MATH-1015

Gauss-Laguerre quadrature scheme.
Thanks to Thomas Neidhart.
This commit is contained in:
Gilles 2016-05-07 01:25:42 +02:00
parent f695c9ce35
commit b77184a218
3 changed files with 155 additions and 0 deletions
src
main/java/org/apache/commons/math4/analysis/integration/gauss
test/java/org/apache/commons/math4/analysis/integration/gauss

View File

@ -35,6 +35,27 @@ public class GaussIntegratorFactory {
private final BaseRuleFactory<BigDecimal> legendreHighPrecision = new LegendreHighPrecisionRuleFactory(); private final BaseRuleFactory<BigDecimal> legendreHighPrecision = new LegendreHighPrecisionRuleFactory();
/** Generator of Gauss-Hermite integrators. */ /** Generator of Gauss-Hermite integrators. */
private final BaseRuleFactory<Double> hermite = new HermiteRuleFactory(); private final BaseRuleFactory<Double> hermite = new HermiteRuleFactory();
/** Generator of Gauss-Laguerre integrators. */
private final BaseRuleFactory<Double> laguerre = new LaguerreRuleFactory();
/**
* Creates a Gauss-Laguerre integrator of the given order.
* The call to the
* {@link GaussIntegrator#integrate(org.apache.commons.math4.analysis.UnivariateFunction)
* integrate} method will perform an integration on the interval
* \([0, +\infty)\): the computed value is the improper integral of
* \(e^{-x} f(x)\)
* where \(f(x)\) is the function passed to the
* {@link SymmetricGaussIntegrator#integrate(org.apache.commons.math4.analysis.UnivariateFunction)
* integrate} method.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Legendre integrator.
* @since 4.0
*/
public GaussIntegrator laguerre(int numberOfPoints) {
return new GaussIntegrator(getRule(laguerre, numberOfPoints));
}
/** /**
* Creates a Gauss-Legendre integrator of the given order. * Creates a Gauss-Legendre integrator of the given order.

View File

@ -0,0 +1,84 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.analysis.integration.gauss;
import java.util.Arrays;
import org.apache.commons.math4.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math4.analysis.polynomials.PolynomialsUtils;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.linear.EigenDecomposition;
import org.apache.commons.math4.linear.MatrixUtils;
import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.util.Pair;
/**
* Factory that creates Gauss-type quadrature rule using Laguerre polynomials.
*
* @see <a href="http://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature">Gauss-Laguerre quadrature (Wikipedia)</a>
* @since 4.0
*/
public class LaguerreRuleFactory extends BaseRuleFactory<Double> {
/** {@inheritDoc} */
@Override
protected Pair<Double[], Double[]> computeRule(int numberOfPoints)
throws DimensionMismatchException {
final RealMatrix companionMatrix = companionMatrix(numberOfPoints);
final EigenDecomposition eigen = new EigenDecomposition(companionMatrix);
final double[] roots = eigen.getRealEigenvalues();
Arrays.sort(roots);
final Double[] points = new Double[numberOfPoints];
final Double[] weights = new Double[numberOfPoints];
final int n1 = numberOfPoints + 1;
final long n1Squared = n1 * (long) n1;
final PolynomialFunction laguerreN1 = PolynomialsUtils.createLaguerrePolynomial(n1);
for (int i = 0; i < numberOfPoints; i++) {
final double xi = roots[i];
points[i] = xi;
final double val = laguerreN1.value(xi);
weights[i] = xi / n1Squared / (val * val);
}
return new Pair<Double[], Double[]>(points, weights);
}
/**
* @param degree Matrix dimension.
* @return a square matrix.
*/
private RealMatrix companionMatrix(final int degree) {
final RealMatrix c = MatrixUtils.createRealMatrix(degree, degree);
for (int i = 0; i < degree; i++) {
c.setEntry(i, i, 2 * i + 1);
if (i + 1 < degree) {
// subdiagonal
c.setEntry(i+1, i, -(i + 1));
}
if (i - 1 >= 0) {
// superdiagonal
c.setEntry(i-1, i, -i);
}
}
return c;
}
}

View File

@ -0,0 +1,50 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.analysis.integration.gauss;
import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.special.Gamma;
import org.apache.commons.math4.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test of the {@link LaguerreRuleFactory}.
*/
public class LaguerreTest {
private static final GaussIntegratorFactory factory = new GaussIntegratorFactory();
@Test
public void testGamma() {
final double tol = 1e-13;
for (int i = 2; i < 10; i += 1) {
final double t = i;
final UnivariateFunction f = new UnivariateFunction() {
@Override
public double value(double x) {
return FastMath.pow(x, t - 1);
}
};
final GaussIntegrator integrator = factory.laguerre(7);
final double s = integrator.integrate(f);
Assert.assertEquals(1d, Gamma.gamma(t) / s, tol);
}
}
}