Added constant voltage example for kalman filter.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1539703 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Thomas Neidhart 2013-11-07 16:34:17 +00:00
parent 12afe72d20
commit bbd922d727
1 changed files with 241 additions and 0 deletions

View File

@ -0,0 +1,241 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with this
* work for additional information regarding copyright ownership. The ASF
* licenses this file to You under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law
* or agreed to in writing, software distributed under the License is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the specific language
* governing permissions and limitations under the License.
*/
package org.apache.commons.math3.userguide.filter;
import java.awt.Color;
import java.awt.Component;
import java.awt.Font;
import java.util.ArrayList;
import java.util.List;
import javax.swing.BorderFactory;
import javax.swing.BoxLayout;
import javax.swing.JComponent;
import javax.swing.JPanel;
import org.apache.commons.math3.filter.DefaultMeasurementModel;
import org.apache.commons.math3.filter.DefaultProcessModel;
import org.apache.commons.math3.filter.KalmanFilter;
import org.apache.commons.math3.filter.MeasurementModel;
import org.apache.commons.math3.filter.ProcessModel;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.userguide.ExampleUtils;
import org.apache.commons.math3.userguide.ExampleUtils.ExampleFrame;
import com.xeiam.xchart.Chart;
import com.xeiam.xchart.ChartBuilder;
import com.xeiam.xchart.Series;
import com.xeiam.xchart.SeriesLineStyle;
import com.xeiam.xchart.SeriesMarker;
import com.xeiam.xchart.XChartPanel;
import com.xeiam.xchart.StyleManager.ChartType;
import com.xeiam.xchart.StyleManager.LegendPosition;
public class ConstantVoltageExample {
public static class VoltMeter {
private final double initialVoltage;
private final double processNoise;
private final double measurementNoise;
private final RandomGenerator rng;
private double voltage;
public VoltMeter(double voltage, double processNoise, double measurementNoise, int seed) {
this.initialVoltage = voltage;
this.voltage = voltage;
this.processNoise = processNoise;
this.measurementNoise = measurementNoise;
rng = new Well19937c(seed);
}
/**
* Returns the real voltage without any measurement noise.
*
* @return the real voltage
*/
public double getVoltage() {
return voltage;
}
public double getMeasuredVoltage() {
return getVoltage() + rng.nextGaussian() * measurementNoise;
}
public void step() {
// we apply only the process noise
voltage = initialVoltage + rng.nextGaussian() * processNoise;
}
}
/** constant voltage test */
public static void constantVoltageTest(Chart chart1, Chart chart2) {
final double voltage = 1.25d;
final double measurementNoise = 0.1d; // measurement noise (V) - std dev
final double processNoise = 1e-5d;
final VoltMeter voltMeter = new VoltMeter(voltage, processNoise, measurementNoise, 2);
// the state transition matrix -> constant
final RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// the control matrix -> no control input
final RealMatrix B = new Array2DRowRealMatrix(new double[] { 0d });
// the measurement matrix -> we measure the voltage directly
final RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d });
// the initial state vector -> slightly wrong
final RealVector x0 = new ArrayRealVector(new double[] { 1.45 });
// the process covariance matrix
final RealMatrix Q = new Array2DRowRealMatrix(new double[] { processNoise * processNoise });
// the initial error covariance -> assume a large error at the beginning
final RealMatrix P0 = new Array2DRowRealMatrix(new double[] { 1 });
// the measurement covariance matrix -> put the "real" variance
RealMatrix R = new Array2DRowRealMatrix(new double[] { measurementNoise * measurementNoise });
final ProcessModel pm = new DefaultProcessModel(A, B, Q, x0, P0);
final MeasurementModel mm = new DefaultMeasurementModel(H, R);
final KalmanFilter filter = new KalmanFilter(pm, mm);
final List<Number> xAxis = new ArrayList<Number>();
final List<Number> realVoltageSeries = new ArrayList<Number>();
final List<Number> measuredVoltageSeries = new ArrayList<Number>();
final List<Number> kalmanVoltageSeries = new ArrayList<Number>();
final List<Number> covSeries = new ArrayList<Number>();
for (int i = 0; i < 200; i++) {
xAxis.add(i);
voltMeter.step();
realVoltageSeries.add(voltMeter.getVoltage());
// get the measured voltage from the volt meter
final double measuredVoltage = voltMeter.getMeasuredVoltage();
measuredVoltageSeries.add(measuredVoltage);
filter.predict();
filter.correct(new double[] { measuredVoltage });
kalmanVoltageSeries.add(filter.getStateEstimation()[0]);
covSeries.add(filter.getErrorCovariance()[0][0]);
}
chart1.setYAxisTitle("Voltage");
chart1.setXAxisTitle("Iteration");
Series dataset = chart1.addSeries("real", xAxis, realVoltageSeries);
dataset.setMarker(SeriesMarker.NONE);
dataset = chart1.addSeries("measured", xAxis, measuredVoltageSeries);
dataset.setLineStyle(SeriesLineStyle.DOT_DOT);
dataset.setMarker(SeriesMarker.NONE);
dataset = chart1.addSeries("filtered", xAxis, kalmanVoltageSeries);
dataset.setLineColor(Color.red);
dataset.setLineStyle(SeriesLineStyle.DASH_DASH);
dataset.setMarker(SeriesMarker.NONE);
// Error covariance chart
chart2.setYAxisTitle("(Voltage)²");
chart2.setXAxisTitle("Iteration");
dataset = chart2.addSeries("cov", xAxis, covSeries);
dataset.setLineColor(Color.black);
dataset.setLineStyle(SeriesLineStyle.SOLID);
dataset.setMarker(SeriesMarker.NONE);
}
public static Chart createChart(String title, int width, int height,
LegendPosition position, boolean legendVisible) {
Chart chart = new ChartBuilder().width(width).height(height).build();
// Customize Chart
chart.setChartTitle(title);
chart.getStyleManager().setChartTitleVisible(true);
chart.getStyleManager().setChartTitleFont(new Font("Arial", Font.PLAIN, 10));
chart.getStyleManager().setLegendPosition(position);
chart.getStyleManager().setLegendVisible(legendVisible);
chart.getStyleManager().setLegendFont(new Font("Arial", Font.PLAIN, 10));
chart.getStyleManager().setLegendPadding(6);
chart.getStyleManager().setLegendSeriesLineLength(10);
chart.getStyleManager().setAxisTickLabelsFont(new Font("Arial", Font.PLAIN, 9));
chart.getStyleManager().setChartBackgroundColor(Color.white);
chart.getStyleManager().setChartPadding(4);
chart.getStyleManager().setChartType(ChartType.Line);
return chart;
}
public static JComponent createComponent() {
JComponent container = new JPanel();
container.setLayout(new BoxLayout(container, BoxLayout.LINE_AXIS));
Chart chart1 = createChart("Filter", 550, 450, LegendPosition.InsideNE, true);
Chart chart2 = createChart("Error Covariance", 450, 450, LegendPosition.InsideNE, false);
constantVoltageTest(chart1, chart2);
container.add(new XChartPanel(chart1));
container.add(new XChartPanel(chart2));
container.setBorder(BorderFactory.createLineBorder(Color.black, 1));
return container;
}
@SuppressWarnings("serial")
public static class Display extends ExampleFrame {
private JComponent container;
public Display() {
setTitle("Commons-Math: Kalman Filter example");
setSize(1100, 700);
container = new JPanel();
JComponent comp = createComponent();
container.add(comp);
add(container);
}
@Override
public Component getMainPanel() {
return container;
}
}
public static void main(String[] args) {
ExampleUtils.showExampleFrame(new Display());
}
}