diff --git a/findbugs-exclude-filter.xml b/findbugs-exclude-filter.xml
index 58fa4e261..6651be6db 100644
--- a/findbugs-exclude-filter.xml
+++ b/findbugs-exclude-filter.xml
@@ -169,5 +169,11 @@
+
+
+
+
+
+
diff --git a/src/java/org/apache/commons/math/stat/ranking/NaNStrategy.java b/src/java/org/apache/commons/math/stat/ranking/NaNStrategy.java
new file mode 100644
index 000000000..b982fa3c6
--- /dev/null
+++ b/src/java/org/apache/commons/math/stat/ranking/NaNStrategy.java
@@ -0,0 +1,49 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.stat.ranking;
+
+/**
+ * Strategies for handling NaN values in rank transformations.
+ *
+ * - MINIMAL - NaNs are treated as minimal in the ordering, equivalent to
+ * (that is, tied with)
Double.NEGATIVE_INFINITY
.
+ * - MAXIMAL - NaNs are treated as maximal in the ordering, equivalent to
+ *
Double.POSITIVE_INFINITY
+ * - REMOVED - NaNs are removed before the rank transform is applied
+ * - FIXED - NaNs are left "in place," that is the rank transformation is
+ * applied to the other elements in the input array, but the NaN elements
+ * are returned unchanged.
+ *
+ *
+ * @since 2.0
+ * @version $Revision:$ $Date:$
+ */
+public enum NaNStrategy {
+
+ /** NaNs are considered minimal in the ordering */
+ MINIMAL,
+
+ /** NaNs are considered maximal in the ordering */
+ MAXIMAL,
+
+ /** NaNs are removed before computing ranks */
+ REMOVED,
+
+ /** NaNs are left in place */
+ FIXED
+}
diff --git a/src/java/org/apache/commons/math/stat/ranking/NaturalRanking.java b/src/java/org/apache/commons/math/stat/ranking/NaturalRanking.java
new file mode 100644
index 000000000..9e1135363
--- /dev/null
+++ b/src/java/org/apache/commons/math/stat/ranking/NaturalRanking.java
@@ -0,0 +1,458 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.stat.ranking;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Iterator;
+import java.util.List;
+
+import org.apache.commons.math.random.RandomData;
+import org.apache.commons.math.random.RandomDataImpl;
+import org.apache.commons.math.random.RandomGenerator;
+
+
+/**
+ * Ranking based on the natural ordering on doubles.
+ * NaNs are treated according to the configured {@link NaNStrategy} and ties
+ * are handled using the selected {@link TiesStrategy}.
+ * Configuration settings are supplied in optional constructor arguments.
+ * Defaults are {@link NaNStrategy#MAXIMAL} and {@link TiesStrategy#AVERAGE},
+ * respectively. When using {@link TiesStrategy#RANDOM}, a
+ * {@link RandomGenerator} may be supplied as a constructor argument.
+ * Examples:
+ *
+ *
+ * Input data: (20, 17, 30, 42.3, 17, 50, Double.NaN, Double.NEGATIVE_INFINITY, 17)
+ * |
+ * NaNStrategy | TiesStrategy |
+ * rank(data) |
+ *
---|
+ * default (NaNs maximal) |
+ * default (ties averaged) |
+ * (5, 3, 6, 7, 3, 8, 9, 1, 3) |
+ *
+ * default (NaNs maximal) |
+ * MINIMUM |
+ * (5, 2, 6, 7, 2, 8, 9, 1, 2) |
+ *
+ * MINIMAL |
+ * default (ties averaged) |
+ * (6, 4, 7, 8, 4, 9, 1.5, 1.5, 4) |
+ *
+ * REMOVED |
+ * SEQUENTIAL |
+ * (5, 2, 6, 7, 3, 8, 1, 4) |
+ *
+ * MINIMAL |
+ * MAXIMUM |
+ * (6, 5, 7, 8, 5, 9, 2, 2, 5) |
+ *
+ * @since 2.0
+ * @version $Revision:$ $Date:$
+ */
+public class NaturalRanking implements RankingAlgorithm {
+
+ /** NaN strategy - defaults to NaNs maximal */
+ private final NaNStrategy nanStrategy;
+
+ /** Ties strategy - defaults to ties averaged */
+ private final TiesStrategy tiesStrategy;
+
+ /** Source of random data - used only when ties strategy is RANDOM */
+ private final RandomData randomData;
+
+ /** default NaN strategy */
+ public static final NaNStrategy DEFAULT_NAN_STRATEGY = NaNStrategy.MAXIMAL;
+
+ /** default ties strategy */
+ public static final TiesStrategy DEFAULT_TIES_STRATEGY = TiesStrategy.AVERAGE;
+
+ /**
+ * Create a NaturalRanking with default strategies for handling ties and NaNs.
