Updated throws declaration for random package (and part of
distribution). git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1382904 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
0955f5db17
commit
b883dcbc08
|
@ -86,8 +86,10 @@ public class GammaDistribution extends AbstractRealDistribution {
|
|||
*
|
||||
* @param shape the shape parameter
|
||||
* @param scale the scale parameter
|
||||
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
||||
* {@code scale <= 0}.
|
||||
*/
|
||||
public GammaDistribution(double shape, double scale) {
|
||||
public GammaDistribution(double shape, double scale) throws NotStrictlyPositiveException {
|
||||
this(shape, scale, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.exception;
|
||||
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
|
||||
/**
|
||||
* Exception to be thrown when a number is not a n umber.
|
||||
*
|
||||
* @since 3.0
|
||||
* @version $Id$
|
||||
*/
|
||||
public class NotANumberException extends MathIllegalNumberException {
|
||||
/** Serializable version Id. */
|
||||
private static final long serialVersionUID = 20120906L;
|
||||
|
||||
/**
|
||||
* Construct the exception.
|
||||
*/
|
||||
public NotANumberException() {
|
||||
super(LocalizedFormats.NAN_NOT_ALLOWED, Double.NaN);
|
||||
}
|
||||
|
||||
}
|
|
@ -126,6 +126,7 @@ public enum LocalizedFormats implements Localizable {
|
|||
INITIAL_CAPACITY_NOT_POSITIVE("initial capacity ({0}) is not positive"),
|
||||
INITIAL_COLUMN_AFTER_FINAL_COLUMN("initial column {1} after final column {0}"),
|
||||
INITIAL_ROW_AFTER_FINAL_ROW("initial row {1} after final row {0}"),
|
||||
@Deprecated
|
||||
INPUT_DATA_FROM_UNSUPPORTED_DATASOURCE("input data comes from unsupported datasource: {0}, supported sources: {1}, {2}"),
|
||||
INSTANCES_NOT_COMPARABLE_TO_EXISTING_VALUES("instance of class {0} not comparable to existing values"),
|
||||
INSUFFICIENT_DATA_FOR_T_STATISTIC("insufficient data for t statistic, needs at least 2, got {0}"),
|
||||
|
|
|
@ -18,6 +18,11 @@
|
|||
package org.apache.commons.math3.random;
|
||||
import java.util.Collection;
|
||||
|
||||
import org.apache.commons.math3.exception.NotANumberException;
|
||||
import org.apache.commons.math3.exception.NotFiniteNumberException;
|
||||
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Random data generation utilities.
|
||||
* @deprecated to be removed in 4.0. Use {@link RandomDataGenerator} directly
|
||||
|
@ -34,10 +39,10 @@ public interface RandomData {
|
|||
*
|
||||
* @param len the length of the string to be generated
|
||||
* @return a random string of hex characters of length {@code len}
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* @throws NotStrictlyPositiveException
|
||||
* if {@code len <= 0}
|
||||
*/
|
||||
String nextHexString(int len);
|
||||
String nextHexString(int len) throws NotStrictlyPositiveException;
|
||||
|
||||
/**
|
||||
* Generates a uniformly distributed random integer between {@code lower}
|
||||
|
@ -52,10 +57,9 @@ public interface RandomData {
|
|||
* @param upper upper bound for generated integer
|
||||
* @return a random integer greater than or equal to {@code lower}
|
||||
* and less than or equal to {@code upper}
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code lower >= upper}
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}
|
||||
*/
|
||||
int nextInt(int lower, int upper);
|
||||
int nextInt(int lower, int upper) throws NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Generates a uniformly distributed random long integer between
|
||||
|
@ -70,10 +74,9 @@ public interface RandomData {
|
|||
* @param upper upper bound for generated long integer
|
||||
* @return a random long integer greater than or equal to {@code lower} and
|
||||
* less than or equal to {@code upper}
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code lower >= upper}.
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}
|
||||
*/
|
||||
long nextLong(long lower, long upper);
|
||||
long nextLong(long lower, long upper) throws NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Generates a random string of hex characters from a secure random
|
||||
|
@ -85,10 +88,9 @@ public interface RandomData {
|
|||
*
|
||||
* @param len the length of the string to be generated
|
||||
* @return a random string of hex characters of length {@code len}
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* if {@code len <= 0}
|
||||
* @throws NotStrictlyPositiveException if {@code len <= 0}
|
||||
*/
|
||||
String nextSecureHexString(int len);
|
||||
String nextSecureHexString(int len) throws NotStrictlyPositiveException;
|
||||
|
||||
/**
|
||||
* Generates a uniformly distributed random integer between {@code lower}
|
||||
|
@ -106,10 +108,9 @@ public interface RandomData {
|
|||
* @param upper upper bound for generated integer
|
||||
* @return a random integer greater than or equal to {@code lower} and less
|
||||
* than or equal to {@code upper}.
