From c37f06ed3ad2de8d49a80ac46aae3ab7748598a4 Mon Sep 17 00:00:00 2001 From: Luc Maisonobe Date: Sun, 15 Mar 2009 19:11:02 +0000 Subject: [PATCH] adapted old Levenberg-Marquardt estimator to new top level optimizers API git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@754727 13f79535-47bb-0310-9956-ffa450edef68 --- .../VectorialDifferentiableOptimizer.java | 12 +- .../general/AbstractEstimator.java | 312 ------- .../AbstractLeastSquaresOptimizer.java | 36 +- .../general/EstimatedParameter.java | 124 --- .../general/EstimationProblem.java | 65 -- .../math/optimization/general/Estimator.java | 93 -- .../general/GaussNewtonEstimator.java | 227 ----- .../general/LevenbergMarquardtEstimator.java | 873 ------------------ .../general/LevenbergMarquardtOptimizer.java | 838 +++++++++++++++++ .../general/SimpleEstimationProblem.java | 108 --- .../general/WeightedMeasurement.java | 170 ---- .../general/EstimatedParameterTest.java | 75 -- .../LevenbergMarquardtEstimatorTest.java | 846 ----------------- .../LevenbergMarquardtOptimizerTest.java | 649 +++++++++++++ .../optimization/general/MinpackTest.java | 589 ++++++------ .../general/WeightedMeasurementTest.java | 124 --- 16 files changed, 1811 insertions(+), 3330 deletions(-) delete mode 100644 src/java/org/apache/commons/math/optimization/general/AbstractEstimator.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/EstimatedParameter.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/EstimationProblem.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/Estimator.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/GaussNewtonEstimator.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimator.java create mode 100644 src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizer.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/SimpleEstimationProblem.java delete mode 100644 src/java/org/apache/commons/math/optimization/general/WeightedMeasurement.java delete mode 100644 src/test/org/apache/commons/math/optimization/general/EstimatedParameterTest.java delete mode 100644 src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimatorTest.java create mode 100644 src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizerTest.java delete mode 100644 src/test/org/apache/commons/math/optimization/general/WeightedMeasurementTest.java diff --git a/src/java/org/apache/commons/math/optimization/VectorialDifferentiableOptimizer.java b/src/java/org/apache/commons/math/optimization/VectorialDifferentiableOptimizer.java index c79113189..95f1d66df 100644 --- a/src/java/org/apache/commons/math/optimization/VectorialDifferentiableOptimizer.java +++ b/src/java/org/apache/commons/math/optimization/VectorialDifferentiableOptimizer.java @@ -60,7 +60,17 @@ public interface VectorialDifferentiableOptimizer extends Serializable { *

* @return number of evaluations of the objective function */ - int getEvaluations(); + int getEvaluations(); + + /** Get the number of evaluations of the objective function jacobian . + *

+ * The number of evaluation correspond to the last call to the + * {@link #optimize(ObjectiveFunction, GoalType, double[]) optimize} + * method. It is 0 if the method has not been called yet. + *

+ * @return number of evaluations of the objective function jacobian + */ + int getJacobianEvaluations(); /** Set the convergence checker. * @param checker object to use to check for convergence diff --git a/src/java/org/apache/commons/math/optimization/general/AbstractEstimator.java b/src/java/org/apache/commons/math/optimization/general/AbstractEstimator.java deleted file mode 100644 index 01ed15cc1..000000000 --- a/src/java/org/apache/commons/math/optimization/general/AbstractEstimator.java +++ /dev/null @@ -1,312 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import java.util.Arrays; - -import org.apache.commons.math.linear.InvalidMatrixException; -import org.apache.commons.math.linear.MatrixUtils; -import org.apache.commons.math.linear.RealMatrix; -import org.apache.commons.math.linear.decomposition.LUDecompositionImpl; -import org.apache.commons.math.optimization.OptimizationException; - -/** - * Base class for implementing estimators. - *

This base class handles the boilerplates methods associated to thresholds - * settings, jacobian and error estimation.

- * @version $Revision$ $Date$ - * @since 1.2 - * - */ -public abstract class AbstractEstimator implements Estimator { - - /** Default maximal number of cost evaluations allowed. */ - public static final int DEFAULT_MAX_COST_EVALUATIONS = 100; - - /** - * Build an abstract estimator for least squares problems. - *

The maximal number of cost evaluations allowed is set - * to its default value {@link #DEFAULT_MAX_COST_EVALUATIONS}.

- */ - protected AbstractEstimator() { - setMaxCostEval(DEFAULT_MAX_COST_EVALUATIONS); - } - - /** - * Set the maximal number of cost evaluations allowed. - * - * @param maxCostEval maximal number of cost evaluations allowed - * @see #estimate - */ - public final void setMaxCostEval(int maxCostEval) { - this.maxCostEval = maxCostEval; - } - - /** - * Get the number of cost evaluations. - * - * @return number of cost evaluations - * */ - public final int getCostEvaluations() { - return costEvaluations; - } - - /** - * Get the number of jacobian evaluations. - * - * @return number of jacobian evaluations - * */ - public final int getJacobianEvaluations() { - return jacobianEvaluations; - } - - /** - * Update the jacobian matrix. - */ - protected void updateJacobian() { - incrementJacobianEvaluationsCounter(); - Arrays.fill(jacobian, 0); - for (int i = 0, index = 0; i < rows; i++) { - WeightedMeasurement wm = measurements[i]; - double factor = -Math.sqrt(wm.getWeight()); - for (int j = 0; j < cols; ++j) { - jacobian[index++] = factor * wm.getPartial(parameters[j]); - } - } - } - - /** - * Increment the jacobian evaluations counter. - */ - protected final void incrementJacobianEvaluationsCounter() { - ++jacobianEvaluations; - } - - /** - * Update the residuals array and cost function value. - * @exception OptimizationException if the number of cost evaluations - * exceeds the maximum allowed - */ - protected void updateResidualsAndCost() - throws OptimizationException { - - if (++costEvaluations > maxCostEval) { - throw new OptimizationException("maximal number of evaluations exceeded ({0})", - maxCostEval); - } - - cost = 0; - for (int i = 0, index = 0; i < rows; i++, index += cols) { - WeightedMeasurement wm = measurements[i]; - double residual = wm.getResidual(); - residuals[i] = Math.sqrt(wm.getWeight()) * residual; - cost += wm.getWeight() * residual * residual; - } - cost = Math.sqrt(cost); - - } - - /** - * Get the Root Mean Square value. - * Get the Root Mean Square value, i.e. the root of the arithmetic - * mean of the square of all weighted residuals. This is related to the - * criterion that is minimized by the estimator as follows: if - * c if the criterion, and n is the number of - * measurements, then the RMS is sqrt (c/n). - * - * @param problem estimation problem - * @return RMS value - */ - public double getRMS(EstimationProblem problem) { - WeightedMeasurement[] wm = problem.getMeasurements(); - double criterion = 0; - for (int i = 0; i < wm.length; ++i) { - double residual = wm[i].getResidual(); - criterion += wm[i].getWeight() * residual * residual; - } - return Math.sqrt(criterion / wm.length); - } - - /** - * Get the Chi-Square value. - * @param problem estimation problem - * @return chi-square value - */ - public double getChiSquare(EstimationProblem problem) { - WeightedMeasurement[] wm = problem.getMeasurements(); - double chiSquare = 0; - for (int i = 0; i < wm.length; ++i) { - double residual = wm[i].getResidual(); - chiSquare += residual * residual / wm[i].getWeight(); - } - return chiSquare; - } - - /** - * Get the covariance matrix of unbound estimated parameters. - * @param problem estimation problem - * @return covariance matrix - * @exception OptimizationException if the covariance matrix - * cannot be computed (singular problem) - */ - public double[][] getCovariances(EstimationProblem problem) - throws OptimizationException { - - // set up the jacobian - updateJacobian(); - - // compute transpose(J).J, avoiding building big intermediate matrices - final int rows = problem.getMeasurements().length; - final int cols = problem.getUnboundParameters().length; - final int max = cols * rows; - double[][] jTj = new double[cols][cols]; - for (int i = 0; i < cols; ++i) { - for (int j = i; j < cols; ++j) { - double sum = 0; - for (int k = 0; k < max; k += cols) { - sum += jacobian[k + i] * jacobian[k + j]; - } - jTj[i][j] = sum; - jTj[j][i] = sum; - } - } - - try { - // compute the covariances matrix - RealMatrix inverse = - new LUDecompositionImpl(MatrixUtils.createRealMatrix(jTj)).getSolver().getInverse(); - return inverse.getData(); - } catch (InvalidMatrixException ime) { - throw new OptimizationException("unable to compute covariances: singular problem"); - } - - } - - /** - * Guess the errors in unbound estimated parameters. - *

Guessing is covariance-based, it only gives rough order of magnitude.

- * @param problem estimation problem - * @return errors in estimated parameters - * @exception OptimizationException if the covariances matrix cannot be computed - * or the number of degrees of freedom is not positive (number of measurements - * lesser or equal to number of parameters) - */ - public double[] guessParametersErrors(EstimationProblem problem) - throws OptimizationException { - int m = problem.getMeasurements().length; - int p = problem.getUnboundParameters().length; - if (m <= p) { - throw new OptimizationException( - "no degrees of freedom ({0} measurements, {1} parameters)", - m, p); - } - double[] errors = new double[problem.getUnboundParameters().length]; - final double c = Math.sqrt(getChiSquare(problem) / (m - p)); - double[][] covar = getCovariances(problem); - for (int i = 0; i < errors.length; ++i) { - errors[i] = Math.sqrt(covar[i][i]) * c; - } - return errors; - } - - /** - * Initialization of the common parts of the estimation. - *

This method must be called at the start - * of the {@link #estimate(EstimationProblem) estimate} - * method.

- * @param problem estimation problem to solve - */ - protected void initializeEstimate(EstimationProblem problem) { - - // reset counters - costEvaluations = 0; - jacobianEvaluations = 0; - - // retrieve the equations and the parameters - measurements = problem.getMeasurements(); - parameters = problem.getUnboundParameters(); - - // arrays shared with the other private methods - rows = measurements.length; - cols = parameters.length; - jacobian = new double[rows * cols]; - residuals = new double[rows]; - - cost = Double.POSITIVE_INFINITY; - - } - - /** - * Solve an estimation problem. - * - *

The method should set the parameters of the problem to several - * trial values until it reaches convergence. If this method returns - * normally (i.e. without throwing an exception), then the best - * estimate of the parameters can be retrieved from the problem - * itself, through the {@link EstimationProblem#getAllParameters - * EstimationProblem.getAllParameters} method.

- * - * @param problem estimation problem to solve - * @exception OptimizationException if the problem cannot be solved - * - */ - public abstract void estimate(EstimationProblem problem) - throws OptimizationException; - - /** Array of measurements. */ - protected WeightedMeasurement[] measurements; - - /** Array of parameters. */ - protected EstimatedParameter[] parameters; - - /** - * Jacobian matrix. - *

This matrix is in canonical form just after the calls to - * {@link #updateJacobian()}, but may be modified by the solver - * in the derived class (the {@link LevenbergMarquardtEstimator - * Levenberg-Marquardt estimator} does this).

- */ - protected double[] jacobian; - - /** Number of columns of the jacobian matrix. */ - protected int cols; - - /** Number of rows of the jacobian matrix. */ - protected int rows; - - /** Residuals array. - *

This array is in canonical form just after the calls to - * {@link #updateJacobian()}, but may be modified by the solver - * in the derived class (the {@link LevenbergMarquardtEstimator - * Levenberg-Marquardt estimator} does this).

