MATH-1092

Added parameter in "LineSearch" and "NonLinearConjugateGradientOptimizer".


git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1573316 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2014-03-02 14:54:37 +00:00
parent e2dc384d7b
commit b95cfc9b57
5 changed files with 63 additions and 28 deletions

View File

@ -54,6 +54,11 @@ public class LineSearch {
* Automatic bracketing.
*/
private final BracketFinder bracket = new BracketFinder();
/**
* Extent of the initial interval used to find an interval that
* brackets the optimum.
*/
private final double initialBracketingRange;
/**
* Optimizer on behalf of which the line search must be performed.
*/
@ -70,23 +75,33 @@ public class LineSearch {
* @param optimizer Optimizer on behalf of which the line search
* be performed.
* Its {@link MultivariateOptimizer#computeObjectiveValue(double[])
* computeObjectiveValue} method will be called by this class's
* computeObjectiveValue} method will be called by the
* {@link #search(double[],double[]) search} method.
* @param relativeTolerance Relative threshold.
* @param absoluteTolerance Absolute threshold.
* @param relativeTolerance Search will stop when the function relative
* difference between successive iterations is smaller than this value.
* @param absoluteTolerance Search will stop when the function absolute
* difference between successive iterations is smaller than this value.
* @param initialBracketingRange Extent of the initial interval used to
* find an interval that brackets the optimum.
* If the optimized function varies a lot in the vicinity of the optimum,
* it may be necessary to provide a value lower than the distance between
* successive local minima.
*/
public LineSearch(MultivariateOptimizer optimizer,
double relativeTolerance,
double absoluteTolerance) {
double absoluteTolerance,
double initialBracketingRange) {
mainOptimizer = optimizer;
lineOptimizer = new BrentOptimizer(REL_TOL_UNUSED,
ABS_TOL_UNUSED,
new SimpleUnivariateValueChecker(relativeTolerance,
absoluteTolerance));
this.initialBracketingRange = initialBracketingRange;
}
/**
* Find the minimum of the function {@code f(p + alpha * d)}.
* Finds the number {@code alpha} that optimizes
* {@code f(startPoint + alpha * direction)}.
*
* @param startPoint Starting point.
* @param direction Search direction.
@ -109,7 +124,7 @@ public class LineSearch {
};
final GoalType goal = mainOptimizer.getGoalType();
bracket.search(f, goal, 0, 1);
bracket.search(f, goal, 0, initialBracketingRange);
// Passing "MAX_VALUE" as a dummy value because it is the enclosing
// class that counts the number of evaluations (and will eventually
// generate the exception).

View File

@ -86,7 +86,9 @@ public class NonLinearConjugateGradientOptimizer
* search.
*
* @since 3.1
* @deprecated As of v3.3, class is not used anymore.
* @deprecated As of v3.3, this class is not used anymore.
* This setting is replaced by the {@code initialBracketingRange}
* argument to the new constructors.
*/
@Deprecated
public static class BracketingStep implements OptimizationData {
@ -125,6 +127,7 @@ public class NonLinearConjugateGradientOptimizer
checker,
1e-8,
1e-8,
1e-8,
new IdentityPreconditioner());
}
@ -137,7 +140,7 @@ public class NonLinearConjugateGradientOptimizer
* @param checker Convergence checker.
* @param lineSearchSolver Solver to use during line search.
* @deprecated as of 3.3. Please use
* {@link #NonLinearConjugateGradientOptimizer(Formula,ConvergenceChecker,double,double)} instead.
* {@link #NonLinearConjugateGradientOptimizer(Formula,ConvergenceChecker,double,double,double)} instead.
*/
@Deprecated
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
@ -158,17 +161,23 @@ public class NonLinearConjugateGradientOptimizer
* @param checker Convergence checker.
* @param relativeTolerance Relative threshold for line search.
* @param absoluteTolerance Absolute threshold for line search.
* @param initialBracketingRange Extent of the initial interval used to
* find an interval that brackets the optimum in order to perform the
* line search.
*
* @see LineSearch#LineSearch(MultivariateOptimizer,double,double)
* @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
* @since 3.3
*/
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
ConvergenceChecker<PointValuePair> checker,
double relativeTolerance,
double absoluteTolerance) {
double absoluteTolerance,
double initialBracketingRange) {
this(updateFormula,
checker,
relativeTolerance,
absoluteTolerance,
initialBracketingRange,
new IdentityPreconditioner());
}
@ -180,7 +189,7 @@ public class NonLinearConjugateGradientOptimizer
* @param lineSearchSolver Solver to use during line search.
* @param preconditioner Preconditioner.
* @deprecated as of 3.3. Please use
* {@link #NonLinearConjugateGradientOptimizer(Formula,ConvergenceChecker,double,double,Preconditioner)} instead.
* {@link #NonLinearConjugateGradientOptimizer(Formula,ConvergenceChecker,double,double,double,Preconditioner)} instead.
*/
@Deprecated
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
@ -191,6 +200,7 @@ public class NonLinearConjugateGradientOptimizer
checker,
lineSearchSolver.getRelativeAccuracy(),
lineSearchSolver.getAbsoluteAccuracy(),
lineSearchSolver.getAbsoluteAccuracy(),
preconditioner);
}
@ -202,13 +212,18 @@ public class NonLinearConjugateGradientOptimizer
* @param preconditioner Preconditioner.
* @param relativeTolerance Relative threshold for line search.
* @param absoluteTolerance Absolute threshold for line search.
* @param initialBracketingRange Extent of the initial interval used to
* find an interval that brackets the optimum in order to perform the
* line search.
*
* @see LineSearch#LineSearch(MultivariateOptimizer,double,double)
* @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
* @since 3.3
*/
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
ConvergenceChecker<PointValuePair> checker,
double relativeTolerance,
double absoluteTolerance,
double initialBracketingRange,
final Preconditioner preconditioner) {
super(checker);
@ -216,7 +231,8 @@ public class NonLinearConjugateGradientOptimizer
this.preconditioner = preconditioner;
line = new LineSearch(this,
relativeTolerance,
absoluteTolerance);
absoluteTolerance,
initialBracketingRange);
}
/**

View File

@ -127,7 +127,8 @@ public class PowellOptimizer
// Create the line search optimizer.
line = new LineSearch(this,
lineRel,
lineAbs);
lineAbs,
1d);
}
/**

View File

@ -110,7 +110,10 @@ public class BracketFinder {
* @throws TooManyEvaluationsException if the maximum number of evaluations
* is exceeded.
*/
public void search(UnivariateFunction func, GoalType goal, double xA, double xB) {
public void search(UnivariateFunction func,
GoalType goal,
double xA,
double xB) {
evaluations.resetCount();
final boolean isMinim = goal == GoalType.MINIMIZE;

View File

@ -105,7 +105,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(),
@ -122,7 +122,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -145,7 +145,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -171,7 +171,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -193,7 +193,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -235,7 +235,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-13, 1e-13),
1e-7, 1e-7,
1e-7, 1e-7, 1,
preconditioner);
PointValuePair optimum
@ -267,7 +267,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -288,7 +288,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-13, 1e-13),
1e-15, 1e-15);
1e-15, 1e-15, 1);
PointValuePair optimum1
= optimizer.optimize(new MaxEval(200),
problem1.getObjectiveFunction(),
@ -333,7 +333,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -356,7 +356,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -377,7 +377,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -400,7 +400,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6),
1e-3, 1e-3);
1e-3, 1e-3, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
@ -422,7 +422,7 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-30, 1e-30),
1e-15, 1e-13);
1e-15, 1e-13, 1);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),