+ */
+ public NaturalRanking() {
+ super();
+ tiesStrategy = DEFAULT_TIES_STRATEGY;
+ nanStrategy = DEFAULT_NAN_STRATEGY;
+ randomData = null;
+ }
+
+ /**
+ * Create a NaturalRanking with the given TiesStrategy.
+ *
+ * @param tiesStrategy the TiesStrategy to use
+ */
+ public NaturalRanking(TiesStrategy tiesStrategy) {
+ super();
+ this.tiesStrategy = tiesStrategy;
+ nanStrategy = DEFAULT_NAN_STRATEGY;
+ randomData = new RandomDataImpl();
+ }
+
+ /**
+ * Create a NaturalRanking with the given NaNStrategy.
+ *
+ * @param nanStrategy the NaNStrategy to use
+ */
+ public NaturalRanking(NaNStrategy nanStrategy) {
+ super();
+ this.nanStrategy = nanStrategy;
+ tiesStrategy = DEFAULT_TIES_STRATEGY;
+ randomData = null;
+ }
+
+ /**
+ * Create a NaturalRanking with the given NaNStrategy and TiesStrategy.
+ *
+ * @param nanStrategy NaNStrategy to use
+ * @param tiesStrategy TiesStrategy to use
+ */
+ public NaturalRanking(NaNStrategy nanStrategy, TiesStrategy tiesStrategy) {
+ super();
+ this.nanStrategy = nanStrategy;
+ this.tiesStrategy = tiesStrategy;
+ randomData = new RandomDataImpl();
+ }
+
+ /**
+ * Create a NaturalRanking with TiesStrategy.RANDOM and the given
+ * RandomGenerator as the source of random data.
+ *
+ * @param randomGenerator source of random data
+ */
+ public NaturalRanking(RandomGenerator randomGenerator) {
+ super();
+ this.tiesStrategy = TiesStrategy.RANDOM;
+ nanStrategy = DEFAULT_NAN_STRATEGY;
+ randomData = new RandomDataImpl(randomGenerator);
+ }
+
+
+ /**
+ * Create a NaturalRanking with the given NaNStrategy, TiesStrategy.RANDOM
+ * and the given source of random data.
+ *
+ * @param nanStrategy NaNStrategy to use
+ * @param randomGenerator source of random data
+ */
+ public NaturalRanking(NaNStrategy nanStrategy,
+ RandomGenerator randomGenerator) {
+ super();
+ this.nanStrategy = nanStrategy;
+ this.tiesStrategy = TiesStrategy.RANDOM;
+ randomData = new RandomDataImpl(randomGenerator);
+ }
+
+ /**
+ * Return the NaNStrategy
+ *
+ * @return returns the NaNStrategy
+ */
+ public NaNStrategy getNanStrategy() {
+ return nanStrategy;
+ }
+
+ /**
+ * Return the TiesStrategy
+ *
+ * @return the TiesStrategy
+ */
+ public TiesStrategy getTiesStrategy() {
+ return tiesStrategy;
+ }
+
+ /**
+ * Rank data
using the natural ordering on Doubles, with
+ * NaN values handled according to nanStrategy
and ties
+ * resolved using tiesStrategy.