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code lower >= upper}.
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}.
|
||||
*/
|
||||
int nextSecureInt(int lower, int upper);
|
||||
int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Generates a uniformly distributed random long integer between
|
||||
|
@ -128,10 +129,9 @@ public interface RandomData {
|
|||
* @param upper upper bound for generated integer
|
||||
* @return a random long integer greater than or equal to {@code lower} and
|
||||
* less than or equal to {@code upper}.
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code lower >= upper}.
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}.
|
||||
*/
|
||||
long nextSecureLong(long lower, long upper);
|
||||
long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Generates a random value from the Poisson distribution with the given
|
||||
|
@ -143,10 +143,9 @@ public interface RandomData {
|
|||
*
|
||||
* @param mean the mean of the Poisson distribution
|
||||
* @return a random value following the specified Poisson distribution
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* if {@code mean <= 0}.
|
||||
* @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
||||
*/
|
||||
long nextPoisson(double mean);
|
||||
long nextPoisson(double mean) throws NotStrictlyPositiveException;
|
||||
|
||||
/**
|
||||
* Generates a random value from the Normal (or Gaussian) distribution with
|
||||
|
@ -159,10 +158,9 @@ public interface RandomData {
|
|||
* @param mu the mean of the distribution
|
||||
* @param sigma the standard deviation of the distribution
|
||||
* @return a random value following the specified Gaussian distribution
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* if {@code sigma <= 0}.
|
||||
* @throws NotStrictlyPositiveException if {@code sigma <= 0}.
|
||||
*/
|
||||
double nextGaussian(double mu, double sigma);
|
||||
double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException;
|
||||
|
||||
/**
|
||||
* Generates a random value from the exponential distribution
|
||||
|
@ -174,10 +172,9 @@ public interface RandomData {
|
|||
*
|
||||
* @param mean the mean of the distribution
|
||||
* @return a random value following the specified exponential distribution
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* if {@code mean <= 0}.
|
||||
* @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
||||
*/
|
||||
double nextExponential(double mean);
|
||||
double nextExponential(double mean) throws NotStrictlyPositiveException;
|
||||
|
||||
/**
|
||||
* Generates a uniformly distributed random value from the open interval
|
||||
|
@ -193,10 +190,12 @@ public interface RandomData {
|
|||
* @param upper the exclusive upper bound of the support
|
||||
* @return a uniformly distributed random value between lower and upper
|
||||
* (exclusive)
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code lower >= upper}
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}
|
||||
* @throws NotFiniteNumberException if one of the bounds is infinite
|
||||
* @throws NotANumberException if one of the bounds is infinite
|
||||
*/
|
||||
double nextUniform(double lower, double upper);
|
||||
double nextUniform(double lower, double upper)
|
||||
throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException;
|
||||
|
||||
/**
|
||||
* Generates a uniformly distributed random value from the interval
|
||||
|
@ -217,10 +216,12 @@ public interface RandomData {
|
|||
* interval, if {@code lowerInclusive} is {@code false}, or in the
|
||||
* {@code [lower, upper)} interval, if {@code lowerInclusive} is
|
||||
* {@code true}
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code lower >= upper}
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}
|
||||
* @throws NotFiniteNumberException if one of the bounds is infinite
|
||||
* @throws NotANumberException if one of the bounds is infinite
|
||||
*/
|
||||
double nextUniform(double lower, double upper, boolean lowerInclusive);
|
||||
double nextUniform(double lower, double upper, boolean lowerInclusive)
|
||||
throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException;
|
||||
|
||||
/**
|
||||
* Generates an integer array of length {@code k} whose entries are selected
|
||||
|
@ -234,12 +235,11 @@ public interface RandomData {
|
|||
* @param k the size of the permutation
|
||||
* @return a random {@code k}-permutation of {@code n}, as an array of
|
||||
* integers
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code k > n}.
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* if {@code k <= 0}.
|
||||
* @throws NumberIsTooLargeException if {@code k > n}.
|
||||
* @throws NotStrictlyPositiveException if {@code k <= 0}.
|
||||
*/
|
||||
int[] nextPermutation(int n, int k);
|
||||
int[] nextPermutation(int n, int k)
|
||||
throws NumberIsTooLargeException, NotStrictlyPositiveException;
|
||||
|
||||
/**
|
||||
* Returns an array of {@code k} objects selected randomly from the
|
||||
|
@ -255,10 +255,10 @@ public interface RandomData {
|
|||
* @param c the collection to be sampled
|
||||
* @param k the size of the sample
|
||||
* @return a random sample of {@code k} elements from {@code c}
|
||||
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
|
||||
* if {@code k > c.size()}.
|
||||
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
|
||||
* if {@code k <= 0}.
|
||||
* @throws NumberIsTooLargeException if {@code k > c.size()}.
|
||||
* @throws NotStrictlyPositiveException if {@code k <= 0}.
