Javadoc (errors and warnings).

This commit is contained in:
Gilles Sadowski 2020-03-22 10:47:02 +01:00
parent da455397c2
commit c251395aaf
3 changed files with 5 additions and 3 deletions

View File

@ -63,7 +63,7 @@ public class MiniBatchKMeansClusterer<T extends Clusterable> extends KMeansPlusP
*
* @param k the number of clusters to split the data into
* @param maxIterations the maximum number of iterations to run the algorithm for all the points,
* for mini batch actual iterations <= maxIterations * points.size() / batchSize
* for mini batch actual {@code iterations <= maxIterations * points.size() / batchSize}.
* If negative, no maximum will be used.
* @param batchSize the mini batch size for training iterations.
* @param initIterations the iterations to find out the best clusters centers with mini batch.
@ -74,6 +74,8 @@ public class MiniBatchKMeansClusterer<T extends Clusterable> extends KMeansPlusP
* @param measure the distance measure to use, EuclideanDistance is recommended.
* @param random random generator to use for choosing initial centers
* may appear during algorithm iterations
* @param emptyStrategy Strategy to use for handling empty clusters that
* may appear during algorithm iterations.
*/
public MiniBatchKMeansClusterer(final int k, final int maxIterations, final int batchSize, final int initIterations,
final int initBatchSize, final int maxNoImprovementTimes,

View File

@ -46,8 +46,7 @@ public class SumOfClusterVariances implements ClusterEvaluator {
this.measure = measure;
}
/** {@inheritDoc}
* @param clusters*/
/** {@inheritDoc} */
public double score(List<? extends Cluster<? extends Clusterable>> clusters) {
double varianceSum = 0.0;
for (final Cluster<? extends Clusterable> cluster : clusters) {

View File

@ -31,6 +31,7 @@ public interface CentroidInitializer {
/**
* Choose the initial centers.
*
* @param <T> Type of points to cluster.
* @param points the points to choose the initial centers from
* @param k The number of clusters
* @return the initial centers