+ *
+ * @param data array to be ranked
+ * @return array of ranks
+ */
+ public double[] rank(double[] data) {
+
+ // Array recording initial positions of data to be ranked
+ IntDoublePair[] ranks = new IntDoublePair[data.length];
+ for (int i = 0; i < data.length; i++) {
+ ranks[i] = new IntDoublePair(data[i], i);
+ }
+
+ // Recode, remove or record positions of NaNs
+ List nanPositions = null;
+ switch (nanStrategy) {
+ case MAXIMAL: // Replace NaNs with +INFs
+ recodeNaNs(ranks, Double.POSITIVE_INFINITY);
+ break;
+ case MINIMAL: // Replace NaNs with -INFs
+ recodeNaNs(ranks, Double.NEGATIVE_INFINITY);
+ break;
+ case REMOVED: // Drop NaNs from data
+ ranks = removeNaNs(ranks);
+ break;
+ case FIXED: // Record positions of NaNs
+ nanPositions = getNanPositions(ranks);
+ break;
+ }
+
+ // Sort the IntDoublePairs
+ Arrays.sort(ranks);
+
+ // Walk the sorted array, filling output array using sorted positions,
+ // resolving ties as we go
+ double[] out = new double[ranks.length];
+ int pos = 1; // position in sorted array
+ out[ranks[0].getPosition()] = pos;
+ List tiesTrace = new ArrayList();
+ tiesTrace.add(ranks[0].getPosition());
+ for (int i = 1; i < ranks.length; i++) {
+ if (Double.compare(ranks[i].getValue(), ranks[i - 1].getValue()) > 0) {
+ // tie sequence has ended (or had length 1)
+ pos = i + 1;
+ if (tiesTrace.size() > 1) { // if seq is nontrivial, resolve
+ resolveTie(out, tiesTrace);
+ }
+ tiesTrace = new ArrayList();
+ tiesTrace.add(ranks[i].getPosition());
+ } else {
+ // tie sequence continues
+ tiesTrace.add(ranks[i].getPosition());
+ }
+ out[ranks[i].getPosition()] = pos;
+ }
+ if (tiesTrace.size() > 1) { // handle tie sequence at end
+ resolveTie(out, tiesTrace);
+ }
+ if (nanStrategy == NaNStrategy.FIXED) {
+ restoreNaNs(out, nanPositions);
+ }
+ return out;
+ }
+
+ /**
+ * Returns an array that is a copy of the input array with IntDoublePairs
+ * having NaN values removed.
+ *
+ * @param ranks input array
+ * @return array with NaN-valued entries removed
+ */
+ private IntDoublePair[] removeNaNs(IntDoublePair[] ranks) {
+ if (!containsNaNs(ranks)) {
+ return ranks;
+ }
+ IntDoublePair[] outRanks = new IntDoublePair[ranks.length];
+ int j = 0;
+ for (int i = 0; i < ranks.length; i++) {
+ if (Double.isNaN(ranks[i].getValue())) {
+ // drop, but adjust original ranks of later elements
+ for (int k = i + 1; k < ranks.length; k++) {
+ ranks[k] = new IntDoublePair(
+ ranks[k].getValue(), ranks[k].getPosition() - 1);
+ }
+ } else {
+ outRanks[j] = new IntDoublePair(
+ ranks[i].getValue(), ranks[i].getPosition());
+ j++;
+ }
+ }
+ IntDoublePair[] returnRanks = new IntDoublePair[j];
+ System.arraycopy(outRanks, 0, returnRanks, 0, j);
+ return returnRanks;
+ }
+
+ /**
+ * Recodes NaN values to the given value.
+ *
+ * @param ranks array to recode
+ * @param value the value to replace NaNs with
+ */
+ private void recodeNaNs(IntDoublePair[] ranks, double value) {
+ for (int i = 0; i < ranks.length; i++) {
+ if (Double.isNaN(ranks[i].getValue())) {
+ ranks[i] = new IntDoublePair(
+ value, ranks[i].getPosition());
+ }
+ }
+ }
+
+ /**
+ * Checks for presence of NaNs in ranks.
