Move auxilary class to static inner class

This commit is contained in:
Alex Herbert 2023-11-21 19:02:41 +00:00
parent bc04683e4d
commit b68b2601ab
2 changed files with 187 additions and 185 deletions

View File

@ -362,221 +362,222 @@ public class BicubicInterpolatingFunction
return a;
}
}
/**
* Bicubic function.
*/
class BicubicFunction implements BivariateFunction {
/** Number of points. */
private static final short N = 4;
/** Coefficients. */
private final double[][] a;
/** First partial derivative along x. */
private final BivariateFunction partialDerivativeX;
/** First partial derivative along y. */
private final BivariateFunction partialDerivativeY;
/** Second partial derivative along x. */
private final BivariateFunction partialDerivativeXX;
/** Second partial derivative along y. */
private final BivariateFunction partialDerivativeYY;
/** Second crossed partial derivative. */
private final BivariateFunction partialDerivativeXY;
/**
* Simple constructor.
*
* @param coeff Spline coefficients.
* @param xR x spacing.
* @param yR y spacing.
* @param initializeDerivatives Whether to initialize the internal data
* needed for calling any of the methods that compute the partial derivatives
* this function.
* Bicubic function.
*/
BicubicFunction(double[] coeff,
double xR,
double yR,
boolean initializeDerivatives) {
a = new double[N][N];
for (int j = 0; j < N; j++) {
final double[] aJ = a[j];
for (int i = 0; i < N; i++) {
aJ[i] = coeff[i * N + j];
}
}
static final class BicubicFunction implements BivariateFunction {
/** Number of points. */
private static final short N = 4;
/** Coefficients. */
private final double[][] a;
/** First partial derivative along x. */
private final BivariateFunction partialDerivativeX;
/** First partial derivative along y. */
private final BivariateFunction partialDerivativeY;
/** Second partial derivative along x. */
private final BivariateFunction partialDerivativeXX;
/** Second partial derivative along y. */
private final BivariateFunction partialDerivativeYY;
/** Second crossed partial derivative. */
private final BivariateFunction partialDerivativeXY;
if (initializeDerivatives) {
// Compute all partial derivatives functions.
final double[][] aX = new double[N][N];
final double[][] aY = new double[N][N];
final double[][] aXX = new double[N][N];
final double[][] aYY = new double[N][N];
final double[][] aXY = new double[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
final double c = a[i][j];
aX[i][j] = i * c;
aY[i][j] = j * c;
aXX[i][j] = (i - 1) * aX[i][j];
aYY[i][j] = (j - 1) * aY[i][j];
aXY[i][j] = j * aX[i][j];
/**
* Simple constructor.
*
* @param coeff Spline coefficients.
* @param xR x spacing.
* @param yR y spacing.
* @param initializeDerivatives Whether to initialize the internal data
* needed for calling any of the methods that compute the partial derivatives
* this function.
*/
BicubicFunction(double[] coeff,
double xR,
double yR,
boolean initializeDerivatives) {
a = new double[N][N];
for (int j = 0; j < N; j++) {
final double[] aJ = a[j];
for (int i = 0; i < N; i++) {
aJ[i] = coeff[i * N + j];
}
}
partialDerivativeX = (double x, double y) -> {
final double x2 = x * x;
final double[] pX = {0, 1, x, x2};
if (initializeDerivatives) {
// Compute all partial derivatives functions.
final double[][] aX = new double[N][N];
final double[][] aY = new double[N][N];
final double[][] aXX = new double[N][N];
final double[][] aYY = new double[N][N];
final double[][] aXY = new double[N][N];
final double y2 = y * y;
final double y3 = y2 * y;
final double[] pY = {1, y, y2, y3};
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
final double c = a[i][j];