- */ - protected double[] residuals; - - /** Cost value (square root of the sum of the residuals). */ - protected double cost; - - /** Maximal allowed number of cost evaluations. */ - private int maxCostEval; - - /** Number of cost evaluations. */ - private int costEvaluations; - - /** Number of jacobian evaluations. */ - private int jacobianEvaluations; - -} \ No newline at end of file diff --git a/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java b/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java index 8728c7bff..394462634 100644 --- a/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java +++ b/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java @@ -30,8 +30,8 @@ import org.apache.commons.math.optimization.VectorialDifferentiableOptimizer; import org.apache.commons.math.optimization.VectorialPointValuePair; /** - * Base class for implementing estimators. - *

This base class handles the boilerplates methods associated to thresholds + * Base class for implementing least squares optimizers. + *

This base class handles the boilerplate methods associated to thresholds * settings, jacobian and error estimation.

* @version $Revision$ $Date$ * @since 1.2 @@ -61,8 +61,8 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen * Jacobian matrix. *

This matrix is in canonical form just after the calls to * {@link #updateJacobian()}, but may be modified by the solver - * in the derived class (the {@link LevenbergMarquardtEstimator - * Levenberg-Marquardt estimator} does this).

+ * in the derived class (the {@link LevenbergMarquardtOptimizer + * Levenberg-Marquardt optimizer} does this).

*/ protected double[][] jacobian; @@ -87,6 +87,9 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen /** Current objective function value. */ protected double[] objective; + /** Current residuals. */ + protected double[] residuals; + /** Cost value (square root of the sum of the residuals). */ protected double cost; @@ -114,6 +117,11 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen return objectiveEvaluations; } + /** {@inheritDoc} */ + public int getJacobianEvaluations() { + return jacobianEvaluations; + } + /** {@inheritDoc} */ public void setConvergenceChecker(VectorialConvergenceChecker checker) { this.checker = checker; @@ -175,7 +183,8 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen } cost = 0; for (int i = 0, index = 0; i < rows; i++, index += cols) { - final double residual = objective[i] - target[i]; + final double residual = target[i] - objective[i]; + residuals[i] = residual; cost += weights[i] * residual * residual; } cost = Math.sqrt(cost); @@ -186,7 +195,7 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen * Get the Root Mean Square value. * Get the Root Mean Square value, i.e. the root of the arithmetic * mean of the square of all weighted residuals. This is related to the - * criterion that is minimized by the estimator as follows: if + * criterion that is minimized by the optimizer as follows: if * c if the criterion, and n is the number of * measurements, then the RMS is sqrt (c/n). * @@ -195,7 +204,7 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen public double getRMS() { double criterion = 0; for (int i = 0; i < rows; ++i) { - final double residual = objective[i] - target[i]; + final double residual = residuals[i]; criterion += weights[i] * residual * residual; } return Math.sqrt(criterion / rows); @@ -208,14 +217,14 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen public double getChiSquare() { double chiSquare = 0; for (int i = 0; i < rows; ++i) { - final double residual = objective[i] - target[i]; + final double residual = residuals[i]; chiSquare += residual * residual / weights[i]; } return chiSquare; } /** - * Get the covariance matrix of unbound estimated parameters. + * Get the covariance matrix of optimized parameters. * @return covariance matrix * @exception ObjectiveException if the function jacobian cannot * be evaluated @@ -231,12 +240,10 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen // compute transpose(J).J, avoiding building big intermediate matrices double[][] jTj = new double[cols][cols]; for (int i = 0; i < cols; ++i) { - final double[] ji = jacobian[i]; for (int j = i; j < cols; ++j) { - final double[] jj = jacobian[j]; double sum = 0; for (int k = 0; k < rows; ++k) { - sum += ji[k] * jj[k]; + sum += jacobian[k][i] * jacobian[k][j]; } jTj[i][j] = sum; jTj[j][i] = sum; @@ -255,9 +262,9 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen } /** - * Guess the errors in unbound estimated parameters. + * Guess the errors in optimized parameters. *

Guessing is covariance-based, it only gives rough order of magnitude.

- * @return errors in estimated parameters + * @return errors in optimized parameters * @exception ObjectiveException if the function jacobian cannot b evaluated * @exception OptimizationException if the covariances matrix cannot be computed * or the number of degrees of freedom is not positive (number of measurements @@ -299,6 +306,7 @@ public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferen this.target = target; this.weights = weights; this.variables = startPoint.clone(); + this.residuals = new double[target.length]; // arrays shared with the other private methods rows = target.length; diff --git a/src/java/org/apache/commons/math/optimization/general/EstimatedParameter.java b/src/java/org/apache/commons/math/optimization/general/EstimatedParameter.java deleted file mode 100644 index 0b3d7d253..000000000 --- a/src/java/org/apache/commons/math/optimization/general/EstimatedParameter.java +++ /dev/null @@ -1,124 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import java.io.Serializable; - -/** This class represents the estimated parameters of an estimation problem. - * - *

The parameters of an estimation problem have a name, a value and - * a bound flag. The value of bound parameters is considered trusted - * and the solvers should not adjust them. On the other hand, the - * solvers should adjust the value of unbounds parameters until they - * satisfy convergence criterions specific to each solver.

- * - * @version $Revision$ $Date$ - * @since 1.2 - * - */ - -public class EstimatedParameter - implements Serializable { - - /** Simple constructor. - * Build an instance from a first estimate of the parameter, - * initially considered unbound. - * @param name name of the parameter - * @param firstEstimate first estimate of the parameter - */ - public EstimatedParameter(String name, double firstEstimate) { - this.name = name; - estimate = firstEstimate; - bound = false; - } - - /** Simple constructor. - * Build an instance from a first estimate of the parameter and a - * bound flag - * @param name name of the parameter - * @param firstEstimate first estimate of the parameter - * @param bound flag, should be true if the parameter is bound - */ - public EstimatedParameter(String name, - double firstEstimate, - boolean bound) { - this.name = name; - estimate = firstEstimate; - this.bound = bound; - } - - /** Copy constructor. - * Build a copy of a parameter - * @param parameter instance to copy - */ - public EstimatedParameter(EstimatedParameter parameter) { - name = parameter.name; - estimate = parameter.estimate; - bound = parameter.bound; - } - - /** Set a new estimated value for the parameter. - * @param estimate new estimate for the parameter - */ - public void setEstimate(double estimate) { - this.estimate = estimate; - } - - /** Get the current estimate of the parameter - * @return current estimate - */ - public double getEstimate() { - return estimate; - } - - /** get the name of the parameter - * @return parameter name - */ - public String getName() { - return name; - } - - /** Set the bound flag of the parameter - * @param bound this flag should be set to true if the parameter is - * bound (i.e. if it should not be adjusted by the solver). - */ - public void setBound(boolean bound) { - this.bound = bound; - } - - /** Check if the parameter is bound - * @return true if the parameter is bound */ - public boolean isBound() { - return bound; - } - - /** Name of the parameter */ - private String name; - - /** Current value of the parameter */ - protected double estimate; - - /** Indicator for bound parameters - * (ie parameters that should not be estimated) - */ - private boolean bound; - - /** Serializable version identifier */ - private static final long serialVersionUID = -555440800213416949L; - -} diff --git a/src/java/org/apache/commons/math/optimization/general/EstimationProblem.java b/src/java/org/apache/commons/math/optimization/general/EstimationProblem.java deleted file mode 100644 index ab3d6c1db..000000000 --- a/src/java/org/apache/commons/math/optimization/general/EstimationProblem.java +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -/** - * This interface represents an estimation problem. - * - *

This interface should be implemented by all real estimation - * problems before they can be handled by the estimators through the - * {@link Estimator#estimate Estimator.estimate} method.

- * - *

An estimation problem, as seen by a solver is a set of - * parameters and a set of measurements. The parameters are adjusted - * during the estimation through the {@link #getUnboundParameters - * getUnboundParameters} and {@link EstimatedParameter#setEstimate - * EstimatedParameter.setEstimate} methods. The measurements both have - * a measured value which is generally fixed at construction and a - * theoretical value which depends on the model and hence varies as - * the parameters are adjusted. The purpose of the solver is to reduce - * the residual between these values, it can retrieve the measurements - * through the {@link #getMeasurements getMeasurements} method.

- * - * @see Estimator - * @see WeightedMeasurement - * - * @version $Revision$ $Date$ - * @since 1.2 - * - */ - -public interface EstimationProblem { - /** - * Get the measurements of an estimation problem. - * @return measurements - */ - WeightedMeasurement[] getMeasurements(); - - /** - * Get the unbound parameters of the problem. - * @return unbound parameters - */ - EstimatedParameter[] getUnboundParameters(); - - /** - * Get all the parameters of the problem. - * @return parameters - */ - EstimatedParameter[] getAllParameters(); - -} diff --git a/src/java/org/apache/commons/math/optimization/general/Estimator.java b/src/java/org/apache/commons/math/optimization/general/Estimator.java deleted file mode 100644 index d6df92b7d..000000000 --- a/src/java/org/apache/commons/math/optimization/general/Estimator.java +++ /dev/null @@ -1,93 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import org.apache.commons.math.optimization.OptimizationException; - -/** - * This interface represents solvers for estimation problems. - * - *

The classes which are devoted to solve estimation problems - * should implement this interface. The problems which can be handled - * should implement the {@link EstimationProblem} interface which - * gather all the information needed by the solver.

- * - *

The interface is composed only of the {@link #estimate estimate} - * method.

- * - * @see EstimationProblem - * - * @version $Revision$ $Date$ - * @since 1.2 - * - */ - -public interface Estimator { - - /** - * Solve an estimation problem. - * - *

The method should set the parameters of the problem to several - * trial values until it reaches convergence. If this method returns - * normally (i.e. without throwing an exception), then the best - * estimate of the parameters can be retrieved from the problem - * itself, through the {@link EstimationProblem#getAllParameters - * EstimationProblem.getAllParameters} method.

- * - * @param problem estimation problem to solve - * @exception OptimizationException if the problem cannot be solved - * - */ - void estimate(EstimationProblem problem) - throws OptimizationException; - - /** - * Get the Root Mean Square value. - * Get the Root Mean Square value, i.e. the root of the arithmetic - * mean of the square of all weighted residuals. This is related to the - * criterion that is minimized by the estimator as follows: if - * c is the criterion, and n is the number of - * measurements, then the RMS is sqrt (c/n). - * @see #guessParametersErrors(EstimationProblem) - * - * @param problem estimation problem - * @return RMS value - */ - double getRMS(EstimationProblem problem); - - /** - * Get the covariance matrix of estimated parameters. - * @param problem estimation problem - * @return covariance matrix - * @exception OptimizationException if the covariance matrix - * cannot be computed (singular problem) - */ - double[][] getCovariances(EstimationProblem problem) - throws OptimizationException; - - /** - * Guess the errors in estimated parameters. - * @see #getRMS(EstimationProblem) - * @param problem estimation problem - * @return errors in estimated parameters - * @exception OptimizationException if the error cannot be guessed - */ - double[] guessParametersErrors(EstimationProblem problem) - throws OptimizationException; - -} diff --git a/src/java/org/apache/commons/math/optimization/general/GaussNewtonEstimator.java b/src/java/org/apache/commons/math/optimization/general/GaussNewtonEstimator.java deleted file mode 100644 index eba1675a3..000000000 --- a/src/java/org/apache/commons/math/optimization/general/GaussNewtonEstimator.java +++ /dev/null @@ -1,227 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import java.io.Serializable; - -import org.apache.commons.math.linear.InvalidMatrixException; -import org.apache.commons.math.linear.MatrixUtils; -import org.apache.commons.math.linear.RealMatrix; -import org.apache.commons.math.linear.RealVector; -import org.apache.commons.math.linear.RealVectorImpl; -import org.apache.commons.math.linear.decomposition.LUDecompositionImpl; -import org.apache.commons.math.optimization.OptimizationException; - -/** - * This class implements a solver for estimation problems. - * - *

This class solves estimation problems using a weighted least - * squares criterion on the measurement residuals. It uses a - * Gauss-Newton algorithm.