|
||||
*/
|
||||
Object[] nextSample(Collection<?> c, int k);
|
||||
Object[] nextSample(Collection<?> c, int k)
|
||||
throws NumberIsTooLargeException, NotStrictlyPositiveException;
|
||||
|
||||
}
|
||||
|
|
|
@ -38,9 +38,12 @@ import org.apache.commons.math3.distribution.TDistribution;
|
|||
import org.apache.commons.math3.distribution.WeibullDistribution;
|
||||
import org.apache.commons.math3.distribution.ZipfDistribution;
|
||||
import org.apache.commons.math3.exception.MathInternalError;
|
||||
import org.apache.commons.math3.exception.NotANumberException;
|
||||
import org.apache.commons.math3.exception.NotFiniteNumberException;
|
||||
import org.apache.commons.math3.exception.NotPositiveException;
|
||||
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooLargeException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
|
||||
|
@ -155,7 +158,7 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @return the random string.
|
||||
* @throws NotStrictlyPositiveException if {@code len <= 0}.
|
||||
*/
|
||||
public String nextHexString(int len) {
|
||||
public String nextHexString(int len) throws NotStrictlyPositiveException {
|
||||
if (len <= 0) {
|
||||
throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
|
||||
}
|
||||
|
@ -191,9 +194,9 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public int nextInt(int lower, int upper) {
|
||||
public int nextInt(int lower, int upper) throws NumberIsTooLargeException {
|
||||
if (lower >= upper) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
lower, upper, false);
|
||||
}
|
||||
double r = getRan().nextDouble();
|
||||
|
@ -202,9 +205,9 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public long nextLong(long lower, long upper) {
|
||||
public long nextLong(long lower, long upper) throws NumberIsTooLargeException {
|
||||
if (lower >= upper) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
lower, upper, false);
|
||||
}
|
||||
double r = getRan().nextDouble();
|
||||
|
@ -227,8 +230,9 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* Each byte of the binary digest is converted to 2 hex digits.</li>
|
||||
* </ol>
|
||||
* </p>
|
||||
* @throws NotStrictlyPositiveException if {@code len <= 0}
|
||||
*/
|
||||
public String nextSecureHexString(int len) {
|
||||
public String nextSecureHexString(int len) throws NotStrictlyPositiveException {
|
||||
if (len <= 0) {
|
||||
throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
|
||||
}
|
||||
|
@ -278,7 +282,7 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public int nextSecureInt(int lower, int upper) {
|
||||
public int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException {
|
||||
if (lower >= upper) {
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
lower, upper, false);
|
||||
|
@ -290,7 +294,7 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public long nextSecureLong(long lower, long upper) {
|
||||
public long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException {
|
||||
if (lower >= upper) {
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
lower, upper, false);
|
||||
|
@ -313,15 +317,16 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* <li> For large means, uses the rejection algorithm described in <br/>
|
||||
* Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
|
||||
* <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
|
||||
* @throws NotStrictlyPositiveException if {@code len <= 0}
|
||||
*/
|
||||
public long nextPoisson(double mean) {
|
||||
public long nextPoisson(double mean) throws NotStrictlyPositiveException {
|
||||
return new PoissonDistribution(getRan(), mean,
|
||||
PoissonDistribution.DEFAULT_EPSILON,
|
||||
PoissonDistribution.DEFAULT_MAX_ITERATIONS).sample();
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double nextGaussian(double mu, double sigma) {
|
||||
public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
|
||||
if (sigma <= 0) {
|
||||
throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
|
||||
}
|
||||
|
@ -339,7 +344,7 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* Communications of the ACM, 15, 873-882.
|
||||
* </p>
|
||||
*/
|
||||
public double nextExponential(double mean) {
|
||||
public double nextExponential(double mean) throws NotStrictlyPositiveException {
|
||||
return new ExponentialDistribution(getRan(), mean,
|
||||
ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
|
||||
}
|
||||
|
@ -363,8 +368,10 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param shape the median of the Gamma distribution
|
||||
* @param scale the scale parameter of the Gamma distribution
|
||||
* @return random value sampled from the Gamma(shape, scale) distribution
|
||||
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
||||
* {@code scale <= 0}.
|
||||
*/
|
||||
public double nextGamma(double shape, double scale) {
|
||||
public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException {
|
||||
return new GammaDistribution(getRan(),shape, scale,
|
||||
GammaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
|
||||
}
|
||||
|
@ -376,8 +383,12 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
|
||||
* @param sampleSize the sample size of the Hypergeometric distribution
|
||||
* @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
|
||||
* @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize},
|
||||
* or {@code sampleSize > populationSize}.
|
||||
* @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
|
||||
* @throws NotPositiveException if {@code numberOfSuccesses < 0}.
