MATH-1411: Relaxing tolerance.
Unit test now succeeds reasonably often, even when using a random seed.
This commit is contained in:
parent
2977d26a0f
commit
bab2a8b991
|
@ -252,11 +252,9 @@ public class LevenbergMarquardtOptimizerTest
|
|||
final double ySigma = 15;
|
||||
final double radius = 111.111;
|
||||
// The test is extremely sensitive to the seed.
|
||||
final long seed = 59321761419L;
|
||||
final RandomCirclePointGenerator factory
|
||||
= new RandomCirclePointGenerator(xCenter, yCenter, radius,
|
||||
xSigma, ySigma,
|
||||
seed);
|
||||
xSigma, ySigma);
|
||||
final CircleProblem circle = new CircleProblem(xSigma, ySigma);
|
||||
|
||||
final int numPoints = 10;
|
||||
|
@ -276,8 +274,8 @@ public class LevenbergMarquardtOptimizerTest
|
|||
final double[] asymptoticStandardErrorFound = optimum.getSigma(1e-14).toArray();
|
||||
|
||||
// Check that the parameters are found within the assumed error bars.
|
||||
Assert.assertEquals(xCenter, paramFound[0], asymptoticStandardErrorFound[0]);
|
||||
Assert.assertEquals(yCenter, paramFound[1], asymptoticStandardErrorFound[1]);
|
||||
Assert.assertEquals(xCenter, paramFound[0], 1.5 * asymptoticStandardErrorFound[0]);
|
||||
Assert.assertEquals(yCenter, paramFound[1], 1.5 * asymptoticStandardErrorFound[1]);
|
||||
Assert.assertEquals(radius, paramFound[2], asymptoticStandardErrorFound[2]);
|
||||
}
|
||||
|
||||
|
@ -289,11 +287,9 @@ public class LevenbergMarquardtOptimizerTest
|
|||
final double xSigma = 10;
|
||||
final double ySigma = 15;
|
||||
final double radius = 111.111;
|
||||
final long seed = 3456789L;
|
||||
final RandomCirclePointGenerator factory
|
||||
= new RandomCirclePointGenerator(xCenter, yCenter, radius,
|
||||
xSigma, ySigma,
|
||||
seed);
|
||||
xSigma, ySigma);
|
||||
final CircleProblem circle = new CircleProblem(xSigma, ySigma);
|
||||
|
||||
final int numPoints = 10;
|
||||
|
|
|
@ -50,9 +50,8 @@ public class RandomCirclePointGenerator {
|
|||
double y,
|
||||
double radius,
|
||||
double xSigma,
|
||||
double ySigma,
|
||||
long seed) {
|
||||
final UniformRandomProvider rng = RandomSource.create(RandomSource.WELL_44497_B, seed);
|
||||
double ySigma) {
|
||||
final UniformRandomProvider rng = RandomSource.create(RandomSource.WELL_44497_B);
|
||||
this.radius = radius;
|
||||
cX = new NormalDistribution(x, xSigma).createSampler(rng);
|
||||
cY = new NormalDistribution(y, ySigma).createSampler(rng);
|
||||
|
|
Loading…
Reference in New Issue