- * - * @version $Revision$ $Date$ - * @since 1.2 - * - */ - -public class GaussNewtonEstimator extends AbstractEstimator implements Serializable { - - /** Serializable version identifier */ - private static final long serialVersionUID = 5485001826076289109L; - - /** Default threshold for cost steady state detection. */ - private static final double DEFAULT_STEADY_STATE_THRESHOLD = 1.0e-6; - - /** Default threshold for cost convergence. */ - private static final double DEFAULT_CONVERGENCE = 1.0e-6; - - /** Threshold for cost steady state detection. */ - private double steadyStateThreshold; - - /** Threshold for cost convergence. */ - private double convergence; - - /** Simple constructor with default settings. - *

- * The estimator is built with default values for all settings. - *

- * @see #DEFAULT_STEADY_STATE_THRESHOLD - * @see #DEFAULT_CONVERGENCE - * @see AbstractEstimator#DEFAULT_MAX_COST_EVALUATIONS - */ - public GaussNewtonEstimator() { - this.steadyStateThreshold = DEFAULT_STEADY_STATE_THRESHOLD; - this.convergence = DEFAULT_CONVERGENCE; - } - - /** - * Simple constructor. - * - *

This constructor builds an estimator and stores its convergence - * characteristics.

- * - *

An estimator is considered to have converged whenever either - * the criterion goes below a physical threshold under which - * improvements are considered useless or when the algorithm is - * unable to improve it (even if it is still high). The first - * condition that is met stops the iterations.

- * - *

The fact an estimator has converged does not mean that the - * model accurately fits the measurements. It only means no better - * solution can be found, it does not mean this one is good. Such an - * analysis is left to the caller.

- * - *

If neither conditions are fulfilled before a given number of - * iterations, the algorithm is considered to have failed and an - * {@link OptimizationException} is thrown.

- * - * @param maxCostEval maximal number of cost evaluations allowed - * @param convergence criterion threshold below which we do not need - * to improve the criterion anymore - * @param steadyStateThreshold steady state detection threshold, the - * problem has converged has reached a steady state if - * Math.abs(Jn - Jn-1) < - * Jn × convergence, where Jn - * and Jn-1 are the current and preceding criterion - * values (square sum of the weighted residuals of considered measurements). - */ - public GaussNewtonEstimator(final int maxCostEval, final double convergence, - final double steadyStateThreshold) { - setMaxCostEval(maxCostEval); - this.steadyStateThreshold = steadyStateThreshold; - this.convergence = convergence; - } - - /** - * Set the convergence criterion threshold. - * @param convergence criterion threshold below which we do not need - * to improve the criterion anymore - */ - public void setConvergence(final double convergence) { - this.convergence = convergence; - } - - /** - * Set the steady state detection threshold. - *

- * The problem has converged has reached a steady state if - * Math.abs(Jn - Jn-1) < - * Jn × convergence, where Jn - * and Jn-1 are the current and preceding criterion - * values (square sum of the weighted residuals of considered measurements). - *

- * @param steadyStateThreshold steady state detection threshold - */ - public void setSteadyStateThreshold(final double steadyStateThreshold) { - this.steadyStateThreshold = steadyStateThreshold; - } - - /** - * Solve an estimation problem using a least squares criterion. - * - *

This method set the unbound parameters of the given problem - * starting from their current values through several iterations. At - * each step, the unbound parameters are changed in order to - * minimize a weighted least square criterion based on the - * measurements of the problem.

- * - *

The iterations are stopped either when the criterion goes - * below a physical threshold under which improvement are considered - * useless or when the algorithm is unable to improve it (even if it - * is still high). The first condition that is met stops the - * iterations. If the convergence it not reached before the maximum - * number of iterations, an {@link OptimizationException} is - * thrown.

- * - * @param problem estimation problem to solve - * @exception OptimizationException if the problem cannot be solved - * - * @see EstimationProblem - * - */ - public void estimate(EstimationProblem problem) - throws OptimizationException { - - initializeEstimate(problem); - - // work matrices - double[] grad = new double[parameters.length]; - RealVectorImpl bDecrement = new RealVectorImpl(parameters.length); - double[] bDecrementData = bDecrement.getDataRef(); - RealMatrix wGradGradT = MatrixUtils.createRealMatrix(parameters.length, parameters.length); - - // iterate until convergence is reached - double previous = Double.POSITIVE_INFINITY; - do { - - // build the linear problem - incrementJacobianEvaluationsCounter(); - RealVector b = new RealVectorImpl(parameters.length); - RealMatrix a = MatrixUtils.createRealMatrix(parameters.length, parameters.length); - for (int i = 0; i < measurements.length; ++i) { - if (! measurements [i].isIgnored()) { - - double weight = measurements[i].getWeight(); - double residual = measurements[i].getResidual(); - - // compute the normal equation - for (int j = 0; j < parameters.length; ++j) { - grad[j] = measurements[i].getPartial(parameters[j]); - bDecrementData[j] = weight * residual * grad[j]; - } - - // build the contribution matrix for measurement i - for (int k = 0; k < parameters.length; ++k) { - double gk = grad[k]; - for (int l = 0; l < parameters.length; ++l) { - wGradGradT.setEntry(k, l, weight * gk * grad[l]); - } - } - - // update the matrices - a = a.add(wGradGradT); - b = b.add(bDecrement); - - } - } - - try { - - // solve the linearized least squares problem - RealVector dX = new LUDecompositionImpl(a).getSolver().solve(b); - - // update the estimated parameters - for (int i = 0; i < parameters.length; ++i) { - parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i)); - } - - } catch(InvalidMatrixException e) { - throw new OptimizationException("unable to solve: singular problem"); - } - - - previous = cost; - updateResidualsAndCost(); - - } while ((getCostEvaluations() < 2) || - (Math.abs(previous - cost) > (cost * steadyStateThreshold) && - (Math.abs(cost) > convergence))); - - } - -} diff --git a/src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimator.java b/src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimator.java deleted file mode 100644 index 90f648dfc..000000000 --- a/src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimator.java +++ /dev/null @@ -1,873 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math.optimization.general; - -import java.io.Serializable; -import java.util.Arrays; - -import org.apache.commons.math.optimization.OptimizationException; - - -/** - * This class solves a least squares problem. - * - *

This implementation should work even for over-determined systems - * (i.e. systems having more variables than equations). Over-determined systems - * are solved by ignoring the variables which have the smallest impact according - * to their jacobian column norm. Only the rank of the matrix and some loop bounds - * are changed to implement this.

- * - *

The resolution engine is a simple translation of the MINPACK lmder routine with minor - * changes. The changes include the over-determined resolution and the Q.R. - * decomposition which has been rewritten following the algorithm described in the - * P. Lascaux and R. Theodor book Analyse numérique matricielle - * appliquée à l'art de l'ingénieur, Masson 1986. The - * redistribution policy for MINPACK is available here, for convenience, it - * is reproduced below.

- * - * - * - * - *
- * Minpack Copyright Notice (1999) University of Chicago. - * All rights reserved - *
- * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - *
    - *
  1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer.
  2. - *
  3. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution.
  4. - *
  5. The end-user documentation included with the redistribution, if any, - * must include the following acknowledgment: - * This product includes software developed by the University of - * Chicago, as Operator of Argonne National Laboratory. - * Alternately, this acknowledgment may appear in the software itself, - * if and wherever such third-party acknowledgments normally appear.
  6. - *
  7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" - * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE - * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND - * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES - * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE - * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY - * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR - * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF - * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) - * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION - * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL - * BE CORRECTED.
  8. - *
  9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT - * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF - * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, - * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF - * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF - * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER - * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT - * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, - * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE - * POSSIBILITY OF SUCH LOSS OR DAMAGES.
  10. - *
    - - * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran) - * @author Burton S. Garbow (original fortran) - * @author Kenneth E. Hillstrom (original fortran) - * @author Jorge J. More (original fortran) - - * @version $Revision$ $Date$ - * @since 1.2 - * - */ -public class LevenbergMarquardtEstimator extends AbstractEstimator implements Serializable { - - /** - * Build an estimator for least squares problems. - *

    The default values for the algorithm settings are: - *

    - *

    - */ - public LevenbergMarquardtEstimator() { - - // set up the superclass with a default max cost evaluations setting - setMaxCostEval(1000); - - // default values for the tuning parameters - setInitialStepBoundFactor(100.0); - setCostRelativeTolerance(1.0e-10); - setParRelativeTolerance(1.0e-10); - setOrthoTolerance(1.0e-10); - - } - - /** - * Set the positive input variable used in determining the initial step bound. - * This bound is set to the product of initialStepBoundFactor and the euclidean norm of diag*x if nonzero, - * or else to initialStepBoundFactor itself. In most cases factor should lie - * in the interval (0.1, 100.0). 100.0 is a generally recommended value - * - * @param initialStepBoundFactor initial step bound factor - * @see #estimate - */ - public void setInitialStepBoundFactor(double initialStepBoundFactor) { - this.initialStepBoundFactor = initialStepBoundFactor; - } - - /** - * Set the desired relative error in the sum of squares. - * - * @param costRelativeTolerance desired relative error in the sum of squares - * @see #estimate - */ - public void setCostRelativeTolerance(double costRelativeTolerance) { - this.costRelativeTolerance = costRelativeTolerance; - } - - /** - * Set the desired relative error in the approximate solution parameters. - * - * @param parRelativeTolerance desired relative error - * in the approximate solution parameters - * @see #estimate - */ - public void setParRelativeTolerance(double parRelativeTolerance) { - this.parRelativeTolerance = parRelativeTolerance; - } - - /** - * Set the desired max cosine on the orthogonality. - * - * @param orthoTolerance desired max cosine on the orthogonality - * between the function vector and the columns of the jacobian - * @see #estimate - */ - public void setOrthoTolerance(double orthoTolerance) { - this.orthoTolerance = orthoTolerance; - } - - /** - * Solve an estimation problem using the Levenberg-Marquardt algorithm. - *

    The algorithm used is a modified Levenberg-Marquardt one, based - * on the MINPACK lmder - * routine. The algorithm settings must have been set up before this method - * is called with the {@link #setInitialStepBoundFactor}, - * {@link #setMaxCostEval}, {@link #setCostRelativeTolerance}, - * {@link #setParRelativeTolerance} and {@link #setOrthoTolerance} methods. - * If these methods have not been called, the default values set up by the - * {@link #LevenbergMarquardtEstimator() constructor} will be used.

    - *

    The authors of the original fortran function are:

    - * - *

    Luc Maisonobe did the Java translation.