|
||||
*/
|
||||
public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) {
|
||||
public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
|
||||
return new HypergeometricDistribution(getRan(),populationSize,
|
||||
numberOfSuccesses, sampleSize).sample();
|
||||
}
|
||||
|
@ -388,8 +399,11 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param r the number of successes of the Pascal distribution
|
||||
* @param p the probability of success of the Pascal distribution
|
||||
* @return random value sampled from the Pascal(r, p) distribution
|
||||
* @throws NotStrictlyPositiveException if the number of successes is not positive
|
||||
* @throws OutOfRangeException if the probability of success is not in the
|
||||
* range {@code [0, 1]}.
|
||||
*/
|
||||
public int nextPascal(int r, double p) {
|
||||
public int nextPascal(int r, double p) throws NotStrictlyPositiveException, OutOfRangeException {
|
||||
return new PascalDistribution(getRan(), r, p).sample();
|
||||
}
|
||||
|
||||
|
@ -398,8 +412,9 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
*
|
||||
* @param df the degrees of freedom of the T distribution
|
||||
* @return random value from the T(df) distribution
|
||||
* @throws NotStrictlyPositiveException if {@code df <= 0}
|
||||
*/
|
||||
public double nextT(double df) {
|
||||
public double nextT(double df) throws NotStrictlyPositiveException {
|
||||
return new TDistribution(getRan(), df,
|
||||
TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
|
||||
}
|
||||
|
@ -410,8 +425,10 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param shape the shape parameter of the Weibull distribution
|
||||
* @param scale the scale parameter of the Weibull distribution
|
||||
* @return random value sampled from the Weibull(shape, size) distribution
|
||||
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
||||
* {@code scale <= 0}.
|
||||
*/
|
||||
public double nextWeibull(double shape, double scale) {
|
||||
public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException {
|
||||
return new WeibullDistribution(getRan(), shape, scale,
|
||||
WeibullDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
|
||||
}
|
||||
|
@ -422,8 +439,10 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param numberOfElements the number of elements of the ZipfDistribution
|
||||
* @param exponent the exponent of the ZipfDistribution
|
||||
* @return random value sampled from the Zipf(numberOfElements, exponent) distribution
|
||||
* @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
|
||||
* or {@code exponent <= 0}.
|
||||
*/
|
||||
public int nextZipf(int numberOfElements, double exponent) {
|
||||
public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException {
|
||||
return new ZipfDistribution(getRan(), numberOfElements, exponent).sample();
|
||||
}
|
||||
|
||||
|
@ -479,8 +498,10 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param numeratorDf the numerator degrees of freedom of the F distribution
|
||||
* @param denominatorDf the denominator degrees of freedom of the F distribution
|
||||
* @return random value sampled from the F(numeratorDf, denominatorDf) distribution
|
||||
* @throws NotStrictlyPositiveException if
|
||||
* {@code numeratorDf <= 0} or {@code denominatorDf <= 0}.
|
||||
*/
|
||||
public double nextF(double numeratorDf, double denominatorDf) {
|
||||
public double nextF(double numeratorDf, double denominatorDf) throws NotStrictlyPositiveException {
|
||||
return new FDistribution(getRan(), numeratorDf, denominatorDf,
|
||||
FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
|
||||
}
|
||||
|
@ -494,11 +515,12 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* random double if Random.nextDouble() returns 0). This is necessary to
|
||||
* provide a symmetric output interval (both endpoints excluded).
|
||||
* </p>
|
||||
*
|
||||
* @throws MathIllegalArgumentException if one of the bounds is infinite or
|
||||
* {@code NaN} or either bound is infinite or NaN
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}
|
||||
* @throws NotFiniteNumberException if one of the bounds is infinite
|
||||
* @throws NotANumberException if one of the bounds is not a number
|
||||
*/
|
||||
public double nextUniform(double lower, double upper) {
|
||||
public double nextUniform(double lower, double upper)
|
||||
throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
|
||||
return nextUniform(lower, upper, false);
|
||||
}
|
||||
|
||||
|
@ -513,23 +535,29 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* endpoints excluded).
|
||||
* </p>
|
||||
*
|
||||
* @throws MathIllegalArgumentException if one of the bounds is infinite or
|
||||
* @throws N if one of the bounds is infinite or
|
||||
* {@code NaN}
|
||||
* @throws NumberIsTooLargeException if {@code lower >= upper}
|
||||
* @throws NotFiniteNumberException if one of the bounds is infinite
|
||||
* @throws NotANumberException if one of the bounds is not a number
|
||||
*/
|
||||
public double nextUniform(double lower, double upper,
|
||||
boolean lowerInclusive) {
|
||||
public double nextUniform(double lower, double upper, boolean lowerInclusive)
|
||||
throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
|
||||
|
||||
if (lower >= upper) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
||||
lower, upper, false);
|
||||
}
|
||||
|
||||
if (Double.isInfinite(lower) || Double.isInfinite(upper)) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.INFINITE_BOUND);
|
||||
if (Double.isInfinite(lower)) {
|
||||
throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, lower);
|
||||
}
|
||||
if (Double.isInfinite(upper)) {
|
||||
throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, upper);
|
||||
}
|
||||
|
||||
if (Double.isNaN(lower) || Double.isNaN(upper)) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.NAN_NOT_ALLOWED);
|
||||
throw new NotANumberException();
|
||||
}
|
||||
|
||||
final RandomGenerator generator = getRan();
|
||||
|
@ -551,10 +579,13 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
|
||||
* here</a>.
