mirror of
https://github.com/apache/commons-math.git
synced 2025-02-12 13:06:06 +00:00
[MATH-777] Added UniformCrossover policy. Thanks for Reid Hochstedler.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1350391 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
31217dfcb2
commit
bf181a9152
@ -0,0 +1,130 @@
|
||||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.genetics;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
|
||||
/**
|
||||
* Perform Uniform Crossover [UX] on the specified chromosomes. A fixed mixing
|
||||
* ratio is used to combine genes from the first and second parents, e.g. using a
|
||||
* ratio of 0.5 would result in approximately 50% of genes coming from each
|
||||
* parent. This is typically a poor method of crossover, but empirical evidence
|
||||
* suggests that it is more exploratory and results in a larger part of the
|
||||
* problem space being searched.
|
||||
*
|
||||
* <p>This crossover policy evaluates each gene of the parent chromosomes by chosing a
|
||||
* uniform random number {@code p} in the range [0, 1]. If {@code p} < {@code ratio},
|
||||
* the parent genes are swapped. This means with a ratio of 0.7, 30% of the genes from the
|
||||
* first parent and 70% from the second parent will be selected for the first offspring (and
|
||||
* vice versa for the second offspring).</p>
|
||||
*
|
||||
* <p>This policy works only on {@link AbstractListChromosome}, and therefore it
|
||||
* is parameterized by T. Moreover, the chromosomes must have same lengths.
|
||||
* </p>
|
||||
*
|
||||
* @see <a href="http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29">Crossover techniques (Wikipedia)</a>
|
||||
* @see <a href="http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php">Crossover (Obitko.com)</a>
|
||||
* @see <a href="http://www.tomaszgwiazda.com/uniformX.htm">Uniform crossover</a>
|
||||
* @param <T> generic type of the {@link AbstractListChromosome}s for crossover
|
||||
* @since 3.1
|
||||
* @version $Id$
|
||||
*/
|
||||
public class UniformCrossover<T> implements CrossoverPolicy {
|
||||
|
||||
/** The mixing ratio. */
|
||||
private final double ratio;
|
||||
|
||||
/**
|
||||
* Creates a new {@link UniformCrossover} policy using the given mixing ratio.
|
||||
*
|
||||
* @param ratio the mixing ratio
|
||||
* @throws OutOfRangeException if the mixing ratio is outside the [0, 1] range
|
||||
*/
|
||||
public UniformCrossover(final double ratio) {
|
||||
if (ratio < 0.0d || ratio > 1.0d) {
|
||||
throw new OutOfRangeException(LocalizedFormats.CROSSOVER_RATE, ratio, 0.0d, 1.0d);
|
||||
}
|
||||
this.ratio = ratio;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the mixing ratio used by this {@link CrossoverPolicy}.
|
||||
*
|
||||
* @return the mixing ratio
|
||||
*/
|
||||
public double getRatio() {
|
||||
return ratio;
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public ChromosomePair crossover(final Chromosome first, final Chromosome second) {
|
||||
if (!(first instanceof AbstractListChromosome<?> && second instanceof AbstractListChromosome<?>)) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME);
|
||||
}
|
||||
return mate((AbstractListChromosome<T>) first, (AbstractListChromosome<T>) second);
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover.
|
||||
*
|
||||
* @param first the first chromosome
|
||||
* @param second the second chromosome
|
||||
* @return the pair of new chromosomes that resulted from the crossover
|
||||
* @throws DimensionMismatchException if the length of the two chromosomes is different
|
||||
*/
|
||||
private ChromosomePair mate(final AbstractListChromosome<T> first,
|
||||
final AbstractListChromosome<T> second) {
|
||||
final int length = first.getLength();
|
||||
if (length != second.getLength()) {
|
||||
throw new DimensionMismatchException(second.getLength(), length);
|
||||
}
|
||||
|
||||
// array representations of the parents
|
||||
final List<T> parent1Rep = first.getRepresentation();
|
||||
final List<T> parent2Rep = second.getRepresentation();
|
||||
// and of the children
|
||||
final List<T> child1Rep = new ArrayList<T>(first.getLength());
|
||||
final List<T> child2Rep = new ArrayList<T>(second.getLength());
|
||||
|
||||
final RandomGenerator random = GeneticAlgorithm.getRandomGenerator();
|
||||
|
||||
for (int index = 0; index < length; index++) {
|
||||
|
||||
if (random.nextDouble() < ratio) {
|
||||
// swap the bits -> take other parent
|
||||
child1Rep.add(parent2Rep.get(index));
|
||||
child2Rep.add(parent1Rep.get(index));
|
||||
} else {
|
||||
child1Rep.add(parent1Rep.get(index));
|
||||
child2Rep.add(parent2Rep.get(index));
|
||||
}
|
||||
}
|
||||
|
||||
return new ChromosomePair(first.newFixedLengthChromosome(child1Rep),
|
||||
second.newFixedLengthChromosome(child2Rep));
|
||||
}
|
||||
}
|
@ -0,0 +1,131 @@
|
||||
package org.apache.commons.math3.genetics;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import junit.framework.Assert;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
import org.junit.BeforeClass;
|
||||
import org.junit.Test;
|
||||
|
||||
public class UniformCrossoverTest {
|
||||
private static final int LEN = 10000;
|
||||
private static final List<Integer> p1 = new ArrayList<Integer>(LEN);
|
||||
private static final List<Integer> p2 = new ArrayList<Integer>(LEN);
|
||||
|
||||
@BeforeClass
|
||||
public static void setUpBeforeClass() {
|
||||
for (int i = 0; i < LEN; i++) {
|
||||
p1.add(0);
|
||||
p2.add(1);
|
||||
}
|
||||
}
|
||||
|
||||
@Test(expected = OutOfRangeException.class)
|
||||
public void testRatioTooLow() {
|
||||
new UniformCrossover<Integer>(-0.5d);
|
||||
}
|
||||
|
||||
@Test(expected = OutOfRangeException.class)
|
||||
public void testRatioTooHigh() {
|
||||
new UniformCrossover<Integer>(1.5d);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCrossover() {
|
||||
// test crossover with different ratios
|
||||
performCrossover(0.5);
|
||||
performCrossover(0.7);
|
||||
performCrossover(0.2);
|
||||
}
|
||||
|
||||
private void performCrossover(double ratio) {
|
||||
final DummyBinaryChromosome p1c = new DummyBinaryChromosome(p1);
|
||||
final DummyBinaryChromosome p2c = new DummyBinaryChromosome(p2);
|
||||
|
||||
final CrossoverPolicy cp = new UniformCrossover<Integer>(ratio);
|
||||
|
||||
// make a number of rounds
|
||||
for (int i = 0; i < 20; i++) {
|
||||
final ChromosomePair pair = cp.crossover(p1c, p2c);
|
||||
|
||||
final List<Integer> c1 = ((DummyBinaryChromosome) pair.getFirst()).getRepresentation();
|
||||
final List<Integer> c2 = ((DummyBinaryChromosome) pair.getSecond()).getRepresentation();
|
||||
|
||||
int from1 = 0;
|
||||
int from2 = 0;
|
||||
|
||||
// check first child
|
||||
for (int val : c1) {
|
||||
if (val == 0) {
|
||||
from1++;
|
||||
} else {
|
||||
from2++;
|
||||
}
|
||||
}
|
||||
|
||||
Assert.assertEquals(1.0 - ratio, Double.valueOf((double) from1 / LEN), 0.1);
|
||||
Assert.assertEquals(ratio, Double.valueOf((double) from2 / LEN), 0.1);
|
||||
|
||||
from1 = 0;
|
||||
from2 = 0;
|
||||
|
||||
// check second child
|
||||
for (int val : c2) {
|
||||
if (val == 0) {
|
||||
from1++;
|
||||
} else {
|
||||
from2++;
|
||||
}
|
||||
}
|
||||
|
||||
Assert.assertEquals(ratio, Double.valueOf((double) from1 / LEN), 0.1);
|
||||
Assert.assertEquals(1.0 - ratio, Double.valueOf((double) from2 / LEN), 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
@Test(expected = DimensionMismatchException.class)
|
||||
public void testCrossoverDimensionMismatchException(){
|
||||
final Integer[] p1 = new Integer[] {1,0,1,0,0,1,0,1,1};
|
||||
final Integer[] p2 = new Integer[] {0,1,1,0,1};
|
||||
|
||||
final BinaryChromosome p1c = new DummyBinaryChromosome(p1);
|
||||
final BinaryChromosome p2c = new DummyBinaryChromosome(p2);
|
||||
|
||||
final CrossoverPolicy cp = new UniformCrossover<Integer>(0.5d);
|
||||
cp.crossover(p1c, p2c);
|
||||
}
|
||||
|
||||
@Test(expected = MathIllegalArgumentException.class)
|
||||
public void testCrossoverInvalidFixedLengthChromosomeFirst() {
|
||||
final Integer[] p1 = new Integer[] {1,0,1,0,0,1,0,1,1};
|
||||
final BinaryChromosome p1c = new DummyBinaryChromosome(p1);
|
||||
final Chromosome p2c = new Chromosome() {
|
||||
public double fitness() {
|
||||
// Not important
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
final CrossoverPolicy cp = new UniformCrossover<Integer>(0.5d);
|
||||
cp.crossover(p1c, p2c);
|
||||
}
|
||||
|
||||
@Test(expected = MathIllegalArgumentException.class)
|
||||
public void testCrossoverInvalidFixedLengthChromosomeSecond() {
|
||||
final Integer[] p1 = new Integer[] {1,0,1,0,0,1,0,1,1};
|
||||
final BinaryChromosome p2c = new DummyBinaryChromosome(p1);
|
||||
final Chromosome p1c = new Chromosome() {
|
||||
public double fitness() {
|
||||
// Not important
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
final CrossoverPolicy cp = new UniformCrossover<Integer>(0.5d);
|
||||
cp.crossover(p1c, p2c);
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user