    - * - * @param problem estimation problem to solve - * @exception OptimizationException if convergence cannot be - * reached with the specified algorithm settings or if there are more variables - * than equations - * @see #setInitialStepBoundFactor - * @see #setCostRelativeTolerance - * @see #setParRelativeTolerance - * @see #setOrthoTolerance - */ - public void estimate(EstimationProblem problem) - throws OptimizationException { - - initializeEstimate(problem); - - // arrays shared with the other private methods - solvedCols = Math.min(rows, cols); - diagR = new double[cols]; - jacNorm = new double[cols]; - beta = new double[cols]; - permutation = new int[cols]; - lmDir = new double[cols]; - - // local variables - double delta = 0, xNorm = 0; - double[] diag = new double[cols]; - double[] oldX = new double[cols]; - double[] oldRes = new double[rows]; - double[] work1 = new double[cols]; - double[] work2 = new double[cols]; - double[] work3 = new double[cols]; - - // evaluate the function at the starting point and calculate its norm - updateResidualsAndCost(); - - // outer loop - lmPar = 0; - boolean firstIteration = true; - while (true) { - - // compute the Q.R. decomposition of the jacobian matrix - updateJacobian(); - qrDecomposition(); - - // compute Qt.res - qTy(residuals); - - // now we don't need Q anymore, - // so let jacobian contain the R matrix with its diagonal elements - for (int k = 0; k < solvedCols; ++k) { - int pk = permutation[k]; - jacobian[k * cols + pk] = diagR[pk]; - } - - if (firstIteration) { - - // scale the variables according to the norms of the columns - // of the initial jacobian - xNorm = 0; - for (int k = 0; k < cols; ++k) { - double dk = jacNorm[k]; - if (dk == 0) { - dk = 1.0; - } - double xk = dk * parameters[k].getEstimate(); - xNorm += xk * xk; - diag[k] = dk; - } - xNorm = Math.sqrt(xNorm); - - // initialize the step bound delta - delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); - - } - - // check orthogonality between function vector and jacobian columns - double maxCosine = 0; - if (cost != 0) { - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - double s = jacNorm[pj]; - if (s != 0) { - double sum = 0; - for (int i = 0, index = pj; i <= j; ++i, index += cols) { - sum += jacobian[index] * residuals[i]; - } - maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost)); - } - } - } - if (maxCosine <= orthoTolerance) { - return; - } - - // rescale if necessary - for (int j = 0; j < cols; ++j) { - diag[j] = Math.max(diag[j], jacNorm[j]); - } - - // inner loop - for (double ratio = 0; ratio < 1.0e-4;) { - - // save the state - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - oldX[pj] = parameters[pj].getEstimate(); - } - double previousCost = cost; - double[] tmpVec = residuals; - residuals = oldRes; - oldRes = tmpVec; - - // determine the Levenberg-Marquardt parameter - determineLMParameter(oldRes, delta, diag, work1, work2, work3); - - // compute the new point and the norm of the evolution direction - double lmNorm = 0; - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - lmDir[pj] = -lmDir[pj]; - parameters[pj].setEstimate(oldX[pj] + lmDir[pj]); - double s = diag[pj] * lmDir[pj]; - lmNorm += s * s; - } - lmNorm = Math.sqrt(lmNorm); - - // on the first iteration, adjust the initial step bound. - if (firstIteration) { - delta = Math.min(delta, lmNorm); - } - - // evaluate the function at x + p and calculate its norm - updateResidualsAndCost(); - - // compute the scaled actual reduction - double actRed = -1.0; - if (0.1 * cost < previousCost) { - double r = cost / previousCost; - actRed = 1.0 - r * r; - } - - // compute the scaled predicted reduction - // and the scaled directional derivative - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - double dirJ = lmDir[pj]; - work1[j] = 0; - for (int i = 0, index = pj; i <= j; ++i, index += cols) { - work1[i] += jacobian[index] * dirJ; - } - } - double coeff1 = 0; - for (int j = 0; j < solvedCols; ++j) { - coeff1 += work1[j] * work1[j]; - } - double pc2 = previousCost * previousCost; - coeff1 = coeff1 / pc2; - double coeff2 = lmPar * lmNorm * lmNorm / pc2; - double preRed = coeff1 + 2 * coeff2; - double dirDer = -(coeff1 + coeff2); - - // ratio of the actual to the predicted reduction - ratio = (preRed == 0) ? 0 : (actRed / preRed); - - // update the step bound - if (ratio <= 0.25) { - double tmp = - (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; - if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { - tmp = 0.1; - } - delta = tmp * Math.min(delta, 10.0 * lmNorm); - lmPar /= tmp; - } else if ((lmPar == 0) || (ratio >= 0.75)) { - delta = 2 * lmNorm; - lmPar *= 0.5; - } - - // test for successful iteration. - if (ratio >= 1.0e-4) { - // successful iteration, update the norm - firstIteration = false; - xNorm = 0; - for (int k = 0; k < cols; ++k) { - double xK = diag[k] * parameters[k].getEstimate(); - xNorm += xK * xK; - } - xNorm = Math.sqrt(xNorm); - } else { - // failed iteration, reset the previous values - cost = previousCost; - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - parameters[pj].setEstimate(oldX[pj]); - } - tmpVec = residuals; - residuals = oldRes; - oldRes = tmpVec; - } - - // tests for convergence. - if (((Math.abs(actRed) <= costRelativeTolerance) && - (preRed <= costRelativeTolerance) && - (ratio <= 2.0)) || - (delta <= parRelativeTolerance * xNorm)) { - return; - } - - // tests for termination and stringent tolerances - // (2.2204e-16 is the machine epsilon for IEEE754) - if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { - throw new OptimizationException("cost relative tolerance is too small ({0})," + - " no further reduction in the" + - " sum of squares is possible", - costRelativeTolerance); - } else if (delta <= 2.2204e-16 * xNorm) { - throw new OptimizationException("parameters relative tolerance is too small" + - " ({0}), no further improvement in" + - " the approximate solution is possible", - parRelativeTolerance); - } else if (maxCosine <= 2.2204e-16) { - throw new OptimizationException("orthogonality tolerance is too small ({0})," + - " solution is orthogonal to the jacobian", - orthoTolerance); - } - - } - - } - - } - - /** - * Determine the Levenberg-Marquardt parameter. - *

    This implementation is a translation in Java of the MINPACK - * lmpar - * routine.

    - *

    This method sets the lmPar and lmDir attributes.

    - *

    The authors of the original fortran function are:

    - * - *

    Luc Maisonobe did the Java translation.

    - * - * @param qy array containing qTy - * @param delta upper bound on the euclidean norm of diagR * lmDir - * @param diag diagonal matrix - * @param work1 work array - * @param work2 work array - * @param work3 work array - */ - private void determineLMParameter(double[] qy, double delta, double[] diag, - double[] work1, double[] work2, double[] work3) { - - // compute and store in x the gauss-newton direction, if the - // jacobian is rank-deficient, obtain a least squares solution - for (int j = 0; j < rank; ++j) { - lmDir[permutation[j]] = qy[j]; - } - for (int j = rank; j < cols; ++j) { - lmDir[permutation[j]] = 0; - } - for (int k = rank - 1; k >= 0; --k) { - int pk = permutation[k]; - double ypk = lmDir[pk] / diagR[pk]; - for (int i = 0, index = pk; i < k; ++i, index += cols) { - lmDir[permutation[i]] -= ypk * jacobian[index]; - } - lmDir[pk] = ypk; - } - - // evaluate the function at the origin, and test - // for acceptance of the Gauss-Newton direction - double dxNorm = 0; - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - double s = diag[pj] * lmDir[pj]; - work1[pj] = s; - dxNorm += s * s; - } - dxNorm = Math.sqrt(dxNorm); - double fp = dxNorm - delta; - if (fp <= 0.1 * delta) { - lmPar = 0; - return; - } - - // if the jacobian is not rank deficient, the Newton step provides - // a lower bound, parl, for the zero of the function, - // otherwise set this bound to zero - double sum2, parl = 0; - if (rank == solvedCols) { - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - work1[pj] *= diag[pj] / dxNorm; - } - sum2 = 0; - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - double sum = 0; - for (int i = 0, index = pj; i < j; ++i, index += cols) { - sum += jacobian[index] * work1[permutation[i]]; - } - double s = (work1[pj] - sum) / diagR[pj]; - work1[pj] = s; - sum2 += s * s; - } - parl = fp / (delta * sum2); - } - - // calculate an upper bound, paru, for the zero of the function - sum2 = 0; - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - double sum = 0; - for (int i = 0, index = pj; i <= j; ++i, index += cols) { - sum += jacobian[index] * qy[i]; - } - sum /= diag[pj]; - sum2 += sum * sum; - } - double gNorm = Math.sqrt(sum2); - double paru = gNorm / delta; - if (paru == 0) { - // 2.2251e-308 is the smallest positive real for IEE754 - paru = 2.2251e-308 / Math.min(delta, 0.1); - } - - // if the input par lies outside of the interval (parl,paru), - // set par to the closer endpoint - lmPar = Math.min(paru, Math.max(lmPar, parl)); - if (lmPar == 0) { - lmPar = gNorm / dxNorm; - } - - for (int countdown = 10; countdown >= 0; --countdown) { - - // evaluate the function at the current value of lmPar - if (lmPar == 0) { - lmPar = Math.max(2.2251e-308, 0.001 * paru); - } - double sPar = Math.sqrt(lmPar); - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - work1[pj] = sPar * diag[pj]; - } - determineLMDirection(qy, work1, work2, work3); - - dxNorm = 0; - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - double s = diag[pj] * lmDir[pj]; - work3[pj] = s; - dxNorm += s * s; - } - dxNorm = Math.sqrt(dxNorm); - double previousFP = fp; - fp = dxNorm - delta; - - // if the function is small enough, accept the current value - // of lmPar, also test for the exceptional cases where parl is zero - if ((Math.abs(fp) <= 0.1 * delta) || - ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) { - return; - } - - // compute the Newton correction - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - work1[pj] = work3[pj] * diag[pj] / dxNorm; - } - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - work1[pj] /= work2[j]; - double tmp = work1[pj]; - for (int i = j + 1; i < solvedCols; ++i) { - work1[permutation[i]] -= jacobian[i * cols + pj] * tmp; - } - } - sum2 = 0; - for (int j = 0; j < solvedCols; ++j) { - double s = work1[permutation[j]]; - sum2 += s * s; - } - double correction = fp / (delta * sum2); - - // depending on the sign of the function, update parl or paru. - if (fp > 0) { - parl = Math.max(parl, lmPar); - } else if (fp < 0) { - paru = Math.min(paru, lmPar); - } - - // compute an improved estimate for lmPar - lmPar = Math.max(parl, lmPar + correction); - - } - } - - /** - * Solve a*x = b and d*x = 0 in the least squares sense. - *

    This implementation is a translation in Java of the MINPACK - * qrsolv - * routine.

    - *

    This method sets the lmDir and lmDiag attributes.

    - *

    The authors of the original fortran function are:

    - * - *

    Luc Maisonobe did the Java translation.

    - * - * @param qy array containing qTy - * @param diag diagonal matrix - * @param lmDiag diagonal elements associated with lmDir - * @param work work array - */ - private void determineLMDirection(double[] qy, double[] diag, - double[] lmDiag, double[] work) { - - // copy R and Qty to preserve input and initialize s - // in particular, save the diagonal elements of R in lmDir - for (int j = 0; j < solvedCols; ++j) { - int pj = permutation[j]; - for (int i = j + 1; i < solvedCols; ++i) { - jacobian[i * cols + pj] = jacobian[j * cols + permutation[i]]; - } - lmDir[j] = diagR[pj]; - work[j] = qy[j]; - } - - // eliminate the diagonal matrix d using a Givens rotation - for (int j = 0; j < solvedCols; ++j) { - - // prepare the row of d to be eliminated, locating the - // diagonal element using p from the Q.R. factorization - int pj = permutation[j]; - double dpj = diag[pj]; - if (dpj != 0) { - Arrays.fill(lmDiag, j + 1, lmDiag.length, 0); - } - lmDiag[j] = dpj; - - // the transformations to eliminate the row of d - // modify only a single element of Qty - // beyond the first n, which is initially zero. - double qtbpj = 0; - for (int k = j; k < solvedCols; ++k) { - int pk = permutation[k]; - - // determine a Givens rotation which eliminates the - // appropriate element in the current row of d - if (lmDiag[k] != 0) { - - double sin, cos; - double rkk = jacobian[k * cols + pk]; - if (Math.abs(rkk) < Math.abs(lmDiag[k])) { - double cotan = rkk / lmDiag[k]; - sin = 1.0 / Math.sqrt(1.0 + cotan * cotan); - cos = sin * cotan; - } else { - double tan = lmDiag[k] / rkk; - cos = 1.0 / Math.sqrt(1.0 + tan * tan); - sin = cos * tan; - } - - // compute the modified diagonal element of R and - // the modified element of (Qty,0) - jacobian[k * cols + pk] = cos * rkk + sin * lmDiag[k]; - double temp = cos * work[k] + sin * qtbpj; - qtbpj = -sin * work[k] + cos * qtbpj; - work[k] = temp; - - // accumulate the tranformation in the row of s - for (int i = k + 1; i < solvedCols; ++i) { - double rik = jacobian[i * cols + pk]; - temp = cos * rik + sin * lmDiag[i]; - lmDiag[i] = -sin * rik + cos * lmDiag[i]; - jacobian[i * cols + pk] = temp; - } - - } - } - - // store the diagonal element of s and restore - // the corresponding diagonal element of R - int index = j * cols + permutation[j]; - lmDiag[j] = jacobian[index]; - jacobian[index] = lmDir[j]; - - } - - // solve the triangular system for z, if the system is - // singular, then obtain a least squares solution - int nSing = solvedCols; - for (int j = 0; j < solvedCols; ++j) { - if ((lmDiag[j] == 0) && (nSing == solvedCols)) { - nSing = j; - } - if (nSing < solvedCols) { - work[j] = 0; - } - } - if (nSing > 0) { - for (int j = nSing - 1; j >= 0; --j) { - int pj = permutation[j]; - double sum = 0; - for (int i = j + 1; i < nSing; ++i) { - sum += jacobian[i * cols + pj] * work[i]; - } - work[j] = (work[j] - sum) / lmDiag[j]; - } - } - - // permute the components of z back to components of lmDir - for (int j = 0; j < lmDir.length; ++j) { - lmDir[permutation[j]] = work[j]; - } - - } - - /** - * Decompose a matrix A as A.P = Q.R using Householder transforms. - *