aX[i][j] = i * c;
aY[i][j] = j * c;
aXX[i][j] = (i - 1) * aX[i][j];
aYY[i][j] = (j - 1) * aY[i][j];
aXY[i][j] = j * aX[i][j];
}
}
return apply(pX, 1, pY, 0, aX) / xR;
};
partialDerivativeY = (double x, double y) -> {
final double x2 = x * x;
final double x3 = x2 * x;
final double[] pX = {1, x, x2, x3};
partialDerivativeX = (double x, double y) -> {
final double x2 = x * x;
final double[] pX = {0, 1, x, x2};
final double y2 = y * y;
final double[] pY = {0, 1, y, y2};
final double y2 = y * y;
final double y3 = y2 * y;
final double[] pY = {1, y, y2, y3};
return apply(pX, 0, pY, 1, aY) / yR;
};
partialDerivativeXX = (double x, double y) -> {
final double[] pX = {0, 0, 1, x};
return apply(pX, 1, pY, 0, aX) / xR;
};
partialDerivativeY = (double x, double y) -> {
final double x2 = x * x;
final double x3 = x2 * x;
final double[] pX = {1, x, x2, x3};
final double y2 = y * y;
final double y3 = y2 * y;
final double[] pY = {1, y, y2, y3};
final double y2 = y * y;
final double[] pY = {0, 1, y, y2};
return apply(pX, 2, pY, 0, aXX) / (xR * xR);
};
partialDerivativeYY = (double x, double y) -> {
final double x2 = x * x;
final double x3 = x2 * x;
final double[] pX = {1, x, x2, x3};
return apply(pX, 0, pY, 1, aY) / yR;
};
partialDerivativeXX = (double x, double y) -> {
final double[] pX = {0, 0, 1, x};
final double[] pY = {0, 0, 1, y};
final double y2 = y * y;
final double y3 = y2 * y;
final double[] pY = {1, y, y2, y3};
return apply(pX, 0, pY, 2, aYY) / (yR * yR);
};
partialDerivativeXY = (double x, double y) -> {
final double x2 = x * x;
final double[] pX = {0, 1, x, x2};
return apply(pX, 2, pY, 0, aXX) / (xR * xR);
};
partialDerivativeYY = (double x, double y) -> {
final double x2 = x * x;
final double x3 = x2 * x;
final double[] pX = {1, x, x2, x3};
final double y2 = y * y;
final double[] pY = {0, 1, y, y2};
final double[] pY = {0, 0, 1, y};
return apply(pX, 1, pY, 1, aXY) / (xR * yR);
};
} else {
partialDerivativeX = null;
partialDerivativeY = null;
partialDerivativeXX = null;
partialDerivativeYY = null;
partialDerivativeXY = null;
}
}
return apply(pX, 0, pY, 2, aYY) / (yR * yR);
};
partialDerivativeXY = (double x, double y) -> {
final double x2 = x * x;
final double[] pX = {0, 1, x, x2};
/**
* {@inheritDoc}
*/
@Override
public double value(double x, double y) {
if (x < 0 || x > 1) {
throw new OutOfRangeException(x, 0, 1);
}
if (y < 0 || y > 1) {
throw new OutOfRangeException(y, 0, 1);
final double y2 = y * y;
final double[] pY = {0, 1, y, y2};
return apply(pX, 1, pY, 1, aXY) / (xR * yR);
};
} else {
partialDerivativeX = null;
partialDerivativeY = null;
partialDerivativeXX = null;
partialDerivativeYY = null;
partialDerivativeXY = null;
}
}
final double x2 = x * x;
final double x3 = x2 * x;
final double[] pX = {1, x, x2, x3};
/**
* {@inheritDoc}
*/
@Override
public double value(double x, double y) {
if (x < 0 || x > 1) {
throw new OutOfRangeException(x, 0, 1);
}
if (y < 0 || y > 1) {
throw new OutOfRangeException(y, 0, 1);
}
final double y2 = y * y;
final double y3 = y2 * y;
final double[] pY = {1, y, y2, y3};
final double x2 = x * x;
final double x3 = x2 * x;
final double[] pX = {1, x, x2, x3};
return apply(pX, 0, pY, 0, a);
}
final double y2 = y * y;
final double y3 = y2 * y;
final double[] pY = {1, y, y2, y3};
/**
* Compute the value of the bicubic polynomial.
*
* <p>Assumes the powers are zero below the provided index, and 1 at the provided
* index. This allows skipping some zero products and optimising multiplication
* by one.
*
* @param pX Powers of the x-coordinate.
* @param i Index of pX[i] == 1
* @param pY Powers of the y-coordinate.
* @param j Index of pX[j] == 1
* @param coeff Spline coefficients.