|
||||
* </p>
|
||||
* @throws NumberIsTooLargeException if {@code k > n}.
|
||||
* @throws NotStrictlyPositiveException if {@code k <= 0}.
|
||||
*/
|
||||
public int[] nextPermutation(int n, int k) {
|
||||
public int[] nextPermutation(int n, int k)
|
||||
throws NumberIsTooLargeException, NotStrictlyPositiveException {
|
||||
if (k > n) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.PERMUTATION_EXCEEDS_N,
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N,
|
||||
k, n, true);
|
||||
}
|
||||
if (k <= 0) {
|
||||
|
@ -585,7 +616,7 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* here</a>
|
||||
* </p>
|
||||
*/
|
||||
public Object[] nextSample(Collection<?> c, int k) {
|
||||
public Object[] nextSample(Collection<?> c, int k) throws NumberIsTooLargeException, NotStrictlyPositiveException {
|
||||
|
||||
int len = c.size();
|
||||
if (k > len) {
|
||||
|
@ -720,7 +751,7 @@ public class RandomDataGenerator implements RandomData, Serializable {
|
|||
* @param list list to be shuffled
|
||||
* @param end element past which shuffling begins
|
||||
*/
|
||||
private void shuffle(int[] list, int end) {
|
||||
private void shuffle(int[] list, int end) throws NumberIsTooLargeException {
|
||||
int target = 0;
|
||||
for (int i = list.length - 1; i >= end; i--) {
|
||||
if (i == 0) {
|
||||
|
|
|
@ -24,6 +24,13 @@ import java.util.Collection;
|
|||
|
||||
import org.apache.commons.math3.distribution.IntegerDistribution;
|
||||
import org.apache.commons.math3.distribution.RealDistribution;
|
||||
import org.apache.commons.math3.exception.NotANumberException;
|
||||
import org.apache.commons.math3.exception.NotFiniteNumberException;
|
||||
import org.apache.commons.math3.exception.NotPositiveException;
|
||||
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooLargeException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
|
||||
/**
|
||||
* Generates random deviates and other random data using a {@link RandomGenerator}
|
||||
|
@ -135,17 +142,17 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @return the random string.
|
||||
* @throws NotStrictlyPositiveException if {@code len <= 0}.
|
||||
*/
|
||||
public String nextHexString(int len) {
|
||||
public String nextHexString(int len) throws NotStrictlyPositiveException {
|
||||
return delegate.nextHexString(len);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public int nextInt(int lower, int upper) {
|
||||
public int nextInt(int lower, int upper) throws NumberIsTooLargeException {
|
||||
return delegate.nextInt(lower, upper);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public long nextLong(long lower, long upper) {
|
||||
public long nextLong(long lower, long upper) throws NumberIsTooLargeException {
|
||||
return delegate.nextLong(lower, upper);
|
||||
}
|
||||
|
||||
|
@ -165,17 +172,17 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* </ol>
|
||||
* </p>
|
||||
*/
|
||||
public String nextSecureHexString(int len) {
|
||||
public String nextSecureHexString(int len) throws NotStrictlyPositiveException {
|
||||
return delegate.nextSecureHexString(len);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public int nextSecureInt(int lower, int upper) {
|
||||
public int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException {
|
||||
return delegate.nextSecureInt(lower, upper);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public long nextSecureLong(long lower, long upper) {
|
||||
public long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException {
|
||||
return delegate.nextSecureLong(lower,upper);
|
||||
}
|
||||
|
||||
|
@ -192,12 +199,12 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
|
||||
* <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
|
||||
*/
|
||||
public long nextPoisson(double mean) {
|
||||
public long nextPoisson(double mean) throws NotStrictlyPositiveException {
|
||||
return delegate.nextPoisson(mean);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double nextGaussian(double mu, double sigma) {
|
||||
public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
|
||||
return delegate.nextGaussian(mu,sigma);
|
||||
}
|
||||
|
||||
|
@ -212,7 +219,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* Communications of the ACM, 15, 873-882.
|
||||
* </p>
|
||||
*/
|
||||
public double nextExponential(double mean) {
|
||||
public double nextExponential(double mean) throws NotStrictlyPositiveException {
|
||||
return delegate.nextExponential(mean);
|
||||
}
|
||||
|
||||
|
@ -225,11 +232,9 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* random double if Random.nextDouble() returns 0). This is necessary to
|
||||
* provide a symmetric output interval (both endpoints excluded).