+ *
+ * @param ranks array to be searched for NaNs
+ * @return true iff ranks contains one or more NaNs
+ */
+ private boolean containsNaNs(IntDoublePair[] ranks) {
+ for (int i = 0; i < ranks.length; i++) {
+ if (Double.isNaN(ranks[i].getValue())) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Resolve a sequence of ties, using the cconfigured {@link TiesStrategy}.
+ * The input ranks
array is expected to take the same value
+ * for all indices in tiesTrace
. The common value is recoded
+ * according to the tiesStrategy. For example, if ranks = <5,8,2,6,2,7,1,2>,
+ * tiesTrace = <2,4,7> and tiesStrategy is MINIMUM, ranks will be unchanged.
+ * The same array and trace with tiesStrategy AVERAGE will come out
+ * <5,8,3,6,3,7,1,3>.
+ *
+ * @param ranks array of ranks
+ * @param tiesTrace list of indices where ranks
is constant
+ * -- that is, for any i and j in TiesTrace, ranks[i] == ranks[j]
+ *
+ */
+ private void resolveTie(double[] ranks, List tiesTrace) {
+
+ // constant value of ranks over tiesTrace
+ final double c = ranks[tiesTrace.get(0)];
+
+ // length of sequence of tied ranks
+ final int length = tiesTrace.size();
+
+ switch (tiesStrategy) {
+ case AVERAGE: // Replace ranks with average
+ fill(ranks, tiesTrace, (2 * c + length - 1) / 2d);
+ break;
+ case MAXIMUM: // Replace ranks with maximum values
+ fill(ranks, tiesTrace, c + length - 1);
+ break;
+ case MINIMUM: // Replace ties with minimum
+ fill(ranks, tiesTrace, c);
+ break;
+ case RANDOM: // Fill with random integral values in [c, c + length - 1]
+ Iterator iterator = tiesTrace.iterator();
+ long f = Math.round(c);
+ while (iterator.hasNext()) {
+ ranks[iterator.next()] =
+ randomData.nextLong(f, f + length - 1);
+ }
+ break;
+ case SEQUENTIAL: // Fill sequentially from c to c + length - 1
+ // walk and fill
+ iterator = tiesTrace.iterator();
+ f = Math.round(c);
+ int i = 0;
+ while (iterator.hasNext()) {
+ ranks[iterator.next()] = f + i++;
+ }
+ break;
+ }
+ }
+
+ /**
+ * Setsdata[i] = value
for each i in tiesTrace.
+ *
+ * @param data array to modify
+ * @param tiesTrace list of index values to set
+ * @param value value to set
+ */
+ private void fill(double[] data, List tiesTrace, double value) {
+ Iterator iterator = tiesTrace.iterator();
+ while (iterator.hasNext()) {
+ data[iterator.next()] = value;
+ }
+ }
+
+ /**
+ * Set ranks[i] = Double.NaN
for each i in nanPositions.
+ *
+ * @param ranks array to modify
+ * @param nanPositions list of index values to set to Double.NaN
+ */
+ private void restoreNaNs(double[] ranks, List nanPositions) {
+ if (nanPositions.size() == 0) {
+ return;
+ }
+ Iterator iterator = nanPositions.iterator();
+ while (iterator.hasNext()) {
+ ranks[iterator.next().intValue()] = Double.NaN;
+ }
+
+ }
+
+ /**
+ * Returns a list of indexes where ranks
is NaN.
+ *
+ * @param ranks array to search for NaNs
+ * @return list of indexes i such that ranks[i] = NaN
+ */
+ private List getNanPositions(IntDoublePair[] ranks) {
+ ArrayList out = new ArrayList();
+ for (int i = 0; i < ranks.length; i++) {
+ if (Double.isNaN(ranks[i].getValue())) {
+ out.add(Integer.valueOf(i));
+ }
+ }
+ return out;
+ }
+
+ /**
+ * Represents the position of a double value in an ordering.
+ * Comparable interface is implemented so Arrays.sort can be used
+ * to sort an array of IntDoublePairs by value. Note that the
+ * implicitly defined natural ordering is NOT consistent with equals.
