2 = coeffDot3.multiply(theta.multiply(-6).add(5));
final T coeffDot4 = coeffDot3.multiply(theta.multiply(2).subtract(1));
final T[] interpolatedState = MathArrays.buildArray(theta.getField(), previousState.length);
final T[] interpolatedDerivatives = MathArrays.buildArray(theta.getField(), previousState.length);
if ((previousState != null) && (theta.getReal() <= 0.5)) {
final T s = theta.multiply(h).divide(8);
final T fourTheta2 = theta.multiply(theta).multiply(4);
final T coeff1 = s.multiply(fourTheta2.multiply(2).subtract(theta.multiply(15)).add(8));
final T coeff2 = s.multiply(theta.multiply(5).subtract(fourTheta2)).multiply(3);
final T coeff3 = s.multiply(theta).multiply(3);
final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3)));
for (int i = 0; i < interpolatedState.length; ++i) {
final T yDot1 = yDotK[0][i];
final T yDot2 = yDotK[1][i];
final T yDot3 = yDotK[2][i];
final T yDot4 = yDotK[3][i];
interpolatedState[i] = previousState[i].
add(coeff1.multiply(yDot1)).add(coeff2.multiply(yDot2)).
add(coeff3.multiply(yDot3)).add(coeff4.multiply(yDot4));
interpolatedDerivatives[i] = coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2)).
add(coeffDot3.multiply(yDot3)).add(coeffDot4.multiply(yDot4));
}
} else {
final T s = oneMinusThetaH.divide(8);
final T fourTheta2 = theta.multiply(theta).multiply(4);
final T thetaPlus1 = theta.add(1);
final T coeff1 = s.multiply(fourTheta2.multiply(2).subtract(theta.multiply(7)).add(1));
final T coeff2 = s.multiply(thetaPlus1.subtract(fourTheta2)).multiply(3);
final T coeff3 = s.multiply(thetaPlus1).multiply(3);
final T coeff4 = s.multiply(thetaPlus1.add(fourTheta2));
for (int i = 0; i < interpolatedState.length; ++i) {
final T yDot1 = yDotK[0][i];
final T yDot2 = yDotK[1][i];
final T yDot3 = yDotK[2][i];
final T yDot4 = yDotK[3][i];
interpolatedState[i] = currentState[i].
subtract(coeff1.multiply(yDot1)).subtract(coeff2.multiply(yDot2)).
subtract(coeff3.multiply(yDot3)).subtract(coeff4.multiply(yDot4));
interpolatedDerivatives[i] = coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2)).
add(coeffDot3.multiply(yDot3)).add(coeffDot4.multiply(yDot4));
}
}
return new FieldODEStateAndDerivative<T>(time, interpolatedState, yDotK[0]);
}
}