* @return the interpolated value.
*/
private static double apply(double[] pX, int i, double[] pY, int j, double[][] coeff) {
// assert pX[i] == 1
double result = sumOfProducts(coeff[i], pY, j);
while (++i < N) {
final double r = sumOfProducts(coeff[i], pY, j);
result += r * pX[i];
return apply(pX, 0, pY, 0, a);
}
return result;
}
/**
* Compute the sum of products starting from the provided index.
* Assumes that factor {@code b[j] == 1}.
*
* @param a Factors.
* @param b Factors.
* @param j Index to initialise the sum.
* @return the double
*/
private static double sumOfProducts(double[] a, double[] b, int j) {
// assert b[j] == 1
final Sum sum = Sum.of(a[j]);
while (++j < N) {
sum.addProduct(a[j], b[j]);
/**
* Compute the value of the bicubic polynomial.
*
* <p>Assumes the powers are zero below the provided index, and 1 at the provided
* index. This allows skipping some zero products and optimising multiplication
* by one.
*
* @param pX Powers of the x-coordinate.
* @param i Index of pX[i] == 1
* @param pY Powers of the y-coordinate.
* @param j Index of pX[j] == 1
* @param coeff Spline coefficients.
* @return the interpolated value.
*/
private static double apply(double[] pX, int i, double[] pY, int j, double[][] coeff) {
// assert pX[i] == 1
double result = sumOfProducts(coeff[i], pY, j);
while (++i < N) {
final double r = sumOfProducts(coeff[i], pY, j);
result += r * pX[i];
}
return result;
}
return sum.getAsDouble();
}
/**
* @return the partial derivative wrt {@code x}.
*/
BivariateFunction partialDerivativeX() {
return partialDerivativeX;
}
/**
* Compute the sum of products starting from the provided index.
* Assumes that factor {@code b[j] == 1}.
*
* @param a Factors.
* @param b Factors.
* @param j Index to initialise the sum.
* @return the double
*/
private static double sumOfProducts(double[] a, double[] b, int j) {
// assert b[j] == 1
final Sum sum = Sum.of(a[j]);
while (++j < N) {
sum.addProduct(a[j], b[j]);
}
return sum.getAsDouble();
}
/**
* @return the partial derivative wrt {@code y}.
*/
BivariateFunction partialDerivativeY() {
return partialDerivativeY;
}
/**
* @return the partial derivative wrt {@code x}.
*/
BivariateFunction partialDerivativeX() {
return partialDerivativeX;
}
/**
* @return the second partial derivative wrt {@code x}.
*/
BivariateFunction partialDerivativeXX() {
return partialDerivativeXX;
}
/**
* @return the partial derivative wrt {@code y}.
*/
BivariateFunction partialDerivativeY() {
return partialDerivativeY;
}
/**
* @return the second partial derivative wrt {@code y}.
*/
BivariateFunction partialDerivativeYY() {
return partialDerivativeYY;
}
/**
* @return the second partial derivative wrt {@code x}.
*/
BivariateFunction partialDerivativeXX() {
return partialDerivativeXX;
}
/**
* @return the second partial cross-derivative.
*/
BivariateFunction partialDerivativeXY() {
return partialDerivativeXY;
/**
* @return the second partial derivative wrt {@code y}.
*/
BivariateFunction partialDerivativeYY() {
return partialDerivativeYY;
}
/**
* @return the second partial cross-derivative.
*/
BivariateFunction partialDerivativeXY() {
return partialDerivativeXY;
}
}
}

View File

@ -18,6 +18,7 @@ package org.apache.commons.math4.legacy.analysis.interpolation;
import java.util.function.DoubleBinaryOperator;
import org.apache.commons.math4.legacy.analysis.BivariateFunction;
import org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction.BicubicFunction;
import org.apache.commons.statistics.distribution.ContinuousDistribution;
import org.apache.commons.statistics.distribution.UniformContinuousDistribution;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;