+ */
+ private static class IntDoublePair implements Comparable {
+
+ /** Value of the pair */
+ final private double value;
+
+ /** Original position of the pair */
+ final private int position;
+
+ /**
+ * Construct an IntDoublePair with the given value and position.
+ * @param value the value of the pair
+ * @param position the original position
+ */
+ public IntDoublePair(double value, int position) {
+ this.value = value;
+ this.position = position;
+ }
+
+ /**
+ * Compare this IntDoublePair to another pair.
+ * Only the values are compared.
+ *
+ * @param other the other pair to compare this to
+ * @return result of Double.compare(value, other.value)
+ */
+ public int compareTo(IntDoublePair other) {
+ return Double.compare(value, other.value);
+ }
+
+ /**
+ * Returns the value of the pair.
+ * @return value
+ */
+ public double getValue() {
+ return value;
+ }
+
+ /**
+ * Returns the original position of the pair.
+ * @return position
+ */
+ public int getPosition() {
+ return position;
+ }
+ }
+}
diff --git a/src/java/org/apache/commons/math/stat/ranking/RankingAlgorithm.java b/src/java/org/apache/commons/math/stat/ranking/RankingAlgorithm.java
new file mode 100644
index 000000000..e0cee28c4
--- /dev/null
+++ b/src/java/org/apache/commons/math/stat/ranking/RankingAlgorithm.java
@@ -0,0 +1,41 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.stat.ranking;
+
+/**
+ * Interface representing a rank transformation.
+ *
+ * @since 2.0
+ * @version $Revision:$ $Date:$
+ */
+public interface RankingAlgorithm {
+ /**
+ * Performs a rank transformation on the input data, returning an array
+ * of ranks.
+ *
+ * Ranks should be 1-based - that is, the smallest value
+ * returned in an array of ranks should be greater than or equal to one,
+ * rather than 0. Ranks should in general take integer values, though
+ * implementations may return averages or other floating point values
+ * to resolve ties in the input data.
+ *
+ * @param data array of data to be ranked
+ * @return an array of ranks corresponding to the elements of the input array
+ */
+ double[] rank (double[] data);
+}
diff --git a/src/java/org/apache/commons/math/stat/ranking/TiesStrategy.java b/src/java/org/apache/commons/math/stat/ranking/TiesStrategy.java
new file mode 100644
index 000000000..2c2cbf355
--- /dev/null
+++ b/src/java/org/apache/commons/math/stat/ranking/TiesStrategy.java
@@ -0,0 +1,55 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.stat.ranking;
+
+/**
+ * Strategies for handling tied values in rank transformations.
+ *
+ * - SEQUENTIAL - Ties are assigned ranks in order of occurrence in the original array,
+ * for example (1,3,4,3) is ranked as (1,2,4,3)
+ * - MINIMUM - Tied values are assigned the minimum applicable rank, or the rank
+ * of the first occurrence. For example, (1,3,4,3) is ranked as (1,2,4,2)
+ * - MAXIMUM - Tied values are assigned the maximum applicable rank, or the rank
+ * of the last occurrence. For example, (1,3,4,3) is ranked as (1,3,4,3)
+ * - AVERAGE - Tied values are assigned the average of the applicable ranks.
+ * For example, (1,3,4,3) is ranked as (1,2.5,4,2.5)
+ * - AVERAGE - Tied values are assigned a random integer rank from among the
+ * applicable values. The assigned rank will always be an integer, (inclusively)
+ * between the values retured by the MINIMUM and MAXIMUM strategies.