|
||||
* </p>
|
||||
*
|
||||
* @throws MathIllegalArgumentException if one of the bounds is infinite or
|
||||
* {@code NaN} or either bound is infinite or NaN
|
||||
*/
|
||||
public double nextUniform(double lower, double upper) {
|
||||
public double nextUniform(double lower, double upper)
|
||||
throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
|
||||
return delegate.nextUniform(lower, upper);
|
||||
}
|
||||
|
||||
|
@ -243,13 +248,10 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* This is necessary to provide a symmetric output interval (both
|
||||
* endpoints excluded).
|
||||
* </p>
|
||||
*
|
||||
* @throws MathIllegalArgumentException if one of the bounds is infinite or
|
||||
* {@code NaN}
|
||||
* @since 3.0
|
||||
*/
|
||||
public double nextUniform(double lower, double upper,
|
||||
boolean lowerInclusive) {
|
||||
public double nextUniform(double lower, double upper, boolean lowerInclusive)
|
||||
throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
|
||||
return delegate.nextUniform(lower, upper, lowerInclusive);
|
||||
}
|
||||
|
||||
|
@ -316,9 +318,11 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param numeratorDf the numerator degrees of freedom of the F distribution
|
||||
* @param denominatorDf the denominator degrees of freedom of the F distribution
|
||||
* @return random value sampled from the F(numeratorDf, denominatorDf) distribution
|
||||
* @throws NotStrictlyPositiveException if
|
||||
* {@code numeratorDf <= 0} or {@code denominatorDf <= 0}.
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextF(double numeratorDf, double denominatorDf) {
|
||||
public double nextF(double numeratorDf, double denominatorDf) throws NotStrictlyPositiveException {
|
||||
return delegate.nextF(numeratorDf, denominatorDf);
|
||||
}
|
||||
|
||||
|
@ -341,9 +345,11 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param shape the median of the Gamma distribution
|
||||
* @param scale the scale parameter of the Gamma distribution
|
||||
* @return random value sampled from the Gamma(shape, scale) distribution
|
||||
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
||||
* {@code scale <= 0}.
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextGamma(double shape, double scale) {
|
||||
public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException {
|
||||
return delegate.nextGamma(shape, scale);
|
||||
}
|
||||
|
||||
|
@ -356,9 +362,14 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
|
||||
* @param sampleSize the sample size of the Hypergeometric distribution
|
||||
* @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
|
||||
* @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize},
|
||||
* or {@code sampleSize > populationSize}.
|
||||
* @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
|
||||
* @throws NotPositiveException if {@code numberOfSuccesses < 0}.
|
||||
* @since 2.2
|
||||
*/
|
||||
public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) {
|
||||
public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
|
||||
throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
|
||||
return delegate.nextHypergeometric(populationSize, numberOfSuccesses, sampleSize);
|
||||
}
|
||||
|
||||
|
@ -371,8 +382,12 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param p the probability of success of the Pascal distribution
|
||||
* @return random value sampled from the Pascal(r, p) distribution
|
||||
* @since 2.2
|
||||
* @throws NotStrictlyPositiveException if the number of successes is not positive
|
||||
* @throws OutOfRangeException if the probability of success is not in the
|
||||
* range {@code [0, 1]}.
|
||||
*/
|
||||
public int nextPascal(int r, double p) {
|
||||
public int nextPascal(int r, double p)
|
||||
throws NotStrictlyPositiveException, OutOfRangeException {
|
||||
return delegate.nextPascal(r, p);
|
||||
}
|
||||
|
||||
|
@ -384,8 +399,9 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param df the degrees of freedom of the T distribution
|
||||
* @return random value from the T(df) distribution
|
||||
* @since 2.2
|
||||
* @throws NotStrictlyPositiveException if {@code df <= 0}
|
||||
*/
|
||||
public double nextT(double df) {
|
||||
public double nextT(double df) throws NotStrictlyPositiveException {
|
||||
return delegate.nextT(df);
|
||||
}
|
||||
|
||||
|
@ -398,8 +414,10 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param scale the scale parameter of the Weibull distribution
|
||||
* @return random value sampled from the Weibull(shape, size) distribution
|
||||
* @since 2.2
|
||||
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
||||
* {@code scale <= 0}.
|
||||
*/
|
||||
public double nextWeibull(double shape, double scale) {
|
||||
public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException {
|
||||
return delegate.nextWeibull(shape, scale);
|
||||
}
|
||||
|
||||
|
@ -412,8 +430,10 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param exponent the exponent of the ZipfDistribution
|
||||
* @return random value sampled from the Zipf(numberOfElements, exponent) distribution
|
||||
* @since 2.2
|
||||
* @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
|
||||
* or {@code exponent <= 0}.