    As suggested in the P. Lascaux and R. Theodor book - * Analyse numérique matricielle appliquée à - * l'art de l'ingénieur (Masson, 1986), instead of representing - * the Householder transforms with uk unit vectors such that: - *

    -   * Hk = I - 2uk.ukt
    -   * 
    - * we use k non-unit vectors such that: - *
    -   * Hk = I - betakvk.vkt
    -   * 
    - * where vk = ak - alphak ek. - * The betak coefficients are provided upon exit as recomputing - * them from the vk vectors would be costly.

    - *

    This decomposition handles rank deficient cases since the tranformations - * are performed in non-increasing columns norms order thanks to columns - * pivoting. The diagonal elements of the R matrix are therefore also in - * non-increasing absolute values order.

    - * @exception OptimizationException if the decomposition cannot be performed - */ - private void qrDecomposition() throws OptimizationException { - - // initializations - for (int k = 0; k < cols; ++k) { - permutation[k] = k; - double norm2 = 0; - for (int index = k; index < jacobian.length; index += cols) { - double akk = jacobian[index]; - norm2 += akk * akk; - } - jacNorm[k] = Math.sqrt(norm2); - } - - // transform the matrix column after column - for (int k = 0; k < cols; ++k) { - - // select the column with the greatest norm on active components - int nextColumn = -1; - double ak2 = Double.NEGATIVE_INFINITY; - for (int i = k; i < cols; ++i) { - double norm2 = 0; - int iDiag = k * cols + permutation[i]; - for (int index = iDiag; index < jacobian.length; index += cols) { - double aki = jacobian[index]; - norm2 += aki * aki; - } - if (Double.isInfinite(norm2) || Double.isNaN(norm2)) { - throw new OptimizationException( - "unable to perform Q.R decomposition on the {0}x{1} jacobian matrix", - rows, cols); - } - if (norm2 > ak2) { - nextColumn = i; - ak2 = norm2; - } - } - if (ak2 == 0) { - rank = k; - return; - } - int pk = permutation[nextColumn]; - permutation[nextColumn] = permutation[k]; - permutation[k] = pk; - - // choose alpha such that Hk.u = alpha ek - int kDiag = k * cols + pk; - double akk = jacobian[kDiag]; - double alpha = (akk > 0) ? -Math.sqrt(ak2) : Math.sqrt(ak2); - double betak = 1.0 / (ak2 - akk * alpha); - beta[pk] = betak; - - // transform the current column - diagR[pk] = alpha; - jacobian[kDiag] -= alpha; - - // transform the remaining columns - for (int dk = cols - 1 - k; dk > 0; --dk) { - int dkp = permutation[k + dk] - pk; - double gamma = 0; - for (int index = kDiag; index < jacobian.length; index += cols) { - gamma += jacobian[index] * jacobian[index + dkp]; - } - gamma *= betak; - for (int index = kDiag; index < jacobian.length; index += cols) { - jacobian[index + dkp] -= gamma * jacobian[index]; - } - } - - } - - rank = solvedCols; - - } - - /** - * Compute the product Qt.y for some Q.R. decomposition. - * - * @param y vector to multiply (will be overwritten with the result) - */ - private void qTy(double[] y) { - for (int k = 0; k < cols; ++k) { - int pk = permutation[k]; - int kDiag = k * cols + pk; - double gamma = 0; - for (int i = k, index = kDiag; i < rows; ++i, index += cols) { - gamma += jacobian[index] * y[i]; - } - gamma *= beta[pk]; - for (int i = k, index = kDiag; i < rows; ++i, index += cols) { - y[i] -= gamma * jacobian[index]; - } - } - } - - /** Number of solved variables. */ - private int solvedCols; - - /** Diagonal elements of the R matrix in the Q.R. decomposition. */ - private double[] diagR; - - /** Norms of the columns of the jacobian matrix. */ - private double[] jacNorm; - - /** Coefficients of the Householder transforms vectors. */ - private double[] beta; - - /** Columns permutation array. */ - private int[] permutation; - - /** Rank of the jacobian matrix. */ - private int rank; - - /** Levenberg-Marquardt parameter. */ - private double lmPar; - - /** Parameters evolution direction associated with lmPar. */ - private double[] lmDir; - - /** Positive input variable used in determining the initial step bound. */ - private double initialStepBoundFactor; - - /** Desired relative error in the sum of squares. */ - private double costRelativeTolerance; - - /** Desired relative error in the approximate solution parameters. */ - private double parRelativeTolerance; - - /** Desired max cosine on the orthogonality between the function vector - * and the columns of the jacobian. */ - private double orthoTolerance; - - /** Serializable version identifier */ - private static final long serialVersionUID = -5705952631533171019L; - -} diff --git a/src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizer.java b/src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizer.java new file mode 100644 index 000000000..232901aaf --- /dev/null +++ b/src/java/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizer.java @@ -0,0 +1,838 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.optimization.general; + +import java.util.Arrays; + +import org.apache.commons.math.optimization.ObjectiveException; +import org.apache.commons.math.optimization.OptimizationException; +import org.apache.commons.math.optimization.VectorialPointValuePair; + + +/** + * This class solves a least squares problem using the Levenberg-Marquardt algorithm. + * + *

    This implementation should work even for over-determined systems + * (i.e. systems having more variables than equations). Over-determined systems + * are solved by ignoring the variables which have the smallest impact according + * to their jacobian column norm. Only the rank of the matrix and some loop bounds + * are changed to implement this.

    + * + *

    The resolution engine is a simple translation of the MINPACK lmder routine with minor + * changes. The changes include the over-determined resolution and the Q.R. + * decomposition which has been rewritten following the algorithm described in the + * P. Lascaux and R. Theodor book Analyse numérique matricielle + * appliquée à l'art de l'ingénieur, Masson 1986. The + * redistribution policy for MINPACK is available here, for convenience, it + * is reproduced below.

    + * + * + * + * + *
    + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
    + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
      + *
    1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
    2. + *
    3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
    4. + *
    5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
    6. + *
    7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
    8. + *
    9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
    10. + *
      + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran) + * @author Burton S. Garbow (original fortran) + * @author Kenneth E. Hillstrom (original fortran) + * @author Jorge J. More (original fortran) + + * @version $Revision$ $Date$ + * @since 2.0 + * + */ +public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer { + + /** Serializable version identifier */ + private static final long serialVersionUID = 8851282236194244323L; + + /** Number of solved variables. */ + private int solvedCols; + + /** Diagonal elements of the R matrix in the Q.R. decomposition. */ + private double[] diagR; + + /** Norms of the columns of the jacobian matrix. */ + private double[] jacNorm; + + /** Coefficients of the Householder transforms vectors. */ + private double[] beta; + + /** Columns permutation array. */ + private int[] permutation; + + /** Rank of the jacobian matrix. */ + private int rank; + + /** Levenberg-Marquardt parameter. */ + private double lmPar; + + /** Parameters evolution direction associated with lmPar. */ + private double[] lmDir; + + /** Positive input variable used in determining the initial step bound. */ + private double initialStepBoundFactor; + + /** Desired relative error in the sum of squares. */ + private double costRelativeTolerance; + + /** Desired relative error in the approximate solution parameters. */ + private double parRelativeTolerance; + + /** Desired max cosine on the orthogonality between the function vector + * and the columns of the jacobian. */ + private double orthoTolerance; + + /** + * Build an optimizer for least squares problems. + *