+ *
+ *
+ * @since 2.0
+ * @version $Revision:$ $Date:$
+ */
+public enum TiesStrategy {
+
+ /** Ties assigned sequential ranks in order of occurrence */
+ SEQUENTIAL,
+
+ /** Ties get the minimum applicable rank */
+ MINIMUM,
+
+ /** Ties get the maximum applicable rank */
+ MAXIMUM,
+
+ /** Ties get the average of applicable ranks */
+ AVERAGE,
+
+ /** Ties get a random integral value from among applicable ranks */
+ RANDOM
+}
diff --git a/src/java/org/apache/commons/math/stat/ranking/package.html b/src/java/org/apache/commons/math/stat/ranking/package.html
new file mode 100644
index 000000000..63e0c4a2a
--- /dev/null
+++ b/src/java/org/apache/commons/math/stat/ranking/package.html
@@ -0,0 +1,22 @@
+
+
+
+
+ Classes providing rank transformations.
+
+
diff --git a/src/site/xdoc/changes.xml b/src/site/xdoc/changes.xml
index c7f66cad4..989816b39 100644
--- a/src/site/xdoc/changes.xml
+++ b/src/site/xdoc/changes.xml
@@ -39,7 +39,10 @@ The type attribute can be add,update,fix,remove.
-
+
+ Added support for rank transformations.
+
+
Completed internationalization of all error messages
diff --git a/src/test/org/apache/commons/math/stat/ranking/NaturalRankingTest.java b/src/test/org/apache/commons/math/stat/ranking/NaturalRankingTest.java
new file mode 100644
index 000000000..e090b9fe6
--- /dev/null
+++ b/src/test/org/apache/commons/math/stat/ranking/NaturalRankingTest.java
@@ -0,0 +1,188 @@
+/*
+ * TiesEquivalentRankTest.java created on Aug 24, 2005 by jdgant01
+ *
+ */
+package org.apache.commons.math.stat.ranking;
+
+import org.apache.commons.math.TestUtils;
+import org.apache.commons.math.random.JDKRandomGenerator;
+import org.apache.commons.math.random.RandomGenerator;
+
+import junit.framework.TestCase;
+
+/**
+ * Test cases for NaturalRanking class
+ *
+ * @since 2.0
+ * @version $Revision:$ $Date:$
+ */
+public class NaturalRankingTest extends TestCase {
+
+ private final double[] exampleData =
+ {20, 17, 30, 42.3, 17, 50, Double.NaN, Double.NEGATIVE_INFINITY, 17};
+ private final double[] tiesFirst = {0, 0, 2, 1, 4};
+ private final double[] tiesLast = {4, 4, 1, 0};
+ private final double[] multipleNaNs = {0, 1, Double.NaN, Double.NaN};
+ private final double[] multipleTies = {3, 2, 5, 5, 6, 6, 1};
+ private final double[] allSame = {0, 0, 0, 0};
+
+ public NaturalRankingTest(String arg0) {
+ super(arg0);
+ }
+
+ protected void setUp() throws Exception {
+ super.setUp();
+ }
+
+ protected void tearDown() throws Exception {
+ super.tearDown();
+ }
+
+ public void testDefault() { // Ties averaged, NaNs maximal
+ NaturalRanking ranking = new NaturalRanking();
+ double[] ranks = ranking.rank(exampleData);
+ double[] correctRanks = {5, 3, 6, 7, 3, 8, 9, 1, 3};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesFirst);
+ correctRanks = new double[] {1.5, 1.5, 4, 3, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesLast);
+ correctRanks = new double[] {3.5, 3.5, 2, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleNaNs);
+ correctRanks = new double[] {1, 2, 3.5, 3.5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleTies);
+ correctRanks = new double[] {3, 2, 4.5, 4.5, 6.5, 6.5, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(allSame);
+ correctRanks = new double[] {2.5, 2.5, 2.5, 2.5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ }
+
+ public void testNaNsMaximalTiesMinimum() {
+ NaturalRanking ranking = new NaturalRanking(TiesStrategy.MINIMUM);
+ double[] ranks = ranking.rank(exampleData);
+ double[] correctRanks = {5, 2, 6, 7, 2, 8, 9, 1, 2};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesFirst);
+ correctRanks = new double[] {1, 1, 4, 3, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesLast);
+ correctRanks = new double[] {3, 3, 2, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleNaNs);
+ correctRanks = new double[] {1, 2, 3, 3};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleTies);
+ correctRanks = new double[] {3, 2, 4, 4, 6, 6, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(allSame);