|
||||
*/
|
||||
public int nextZipf(int numberOfElements, double exponent) {
|
||||
public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException {
|
||||
return delegate.nextZipf(numberOfElements, exponent);
|
||||
}
|
||||
|
||||
|
@ -497,7 +517,8 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* here</a>.
|
||||
* </p>
|
||||
*/
|
||||
public int[] nextPermutation(int n, int k) {
|
||||
public int[] nextPermutation(int n, int k)
|
||||
throws NotStrictlyPositiveException, NumberIsTooLargeException {
|
||||
return delegate.nextPermutation(n, k);
|
||||
}
|
||||
|
||||
|
@ -514,7 +535,8 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* here</a>
|
||||
* </p>
|
||||
*/
|
||||
public Object[] nextSample(Collection<?> c, int k) {
|
||||
public Object[] nextSample(Collection<?> c, int k)
|
||||
throws NotStrictlyPositiveException, NumberIsTooLargeException {
|
||||
return delegate.nextSample(c, k);
|
||||
}
|
||||
|
||||
|
@ -524,10 +546,12 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
*
|
||||
* @param distribution Continuous distribution to generate a random value from
|
||||
* @return a random value sampled from the given distribution
|
||||
* @throws MathIllegalArgumentException if the underlynig distribution throws one
|
||||
* @since 2.2
|
||||
* @deprecated use the distribution's sample() method
|
||||
*/
|
||||
public double nextInversionDeviate(RealDistribution distribution) {
|
||||
public double nextInversionDeviate(RealDistribution distribution)
|
||||
throws MathIllegalArgumentException {
|
||||
return distribution.inverseCumulativeProbability(nextUniform(0, 1));
|
||||
|
||||
}
|
||||
|
@ -538,10 +562,12 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
*
|
||||
* @param distribution Integer distribution to generate a random value from
|
||||
* @return a random value sampled from the given distribution
|
||||
* @throws MathIllegalArgumentException if the underlynig distribution throws one
|
||||
* @since 2.2
|
||||
* @deprecated use the distribution's sample() method
|
||||
*/
|
||||
public int nextInversionDeviate(IntegerDistribution distribution) {
|
||||
public int nextInversionDeviate(IntegerDistribution distribution)
|
||||
throws MathIllegalArgumentException {
|
||||
return distribution.inverseCumulativeProbability(nextUniform(0, 1));
|
||||
}
|
||||
|
||||
|
|
|
@ -51,9 +51,13 @@ public class StableRandomGenerator implements NormalizedRandomGenerator {
|
|||
* @param generator underlying random generator to use
|
||||
* @param alpha Stability parameter. Must be in range (0, 2]
|
||||
* @param beta Skewness parameter. Must be in range [-1, 1]
|
||||
* @throws NullArgumentException if generator is null
|
||||
* @throws OutOfRangeException if {@code alpha <= 0} or {@code alpha > 2}
|
||||
* or {@code beta < -1} or {@code beta > 1}
|
||||
*/
|
||||
public StableRandomGenerator(final RandomGenerator generator, double alpha,
|
||||
double beta) {
|
||||
public StableRandomGenerator(final RandomGenerator generator,
|
||||
final double alpha, final double beta)
|
||||
throws NullArgumentException, OutOfRangeException {
|
||||
if (generator == null) {
|
||||
throw new NullArgumentException();
|
||||
}
|
||||
|
|
|
@ -22,7 +22,10 @@ import java.io.InputStreamReader;
|
|||
import java.net.MalformedURLException;
|
||||
import java.net.URL;
|
||||
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.MathIllegalStateException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.ZeroException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
|
||||
/**
|
||||
|
@ -111,8 +114,10 @@ public class ValueServer {
|
|||
*
|
||||
* @return generated value
|
||||
* @throws IOException in REPLAY_MODE if a file I/O error occurs
|
||||
* @throws MathIllegalStateException if mode is not recognized
|
||||
* @throws MathIllegalArgumentException if the underlying random generator thwrows one
|
||||
*/
|
||||
public double getNext() throws IOException {
|
||||
public double getNext() throws IOException, MathIllegalStateException, MathIllegalArgumentException {
|
||||
switch (mode) {
|
||||
case DIGEST_MODE: return getNextDigest();
|
||||
case REPLAY_MODE: return getNextReplay();
|
||||
|
@ -134,8 +139,11 @@ public class ValueServer {
|
|||
*
|
||||
* @param values array to be filled
|
||||
* @throws IOException in REPLAY_MODE if a file I/O error occurs
|
||||
* @throws MathIllegalStateException if mode is not recognized
|
||||
* @throws MathIllegalArgumentException if the underlying random generator thwrows one
|
||||
*/
|
||||
public void fill(double[] values) throws IOException {
|
||||
public void fill(double[] values)
|
||||