      The default values for the algorithm settings are: + *

      + *

      + */ + public LevenbergMarquardtOptimizer() { + + // set up the superclass with a default max cost evaluations setting + setMaxEvaluations(1000); + + // default values for the tuning parameters + setInitialStepBoundFactor(100.0); + setCostRelativeTolerance(1.0e-10); + setParRelativeTolerance(1.0e-10); + setOrthoTolerance(1.0e-10); + + } + + /** + * Set the positive input variable used in determining the initial step bound. + * This bound is set to the product of initialStepBoundFactor and the euclidean + * norm of diag*x if nonzero, or else to initialStepBoundFactor itself. In most + * cases factor should lie in the interval (0.1, 100.0). 100.0 is a generally + * recommended value. + * + * @param initialStepBoundFactor initial step bound factor + */ + public void setInitialStepBoundFactor(double initialStepBoundFactor) { + this.initialStepBoundFactor = initialStepBoundFactor; + } + + /** + * Set the desired relative error in the sum of squares. + * + * @param costRelativeTolerance desired relative error in the sum of squares + */ + public void setCostRelativeTolerance(double costRelativeTolerance) { + this.costRelativeTolerance = costRelativeTolerance; + } + + /** + * Set the desired relative error in the approximate solution parameters. + * + * @param parRelativeTolerance desired relative error + * in the approximate solution parameters + */ + public void setParRelativeTolerance(double parRelativeTolerance) { + this.parRelativeTolerance = parRelativeTolerance; + } + + /** + * Set the desired max cosine on the orthogonality. + * + * @param orthoTolerance desired max cosine on the orthogonality + * between the function vector and the columns of the jacobian + */ + public void setOrthoTolerance(double orthoTolerance) { + this.orthoTolerance = orthoTolerance; + } + + /** {@inheritDoc} */ + protected VectorialPointValuePair doOptimize() + throws ObjectiveException, OptimizationException, IllegalArgumentException { + + // arrays shared with the other private methods + solvedCols = Math.min(rows, cols); + diagR = new double[cols]; + jacNorm = new double[cols]; + beta = new double[cols]; + permutation = new int[cols]; + lmDir = new double[cols]; + + // local variables + double delta = 0, xNorm = 0; + double[] diag = new double[cols]; + double[] oldX = new double[cols]; + double[] oldRes = new double[rows]; + double[] work1 = new double[cols]; + double[] work2 = new double[cols]; + double[] work3 = new double[cols]; + + // evaluate the function at the starting point and calculate its norm + updateResidualsAndCost(); + + // outer loop + lmPar = 0; + boolean firstIteration = true; + while (true) { + + // compute the Q.R. decomposition of the jacobian matrix + updateJacobian(); + qrDecomposition(); + + // compute Qt.res + qTy(residuals); + + // now we don't need Q anymore, + // so let jacobian contain the R matrix with its diagonal elements + for (int k = 0; k < solvedCols; ++k) { + int pk = permutation[k]; + jacobian[k][pk] = diagR[pk]; + } + + if (firstIteration) { + + // scale the variables according to the norms of the columns + // of the initial jacobian + xNorm = 0; + for (int k = 0; k < cols; ++k) { + double dk = jacNorm[k]; + if (dk == 0) { + dk = 1.0; + } + double xk = dk * variables[k]; + xNorm += xk * xk; + diag[k] = dk; + } + xNorm = Math.sqrt(xNorm); + + // initialize the step bound delta + delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); + + } + + // check orthogonality between function vector and jacobian columns + double maxCosine = 0; + if (cost != 0) { + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double s = jacNorm[pj]; + if (s != 0) { + double sum = 0; + for (int i = 0; i <= j; ++i) { + sum += jacobian[i][pj] * residuals[i]; + } + maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost)); + } + } + } + if (maxCosine <= orthoTolerance) { + // convergence has been reached + return new VectorialPointValuePair(variables, objective); + } + + // rescale if necessary + for (int j = 0; j < cols; ++j) { + diag[j] = Math.max(diag[j], jacNorm[j]); + } + + // inner loop + for (double ratio = 0; ratio < 1.0e-4;) { + + // save the state + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + oldX[pj] = variables[pj]; + } + double previousCost = cost; + double[] tmpVec = residuals; + residuals = oldRes; + oldRes = tmpVec; + + // determine the Levenberg-Marquardt parameter + determineLMParameter(oldRes, delta, diag, work1, work2, work3); + + // compute the new point and the norm of the evolution direction + double lmNorm = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + lmDir[pj] = -lmDir[pj]; + variables[pj] = oldX[pj] + lmDir[pj]; + double s = diag[pj] * lmDir[pj]; + lmNorm += s * s; + } + lmNorm = Math.sqrt(lmNorm); + + // on the first iteration, adjust the initial step bound. + if (firstIteration) { + delta = Math.min(delta, lmNorm); + } + + // evaluate the function at x + p and calculate its norm + updateResidualsAndCost(); + + // compute the scaled actual reduction + double actRed = -1.0; + if (0.1 * cost < previousCost) { + double r = cost / previousCost; + actRed = 1.0 - r * r; + } + + // compute the scaled predicted reduction + // and the scaled directional derivative + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double dirJ = lmDir[pj]; + work1[j] = 0; + for (int i = 0; i <= j; ++i) { + work1[i] += jacobian[i][pj] * dirJ; + } + } + double coeff1 = 0; + for (int j = 0; j < solvedCols; ++j) { + coeff1 += work1[j] * work1[j]; + } + double pc2 = previousCost * previousCost; + coeff1 = coeff1 / pc2; + double coeff2 = lmPar * lmNorm * lmNorm / pc2; + double preRed = coeff1 + 2 * coeff2; + double dirDer = -(coeff1 + coeff2); + + // ratio of the actual to the predicted reduction + ratio = (preRed == 0) ? 0 : (actRed / preRed); + + // update the step bound + if (ratio <= 0.25) { + double tmp = + (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; + if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { + tmp = 0.1; + } + delta = tmp * Math.min(delta, 10.0 * lmNorm); + lmPar /= tmp; + } else if ((lmPar == 0) || (ratio >= 0.75)) { + delta = 2 * lmNorm; + lmPar *= 0.5; + } + + // test for successful iteration. + if (ratio >= 1.0e-4) { + // successful iteration, update the norm + firstIteration = false; + xNorm = 0; + for (int k = 0; k < cols; ++k) { + double xK = diag[k] * variables[k]; + xNorm += xK * xK; + } + xNorm = Math.sqrt(xNorm); + } else { + // failed iteration, reset the previous values + cost = previousCost; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + variables[pj] = oldX[pj]; + } + tmpVec = residuals; + residuals = oldRes; + oldRes = tmpVec; + } + + // tests for convergence. + if (((Math.abs(actRed) <= costRelativeTolerance) && + (preRed <= costRelativeTolerance) && + (ratio <= 2.0)) || + (delta <= parRelativeTolerance * xNorm)) { + return new VectorialPointValuePair(variables, objective); + } + + // tests for termination and stringent tolerances + // (2.2204e-16 is the machine epsilon for IEEE754) + if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { + throw new OptimizationException("cost relative tolerance is too small ({0})," + + " no further reduction in the" + + " sum of squares is possible", + costRelativeTolerance); + } else if (delta <= 2.2204e-16 * xNorm) { + throw new OptimizationException("parameters relative tolerance is too small" + + " ({0}), no further improvement in" + + " the approximate solution is possible", + parRelativeTolerance); + } else if (maxCosine <= 2.2204e-16) { + throw new OptimizationException("orthogonality tolerance is too small ({0})," + + " solution is orthogonal to the jacobian", + orthoTolerance); + } + + } + + } + + } + + /** + * Determine the Levenberg-Marquardt parameter. + *

      This implementation is a translation in Java of the MINPACK + * lmpar + * routine.

      + *

      This method sets the lmPar and lmDir attributes.

      + *

      The authors of the original fortran function are:

      + * + *

      Luc Maisonobe did the Java translation.

      + * + * @param qy array containing qTy + * @param delta upper bound on the euclidean norm of diagR * lmDir + * @param diag diagonal matrix + * @param work1 work array + * @param work2 work array + * @param work3 work array + */ + private void determineLMParameter(double[] qy, double delta, double[] diag, + double[] work1, double[] work2, double[] work3) { + + // compute and store in x the gauss-newton direction, if the + // jacobian is rank-deficient, obtain a least squares solution + for (int j = 0; j < rank; ++j) { + lmDir[permutation[j]] = qy[j]; + } + for (int j = rank; j < cols; ++j) { + lmDir[permutation[j]] = 0; + } + for (int k = rank - 1; k >= 0; --k) { + int pk = permutation[k]; + double ypk = lmDir[pk] / diagR[pk]; + for (int i = 0; i < k; ++i) { + lmDir[permutation[i]] -= ypk * jacobian[i][pk]; + } + lmDir[pk] = ypk; + } + + // evaluate the function at the origin, and test + // for acceptance of the Gauss-Newton direction + double dxNorm = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double s = diag[pj] * lmDir[pj]; + work1[pj] = s; + dxNorm += s * s; + } + dxNorm = Math.sqrt(dxNorm); + double fp = dxNorm - delta; + if (fp <= 0.1 * delta) { + lmPar = 0; + return; + } + + // if the jacobian is not rank deficient, the Newton step provides + // a lower bound, parl, for the zero of the function, + // otherwise set this bound to zero + double sum2, parl = 0; + if (rank == solvedCols) { + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] *= diag[pj] / dxNorm; + } + sum2 = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double sum = 0; + for (int i = 0; i < j; ++i) { + sum += jacobian[i][pj] * work1[permutation[i]]; + } + double s = (work1[pj] - sum) / diagR[pj]; + work1[pj] = s; + sum2 += s * s; + } + parl = fp / (delta * sum2); + } + + // calculate an upper bound, paru, for the zero of the function + sum2 = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double sum = 0; + for (int i = 0; i <= j; ++i) { + sum += jacobian[i][pj] * qy[i]; + } + sum /= diag[pj]; + sum2 += sum * sum; + } + double gNorm = Math.sqrt(sum2); + double paru = gNorm / delta; + if (paru == 0) { + // 2.2251e-308 is the smallest positive real for IEE754 + paru = 2.2251e-308 / Math.min(delta, 0.1); + } + + // if the input par lies outside of the interval (parl,paru), + // set par to the closer endpoint + lmPar = Math.min(paru, Math.max(lmPar, parl)); + if (lmPar == 0) { + lmPar = gNorm / dxNorm; + } + + for (int countdown = 10; countdown >= 0; --countdown) { + + // evaluate the function at the current value of lmPar + if (lmPar == 0) { + lmPar = Math.max(2.2251e-308, 0.001 * paru); + } + double sPar = Math.sqrt(lmPar); + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] = sPar * diag[pj]; + } + determineLMDirection(qy, work1, work2, work3); + + dxNorm = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double s = diag[pj] * lmDir[pj]; + work3[pj] = s; + dxNorm += s * s; + } + dxNorm = Math.sqrt(dxNorm); + double previousFP = fp; + fp = dxNorm - delta; + + // if the function is small enough, accept the current value + // of lmPar, also test for the exceptional cases where parl is zero + if ((Math.abs(fp) <= 0.1 * delta) || + ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) { + return; + } + + // compute the Newton correction + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] = work3[pj] * diag[pj] / dxNorm; + } + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] /= work2[j]; + double tmp = work1[pj]; + for (int i = j + 1; i < solvedCols; ++i) { + work1[permutation[i]] -= jacobian[i][pj] * tmp; + } + } + sum2 = 0; + for (int j = 0; j < solvedCols; ++j) { + double s = work1[permutation[j]]; + sum2 += s * s; + } + double correction = fp / (delta * sum2); + + // depending on the sign of the function, update parl or paru. + if (fp > 0) { + parl = Math.max(parl, lmPar); + } else if (fp < 0) { + paru = Math.min(paru, lmPar); + } + + // compute an improved estimate for lmPar + lmPar = Math.max(parl, lmPar + correction); + + } + } + + /** + * Solve a*x = b and d*x = 0 in the least squares sense. + *

      This implementation is a translation in Java of the MINPACK + * qrsolv + * routine.

      + *

      This method sets the lmDir and lmDiag attributes.

      + *

      The authors of the original fortran function are:

      + * + *

      Luc Maisonobe did the Java translation.

      + * + * @param qy array containing qTy + * @param diag diagonal matrix + * @param lmDiag diagonal elements associated with lmDir + * @param work work array + */ + private void determineLMDirection(double[] qy, double[] diag, + double[] lmDiag, double[] work) { + + // copy R and Qty to preserve input and initialize s + // in particular, save the diagonal elements of R in lmDir + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + for (int i = j + 1; i < solvedCols; ++i) { + jacobian[i][pj] = jacobian[j][permutation[i]]; + } + lmDir[j] = diagR[pj]; + work[j] = qy[j]; + } + + // eliminate the diagonal matrix d using a Givens rotation + for (int j = 0; j < solvedCols; ++j) { + + // prepare the row of d to be eliminated, locating the + // diagonal element using p from the Q.R. factorization + int pj = permutation[j]; + double dpj = diag[pj]; + if (dpj != 0) { + Arrays.fill(lmDiag, j + 1, lmDiag.length, 0); + } + lmDiag[j] = dpj; + + // the transformations to eliminate the row of d + // modify only a single element of Qty + // beyond the first n, which is initially zero. + double qtbpj = 0; + for (int k = j; k < solvedCols; ++k) { + int pk = permutation[k]; + + // determine a Givens rotation which eliminates the + // appropriate element in the current row of d + if (lmDiag[k] != 0) { + + double sin, cos; + double rkk = jacobian[k][pk]; + if (Math.abs(rkk) < Math.abs(lmDiag[k])) { + double cotan = rkk / lmDiag[k]; + sin = 1.0 / Math.sqrt(1.0 + cotan * cotan); + cos = sin * cotan; + } else { + double tan = lmDiag[k] / rkk; + cos = 1.0 / Math.sqrt(1.0 + tan * tan); + sin = cos * tan; + } + + // compute the modified diagonal element of R and + // the modified element of (Qty,0) + jacobian[k][pk] = cos * rkk + sin * lmDiag[k]; + double temp = cos * work[k] + sin * qtbpj; + qtbpj = -sin * work[k] + cos * qtbpj; + work[k] = temp; + + // accumulate the tranformation in the row of s + for (int i = k + 1; i < solvedCols; ++i) { + double rik = jacobian[i][pk]; + temp = cos * rik + sin * lmDiag[i]; + lmDiag[i] = -sin * rik + cos * lmDiag[i]; + jacobian[i][pk] = temp; + } + + } + } + + // store the diagonal element of s and restore + // the corresponding diagonal element of R + lmDiag[j] = jacobian[j][permutation[j]]; + jacobian[j][permutation[j]] = lmDir[j]; + + } + + // solve the triangular system for z, if the system is + // singular, then obtain a least squares solution + int nSing = solvedCols; + for (int j = 0; j < solvedCols; ++j) { + if ((lmDiag[j] == 0) && (nSing == solvedCols)) { + nSing = j; + } + if (nSing < solvedCols) { + work[j] = 0; + } + } + if (nSing > 0) { + for (int j = nSing - 1; j >= 0; --j) { + int pj = permutation[j]; + double sum = 0; + for (int i = j + 1; i < nSing; ++i) { + sum += jacobian[i][pj] * work[i]; + } + work[j] = (work[j] - sum) / lmDiag[j]; + } + } + + // permute the components of z back to components of lmDir + for (int j = 0; j < lmDir.length; ++j) { + lmDir[permutation[j]] = work[j]; + } + + } + + /** + * Decompose a matrix A as A.P = Q.R using Householder transforms. + *

      As suggested in the P. Lascaux and R. Theodor book + * Analyse numérique matricielle appliquée à + * l'art de l'ingénieur (Masson, 1986), instead of representing + * the Householder transforms with uk unit vectors such that: + *

      +     * Hk = I - 2uk.ukt
      +     * 
      + * we use k non-unit vectors such that: + *
      +     * Hk = I - betakvk.vkt
      +     * 
      + * where vk = ak - alphak ek. + * The betak coefficients are provided upon exit as recomputing + * them from the vk vectors would be costly.