+ correctRanks = new double[] {1, 1, 1, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ }
+
+ public void testNaNsRemovedTiesSequential() {
+ NaturalRanking ranking = new NaturalRanking(NaNStrategy.REMOVED,
+ TiesStrategy.SEQUENTIAL);
+ double[] ranks = ranking.rank(exampleData);
+ double[] correctRanks = {5, 2, 6, 7, 3, 8, 1, 4};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesFirst);
+ correctRanks = new double[] {1, 2, 4, 3, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesLast);
+ correctRanks = new double[] {3, 4, 2, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleNaNs);
+ correctRanks = new double[] {1, 2};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleTies);
+ correctRanks = new double[] {3, 2, 4, 5, 6, 7, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(allSame);
+ correctRanks = new double[] {1, 2, 3, 4};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ }
+
+ public void testNaNsMinimalTiesMaximum() {
+ NaturalRanking ranking = new NaturalRanking(NaNStrategy.MINIMAL,
+ TiesStrategy.MAXIMUM);
+ double[] ranks = ranking.rank(exampleData);
+ double[] correctRanks = {6, 5, 7, 8, 5, 9, 2, 2, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesFirst);
+ correctRanks = new double[] {2, 2, 4, 3, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesLast);
+ correctRanks = new double[] {4, 4, 2, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleNaNs);
+ correctRanks = new double[] {3, 4, 2, 2};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleTies);
+ correctRanks = new double[] {3, 2, 5, 5, 7, 7, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(allSame);
+ correctRanks = new double[] {4, 4, 4, 4};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ }
+
+ public void testNaNsMinimalTiesAverage() {
+ NaturalRanking ranking = new NaturalRanking(NaNStrategy.MINIMAL);
+ double[] ranks = ranking.rank(exampleData);
+ double[] correctRanks = {6, 4, 7, 8, 4, 9, 1.5, 1.5, 4};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesFirst);
+ correctRanks = new double[] {1.5, 1.5, 4, 3, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesLast);
+ correctRanks = new double[] {3.5, 3.5, 2, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleNaNs);
+ correctRanks = new double[] {3, 4, 1.5, 1.5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleTies);
+ correctRanks = new double[] {3, 2, 4.5, 4.5, 6.5, 6.5, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(allSame);
+ correctRanks = new double[] {2.5, 2.5, 2.5, 2.5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ }
+
+ public void testNaNsFixedTiesRandom() {
+ RandomGenerator randomGenerator = new JDKRandomGenerator();
+ randomGenerator.setSeed(1000);
+ NaturalRanking ranking = new NaturalRanking(NaNStrategy.FIXED,
+ randomGenerator);
+ double[] ranks = ranking.rank(exampleData);
+ double[] correctRanks = {5, 4, 6, 7, 3, 8, Double.NaN, 1, 4};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesFirst);
+ correctRanks = new double[] {1, 1, 4, 3, 5};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(tiesLast);
+ correctRanks = new double[] {3, 4, 2, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleNaNs);
+ correctRanks = new double[] {1, 2, Double.NaN, Double.NaN};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(multipleTies);
+ correctRanks = new double[] {3, 2, 5, 5, 7, 6, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranks = ranking.rank(allSame);
+ correctRanks = new double[] {1, 3, 4, 4};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ }
+
+ public void testNaNsAndInfs() {
+ double[] data = {0, Double.POSITIVE_INFINITY, Double.NaN, Double.NEGATIVE_INFINITY};
+ NaturalRanking ranking = new NaturalRanking(NaNStrategy.MAXIMAL);
+ double[] ranks = ranking.rank(data);
+ double[] correctRanks = new double[] {2, 3.5, 3.5, 1};
+ TestUtils.assertEquals(correctRanks, ranks, 0d);
+ ranking = new NaturalRanking(NaNStrategy.MINIMAL);
+ ranks = ranking.rank(data);
+ correctRanks = new double[] {3, 4, 1.5, 1.5};
+ }
+}