throws IOException, MathIllegalStateException, MathIllegalArgumentException {
|
||||
for (int i = 0; i < values.length; i++) {
|
||||
values[i] = getNext();
|
||||
}
|
||||
|
@ -148,8 +156,11 @@ public class ValueServer {
|
|||
* @param length length of output array
|
||||
* @return array of generated values
|
||||
* @throws IOException in REPLAY_MODE if a file I/O error occurs
|
||||
* @throws MathIllegalStateException if mode is not recognized
|
||||
* @throws MathIllegalArgumentException if the underlying random generator thwrows one
|
||||
*/
|
||||
public double[] fill(int length) throws IOException {
|
||||
public double[] fill(int length)
|
||||
throws IOException, MathIllegalStateException, MathIllegalArgumentException {
|
||||
double[] out = new double[length];
|
||||
for (int i = 0; i < length; i++) {
|
||||
out[i] = getNext();
|
||||
|
@ -168,8 +179,10 @@ public class ValueServer {
|
|||
* with <code>mode = DIGEST_MODE</code></p>
|
||||
*
|
||||
* @throws IOException if an I/O error occurs reading the input file
|
||||
* @throws NullArgumentException
|
||||
* @throws ZeroException if URL contains no data
|
||||
*/
|
||||
public void computeDistribution() throws IOException {
|
||||
public void computeDistribution() throws IOException, ZeroException, NullArgumentException {
|
||||
computeDistribution(EmpiricalDistribution.DEFAULT_BIN_COUNT);
|
||||
}
|
||||
|
||||
|
@ -185,10 +198,11 @@ public class ValueServer {
|
|||
*
|
||||
* @param binCount the number of bins used in computing the empirical
|
||||
* distribution
|
||||
* @throws NullArgumentException
|
||||
* @throws IOException if an error occurs reading the input file
|
||||
* @throws ZeroException if URL contains no data
|
||||
*/
|
||||
public void computeDistribution(int binCount)
|
||||
throws IOException {
|
||||
public void computeDistribution(int binCount) throws NullArgumentException, IOException, ZeroException {
|
||||
empiricalDistribution = new EmpiricalDistribution(binCount, randomData);
|
||||
empiricalDistribution.load(valuesFileURL);
|
||||
mu = empiricalDistribution.getSampleStats().getMean();
|
||||
|
@ -348,8 +362,9 @@ public class ValueServer {
|
|||
* <code>IllegalStateException</code> will be thrown</li></ul></p>
|
||||
*
|
||||
* @return next random value from the empirical distribution digest
|
||||
* @throws MathIllegalStateException if digest has not been initialized
|
||||
*/
|
||||
private double getNextDigest() {
|
||||
private double getNextDigest() throws MathIllegalStateException {
|
||||
if ((empiricalDistribution == null) ||
|
||||
(empiricalDistribution.getBinStats().size() == 0)) {
|
||||
throw new MathIllegalStateException(LocalizedFormats.DIGEST_NOT_INITIALIZED);
|
||||
|
@ -372,10 +387,11 @@ public class ValueServer {
|
|||
*
|
||||
* @return next value from the replay file
|
||||
* @throws IOException if there is a problem reading from the file
|
||||
* @throws MathIllegalStateException if URL contains no data
|
||||
* @throws NumberFormatException if an invalid numeric string is
|
||||
* encountered in the file
|
||||
*/
|
||||
private double getNextReplay() throws IOException {
|
||||
private double getNextReplay() throws IOException, MathIllegalStateException {
|
||||
String str = null;
|
||||
if (filePointer == null) {
|
||||
resetReplayFile();
|
||||
|
@ -396,8 +412,9 @@ public class ValueServer {
|
|||
* Gets a uniformly distributed random value with mean = mu.
|
||||
*
|
||||
* @return random uniform value
|
||||
* @throws MathIllegalArgumentException if the underlying random generator thwrows one
|
||||
*/
|
||||
private double getNextUniform() {
|
||||
private double getNextUniform() throws MathIllegalArgumentException {
|
||||
return randomData.nextUniform(0, 2 * mu);
|
||||
}
|
||||
|
||||
|
@ -405,8 +422,9 @@ public class ValueServer {
|
|||
* Gets an exponentially distributed random value with mean = mu.
|
||||
*
|
||||
* @return random exponential value
|
||||
* @throws MathIllegalArgumentException if the underlying random generator thwrows one
|
||||
*/
|
||||
private double getNextExponential() {
|
||||
private double getNextExponential() throws MathIllegalArgumentException {
|
||||
return randomData.nextExponential(mu);
|
||||
}
|
||||
|
||||
|
@ -415,8 +433,9 @@ public class ValueServer {
|
|||
* and standard deviation = sigma.
|
||||
*
|
||||
* @return random Gaussian value
|
||||
* @throws MathIllegalArgumentException if the underlying random generator thwrows one
|
||||
*/
|
||||
private double getNextGaussian() {
|
||||
private double getNextGaussian() throws MathIllegalArgumentException {
|
||||
return randomData.nextGaussian(mu, sigma);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue