Javadoc (errors and warnings).
This commit is contained in:
parent
da455397c2
commit
c251395aaf
|
@ -63,7 +63,7 @@ public class MiniBatchKMeansClusterer<T extends Clusterable> extends KMeansPlusP
|
|||
*
|
||||
* @param k the number of clusters to split the data into
|
||||
* @param maxIterations the maximum number of iterations to run the algorithm for all the points,
|
||||
* for mini batch actual iterations <= maxIterations * points.size() / batchSize
|
||||
* for mini batch actual {@code iterations <= maxIterations * points.size() / batchSize}.
|
||||
* If negative, no maximum will be used.
|
||||
* @param batchSize the mini batch size for training iterations.
|
||||
* @param initIterations the iterations to find out the best clusters centers with mini batch.
|
||||
|
@ -74,6 +74,8 @@ public class MiniBatchKMeansClusterer<T extends Clusterable> extends KMeansPlusP
|
|||
* @param measure the distance measure to use, EuclideanDistance is recommended.
|
||||
* @param random random generator to use for choosing initial centers
|
||||
* may appear during algorithm iterations
|
||||
* @param emptyStrategy Strategy to use for handling empty clusters that
|
||||
* may appear during algorithm iterations.
|
||||
*/
|
||||
public MiniBatchKMeansClusterer(final int k, final int maxIterations, final int batchSize, final int initIterations,
|
||||
final int initBatchSize, final int maxNoImprovementTimes,
|
||||
|
|
|
@ -46,8 +46,7 @@ public class SumOfClusterVariances implements ClusterEvaluator {
|
|||
this.measure = measure;
|
||||
}
|
||||
|
||||
/** {@inheritDoc}
|
||||
* @param clusters*/
|
||||
/** {@inheritDoc} */
|
||||
public double score(List<? extends Cluster<? extends Clusterable>> clusters) {
|
||||
double varianceSum = 0.0;
|
||||
for (final Cluster<? extends Clusterable> cluster : clusters) {
|
||||
|
|
|
@ -31,6 +31,7 @@ public interface CentroidInitializer {
|
|||
/**
|
||||
* Choose the initial centers.
|
||||
*
|
||||
* @param <T> Type of points to cluster.
|
||||
* @param points the points to choose the initial centers from
|
||||
* @param k The number of clusters
|
||||
* @return the initial centers
|
||||
|
|
Loading…
Reference in New Issue