      + *

      This decomposition handles rank deficient cases since the tranformations + * are performed in non-increasing columns norms order thanks to columns + * pivoting. The diagonal elements of the R matrix are therefore also in + * non-increasing absolute values order.

      + * @exception OptimizationException if the decomposition cannot be performed + */ + private void qrDecomposition() throws OptimizationException { + + // initializations + for (int k = 0; k < cols; ++k) { + permutation[k] = k; + double norm2 = 0; + for (int i = 0; i < jacobian.length; ++i) { + double akk = jacobian[i][k]; + norm2 += akk * akk; + } + jacNorm[k] = Math.sqrt(norm2); + } + + // transform the matrix column after column + for (int k = 0; k < cols; ++k) { + + // select the column with the greatest norm on active components + int nextColumn = -1; + double ak2 = Double.NEGATIVE_INFINITY; + for (int i = k; i < cols; ++i) { + double norm2 = 0; + for (int j = k; j < jacobian.length; ++j) { + double aki = jacobian[j][permutation[i]]; + norm2 += aki * aki; + } + if (Double.isInfinite(norm2) || Double.isNaN(norm2)) { + throw new OptimizationException( + "unable to perform Q.R decomposition on the {0}x{1} jacobian matrix", + rows, cols); + } + if (norm2 > ak2) { + nextColumn = i; + ak2 = norm2; + } + } + if (ak2 == 0) { + rank = k; + return; + } + int pk = permutation[nextColumn]; + permutation[nextColumn] = permutation[k]; + permutation[k] = pk; + + // choose alpha such that Hk.u = alpha ek + double akk = jacobian[k][pk]; + double alpha = (akk > 0) ? -Math.sqrt(ak2) : Math.sqrt(ak2); + double betak = 1.0 / (ak2 - akk * alpha); + beta[pk] = betak; + + // transform the current column + diagR[pk] = alpha; + jacobian[k][pk] -= alpha; + + // transform the remaining columns + for (int dk = cols - 1 - k; dk > 0; --dk) { + double gamma = 0; + for (int j = k; j < jacobian.length; ++j) { + gamma += jacobian[j][pk] * jacobian[j][permutation[k + dk]]; + } + gamma *= betak; + for (int j = k; j < jacobian.length; ++j) { + jacobian[j][permutation[k + dk]] -= gamma * jacobian[j][pk]; + } + } + + } + + rank = solvedCols; + + } + + /** + * Compute the product Qt.y for some Q.R. decomposition. + * + * @param y vector to multiply (will be overwritten with the result) + */ + private void qTy(double[] y) { + for (int k = 0; k < cols; ++k) { + int pk = permutation[k]; + double gamma = 0; + for (int i = k; i < rows; ++i) { + gamma += jacobian[i][pk] * y[i]; + } + gamma *= beta[pk]; + for (int i = k; i < rows; ++i) { + y[i] -= gamma * jacobian[i][pk]; + } + } + } + +} diff --git a/src/java/org/apache/commons/math/optimization/general/SimpleEstimationProblem.java b/src/java/org/apache/commons/math/optimization/general/SimpleEstimationProblem.java deleted file mode 100644 index dcf7d5f38..000000000 --- a/src/java/org/apache/commons/math/optimization/general/SimpleEstimationProblem.java +++ /dev/null @@ -1,108 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import java.util.ArrayList; -import java.util.List; - -/** - * Simple implementation of the {@link EstimationProblem - * EstimationProblem} interface for boilerplate data handling. - *

      This class only handles parameters and measurements - * storage and unbound parameters filtering. It does not compute - * anything by itself. It should either be used with measurements - * implementation that are smart enough to know about the - * various parameters in order to compute the partial derivatives - * appropriately. Since the problem-specific logic is mainly related to - * the various measurements models, the simplest way to use this class - * is by extending it and using one internal class extending - * {@link WeightedMeasurement WeightedMeasurement} for each measurement - * type. The instances of the internal classes would have access to the - * various parameters and their current estimate.

      - - * @version $Revision$ $Date$ - * @since 1.2 - - */ -public class SimpleEstimationProblem implements EstimationProblem { - - /** - * Build an empty instance without parameters nor measurements. - */ - public SimpleEstimationProblem() { - parameters = new ArrayList(); - measurements = new ArrayList(); - } - - /** - * Get all the parameters of the problem. - * @return parameters - */ - public EstimatedParameter[] getAllParameters() { - return (EstimatedParameter[]) parameters.toArray(new EstimatedParameter[parameters.size()]); - } - - /** - * Get the unbound parameters of the problem. - * @return unbound parameters - */ - public EstimatedParameter[] getUnboundParameters() { - - // filter the unbound parameters - List unbound = new ArrayList(parameters.size()); - for (EstimatedParameter p : parameters) { - if (! p.isBound()) { - unbound.add(p); - } - } - - // convert to an array - return (EstimatedParameter[]) unbound.toArray(new EstimatedParameter[unbound.size()]); - - } - - /** - * Get the measurements of an estimation problem. - * @return measurements - */ - public WeightedMeasurement[] getMeasurements() { - return (WeightedMeasurement[]) measurements.toArray(new WeightedMeasurement[measurements.size()]); - } - - /** Add a parameter to the problem. - * @param p parameter to add - */ - protected void addParameter(EstimatedParameter p) { - parameters.add(p); - } - - /** - * Add a new measurement to the set. - * @param m measurement to add - */ - protected void addMeasurement(WeightedMeasurement m) { - measurements.add(m); - } - - /** Estimated parameters. */ - private final List parameters; - - /** Measurements. */ - private final List measurements; - -} diff --git a/src/java/org/apache/commons/math/optimization/general/WeightedMeasurement.java b/src/java/org/apache/commons/math/optimization/general/WeightedMeasurement.java deleted file mode 100644 index aa7b3f612..000000000 --- a/src/java/org/apache/commons/math/optimization/general/WeightedMeasurement.java +++ /dev/null @@ -1,170 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import java.io.Serializable; - -/** - * This class represents measurements in estimation problems. - * - *

      This abstract class implements all the methods needed to handle - * measurements in a general way. It defines neither the {@link - * #getTheoreticalValue getTheoreticalValue} nor the {@link - * #getPartial getPartial} methods, which should be defined by - * sub-classes according to the specific problem.

      - * - *

      The {@link #getTheoreticalValue getTheoreticalValue} and {@link - * #getPartial getPartial} methods must always use the current - * estimate of the parameters set by the solver in the problem. These - * parameters can be retrieved through the {@link - * EstimationProblem#getAllParameters - * EstimationProblem.getAllParameters} method if the measurements are - * independent of the problem, or directly if they are implemented as - * inner classes of the problem.

      - * - *

      The instances for which the ignored flag is set - * through the {@link #setIgnored setIgnored} method are ignored by the - * solvers. This can be used to reject wrong measurements at some - * steps of the estimation.

      - * - * @see EstimationProblem - * - * @version $Revision$ $Date$ - * @since 1.2 - * - */ - -public abstract class WeightedMeasurement implements Serializable { - - /** Serializable version identifier. */ - private static final long serialVersionUID = 4360046376796901941L; - - /** - * Simple constructor. - * Build a measurement with the given parameters, and set its ignore - * flag to false. - * @param weight weight of the measurement in the least squares problem - * (two common choices are either to use 1.0 for all measurements, or to - * use a value proportional to the inverse of the variance of the measurement - * type) - * - * @param measuredValue measured value - */ - public WeightedMeasurement(double weight, double measuredValue) { - this.weight = weight; - this.measuredValue = measuredValue; - ignored = false; - } - - /** Simple constructor. - * - * Build a measurement with the given parameters - * - * @param weight weight of the measurement in the least squares problem - * @param measuredValue measured value - * @param ignored true if the measurement should be ignored - */ - public WeightedMeasurement(double weight, double measuredValue, - boolean ignored) { - this.weight = weight; - this.measuredValue = measuredValue; - this.ignored = ignored; - } - - /** - * Get the weight of the measurement in the least squares problem - * - * @return weight - */ - public double getWeight() { - return weight; - } - - /** - * Get the measured value - * - * @return measured value - */ - public double getMeasuredValue() { - return measuredValue; - } - - /** - * Get the residual for this measurement - * The residual is the measured value minus the theoretical value. - * - * @return residual - */ - public double getResidual() { - return measuredValue - getTheoreticalValue(); - } - - /** - * Get the theoretical value expected for this measurement - *

      The theoretical value is the value expected for this measurement - * if the model and its parameter were all perfectly known.

      - *

      The value must be computed using the current estimate of the parameters - * set by the solver in the problem.

      - * - * @return theoretical value - */ - public abstract double getTheoreticalValue(); - - /** - * Get the partial derivative of the {@link #getTheoreticalValue - * theoretical value} according to the parameter. - *

      The value must be computed using the current estimate of the parameters - * set by the solver in the problem.

      - * - * @param parameter parameter against which the partial derivative - * should be computed - * @return partial derivative of the {@link #getTheoreticalValue - * theoretical value} - */ - public abstract double getPartial(EstimatedParameter parameter); - - /** - * Set the ignore flag to the specified value - * Setting the ignore flag to true allow to reject wrong - * measurements, which sometimes can be detected only rather late. - * - * @param ignored value for the ignore flag - */ - public void setIgnored(boolean ignored) { - this.ignored = ignored; - } - - /** - * Check if this measurement should be ignored - * - * @return true if the measurement should be ignored - */ - public boolean isIgnored() { - return ignored; - } - - /** Measurement weight. */ - private final double weight; - - /** Value of the measurements. */ - private final double measuredValue; - - /** Ignore measurement indicator. */ - private boolean ignored; - -} diff --git a/src/test/org/apache/commons/math/optimization/general/EstimatedParameterTest.java b/src/test/org/apache/commons/math/optimization/general/EstimatedParameterTest.java deleted file mode 100644 index 693a2f321..000000000 --- a/src/test/org/apache/commons/math/optimization/general/EstimatedParameterTest.java +++ /dev/null @@ -1,75 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - - -import junit.framework.*; - -public class EstimatedParameterTest - extends TestCase { - - public EstimatedParameterTest(String name) { - super(name); - } - - public void testConstruction() { - - EstimatedParameter p1 = new EstimatedParameter("p1", 1.0); - assertTrue(p1.getName().equals("p1")); - checkValue(p1.getEstimate(), 1.0); - assertTrue(! p1.isBound()); - - EstimatedParameter p2 = new EstimatedParameter("p2", 2.0, true); - assertTrue(p2.getName().equals("p2")); - checkValue(p2.getEstimate(), 2.0); - assertTrue(p2.isBound()); - - } - - public void testBound() { - - EstimatedParameter p = new EstimatedParameter("p", 0.0); - assertTrue(! p.isBound()); - p.setBound(true); - assertTrue(p.isBound()); - p.setBound(false); - assertTrue(! p.isBound()); - - } - - public void testEstimate() { - - EstimatedParameter p = new EstimatedParameter("p", 0.0); - checkValue(p.getEstimate(), 0.0); - - for (double e = 0.0; e < 10.0; e += 0.5) { - p.setEstimate(e); - checkValue(p.getEstimate(), e); - } - - } - - public static Test suite() { - return new TestSuite(EstimatedParameterTest.class); - } - - private void checkValue(double value, double expected) { - assertTrue(Math.abs(value - expected) < 1.0e-10); - } - -} diff --git a/src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimatorTest.java b/src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimatorTest.java deleted file mode 100644 index 9ebc84283..000000000 --- a/src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtEstimatorTest.java +++ /dev/null @@ -1,846 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - -import java.util.ArrayList; -import java.util.HashSet; - -import org.apache.commons.math.optimization.OptimizationException; - - -import junit.framework.Test; -import junit.framework.TestCase; -import junit.framework.TestSuite; - -/** - *

      Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. - * The redistribution policy for MINPACK is available here, for - * convenience, it is reproduced below.

      - - * - * - * - *
      - * Minpack Copyright Notice (1999) University of Chicago. - * All rights reserved - *
      - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - *
        - *
      1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer.
      2. - *
      3. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution.
      4. - *
      5. The end-user documentation included with the redistribution, if any, - * must include the following acknowledgment: - * This product includes software developed by the University of - * Chicago, as Operator of Argonne National Laboratory. - * Alternately, this acknowledgment may appear in the software itself, - * if and wherever such third-party acknowledgments normally appear.
      6. - *
      7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" - * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE - * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND - * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES - * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE - * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY - * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR - * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF - * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) - * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION - * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL - * BE CORRECTED.
      8. - *
      9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT - * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF - * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, - * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF - * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF - * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER - * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT - * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, - * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE - * POSSIBILITY OF SUCH LOSS OR DAMAGES.
      10. - *
        - - * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) - * @author Burton S. Garbow (original fortran minpack tests) - * @author Kenneth E. Hillstrom (original fortran minpack tests) - * @author Jorge J. More (original fortran minpack tests) - * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) - */ -public class LevenbergMarquardtEstimatorTest - extends TestCase { - - public LevenbergMarquardtEstimatorTest(String name) { - super(name); - } - - public void testTrivial() throws OptimizationException { - LinearProblem problem = - new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] {2}, - new EstimatedParameter[] { - new EstimatedParameter("p0", 0) - }, 3.0) - }); - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - try { - estimator.guessParametersErrors(problem); - fail("an exception should have been thrown"); - } catch (OptimizationException ee) { - // expected behavior - } catch (Exception e) { - fail("wrong exception caught"); - } - assertEquals(1.5, - problem.getUnboundParameters()[0].getEstimate(), - 1.0e-10); - } - - public void testQRColumnsPermutation() throws OptimizationException { - - EstimatedParameter[] x = { - new EstimatedParameter("p0", 0), new EstimatedParameter("p1", 0) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 1.0, -1.0 }, - new EstimatedParameter[] { x[0], x[1] }, - 4.0), - new LinearMeasurement(new double[] { 2.0 }, - new EstimatedParameter[] { x[1] }, - 6.0), - new LinearMeasurement(new double[] { 1.0, -2.0 }, - new EstimatedParameter[] { x[0], x[1] }, - 1.0) - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - assertEquals(7.0, x[0].getEstimate(), 1.0e-10); - assertEquals(3.0, x[1].getEstimate(), 1.0e-10); - - } - - public void testNoDependency() throws OptimizationException { - EstimatedParameter[] p = new EstimatedParameter[] { - new EstimatedParameter("p0", 0), - new EstimatedParameter("p1", 0), - new EstimatedParameter("p2", 0), - new EstimatedParameter("p3", 0), - new EstimatedParameter("p4", 0), - new EstimatedParameter("p5", 0) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[0] }, 0.0), - new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[1] }, 1.1), - new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[2] }, 2.2), - new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[3] }, 3.3), - new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[4] }, 4.4), - new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[5] }, 5.5) - }); - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - for (int i = 0; i < p.length; ++i) { - assertEquals(0.55 * i, p[i].getEstimate(), 1.0e-10); - } -} - - public void testOneSet() throws OptimizationException { - - EstimatedParameter[] p = { - new EstimatedParameter("p0", 0), - new EstimatedParameter("p1", 0), - new EstimatedParameter("p2", 0) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 1.0 }, - new EstimatedParameter[] { p[0] }, - 1.0), - new LinearMeasurement(new double[] { -1.0, 1.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 1.0), - new LinearMeasurement(new double[] { -1.0, 1.0 }, - new EstimatedParameter[] { p[1], p[2] }, - 1.0) - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - assertEquals(1.0, p[0].getEstimate(), 1.0e-10); - assertEquals(2.0, p[1].getEstimate(), 1.0e-10); - assertEquals(3.0, p[2].getEstimate(), 1.0e-10); - - } - - public void testTwoSets() throws OptimizationException { - EstimatedParameter[] p = { - new EstimatedParameter("p0", 0), - new EstimatedParameter("p1", 1), - new EstimatedParameter("p2", 2), - new EstimatedParameter("p3", 3), - new EstimatedParameter("p4", 4), - new EstimatedParameter("p5", 5) - }; - - double epsilon = 1.0e-7; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - - // 4 elements sub-problem - new LinearMeasurement(new double[] { 2.0, 1.0, 4.0 }, - new EstimatedParameter[] { p[0], p[1], p[3] }, - 2.0), - new LinearMeasurement(new double[] { -4.0, -2.0, 3.0, -7.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - -9.0), - new LinearMeasurement(new double[] { 4.0, 1.0, -2.0, 8.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 2.0), - new LinearMeasurement(new double[] { -3.0, -12.0, -1.0 }, - new EstimatedParameter[] { p[1], p[2], p[3] }, - 2.0), - - // 2 elements sub-problem - new LinearMeasurement(new double[] { epsilon, 1.0 }, - new EstimatedParameter[] { p[4], p[5] }, - 1.0 + epsilon * epsilon), - new LinearMeasurement(new double[] { 1.0, 1.0 }, - new EstimatedParameter[] { p[4], p[5] }, - 2.0) - - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - assertEquals( 3.0, p[0].getEstimate(), 1.0e-10); - assertEquals( 4.0, p[1].getEstimate(), 1.0e-10); - assertEquals(-1.0, p[2].getEstimate(), 1.0e-10); - assertEquals(-2.0, p[3].getEstimate(), 1.0e-10); - assertEquals( 1.0 + epsilon, p[4].getEstimate(), 1.0e-10); - assertEquals( 1.0 - epsilon, p[5].getEstimate(), 1.0e-10); - - } - - public void testNonInversible() throws OptimizationException { - - EstimatedParameter[] p = { - new EstimatedParameter("p0", 0), - new EstimatedParameter("p1", 0), - new EstimatedParameter("p2", 0) - }; - LinearMeasurement[] m = new LinearMeasurement[] { - new LinearMeasurement(new double[] { 1.0, 2.0, -3.0 }, - new EstimatedParameter[] { p[0], p[1], p[2] }, - 1.0), - new LinearMeasurement(new double[] { 2.0, 1.0, 3.0 }, - new EstimatedParameter[] { p[0], p[1], p[2] }, - 1.0), - new LinearMeasurement(new double[] { -3.0, -9.0 }, - new EstimatedParameter[] { p[0], p[2] }, - 1.0) - }; - LinearProblem problem = new LinearProblem(m); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - double initialCost = estimator.getRMS(problem); - estimator.estimate(problem); - assertTrue(estimator.getRMS(problem) < initialCost); - assertTrue(Math.sqrt(m.length) * estimator.getRMS(problem) > 0.6); - try { - estimator.getCovariances(problem); - fail("an exception should have been thrown"); - } catch (OptimizationException ee) { - // expected behavior - } catch (Exception e) { - fail("wrong exception caught"); - } - double dJ0 = 2 * (m[0].getResidual() * m[0].getPartial(p[0]) - + m[1].getResidual() * m[1].getPartial(p[0]) - + m[2].getResidual() * m[2].getPartial(p[0])); - double dJ1 = 2 * (m[0].getResidual() * m[0].getPartial(p[1]) - + m[1].getResidual() * m[1].getPartial(p[1])); - double dJ2 = 2 * (m[0].getResidual() * m[0].getPartial(p[2]) - + m[1].getResidual() * m[1].getPartial(p[2]) - + m[2].getResidual() * m[2].getPartial(p[2])); - assertEquals(0, dJ0, 1.0e-10); - assertEquals(0, dJ1, 1.0e-10); - assertEquals(0, dJ2, 1.0e-10); - - } - - public void testIllConditioned() throws OptimizationException { - EstimatedParameter[] p = { - new EstimatedParameter("p0", 0), - new EstimatedParameter("p1", 1), - new EstimatedParameter("p2", 2), - new EstimatedParameter("p3", 3) - }; - - LinearProblem problem1 = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 10.0, 7.0, 8.0, 7.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 32.0), - new LinearMeasurement(new double[] { 7.0, 5.0, 6.0, 5.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 23.0), - new LinearMeasurement(new double[] { 8.0, 6.0, 10.0, 9.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 33.0), - new LinearMeasurement(new double[] { 7.0, 5.0, 9.0, 10.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 31.0) - }); - LevenbergMarquardtEstimator estimator1 = new LevenbergMarquardtEstimator(); - estimator1.estimate(problem1); - assertEquals(0, estimator1.getRMS(problem1), 1.0e-10); - assertEquals(1.0, p[0].getEstimate(), 1.0e-10); - assertEquals(1.0, p[1].getEstimate(), 1.0e-10); - assertEquals(1.0, p[2].getEstimate(), 1.0e-10); - assertEquals(1.0, p[3].getEstimate(), 1.0e-10); - - LinearProblem problem2 = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 10.0, 7.0, 8.1, 7.2 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 32.0), - new LinearMeasurement(new double[] { 7.08, 5.04, 6.0, 5.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 23.0), - new LinearMeasurement(new double[] { 8.0, 5.98, 9.89, 9.0 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 33.0), - new LinearMeasurement(new double[] { 6.99, 4.99, 9.0, 9.98 }, - new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, - 31.0) - }); - LevenbergMarquardtEstimator estimator2 = new LevenbergMarquardtEstimator(); - estimator2.estimate(problem2); - assertEquals(0, estimator2.getRMS(problem2), 1.0e-10); - assertEquals(-81.0, p[0].getEstimate(), 1.0e-8); - assertEquals(137.0, p[1].getEstimate(), 1.0e-8); - assertEquals(-34.0, p[2].getEstimate(), 1.0e-8); - assertEquals( 22.0, p[3].getEstimate(), 1.0e-8); - - } - - public void testMoreEstimatedParametersSimple() throws OptimizationException { - - EstimatedParameter[] p = { - new EstimatedParameter("p0", 7), - new EstimatedParameter("p1", 6), - new EstimatedParameter("p2", 5), - new EstimatedParameter("p3", 4) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 3.0, 2.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 7.0), - new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 }, - new EstimatedParameter[] { p[1], p[2], p[3] }, - 3.0), - new LinearMeasurement(new double[] { 2.0, 1.0 }, - new EstimatedParameter[] { p[0], p[2] }, - 5.0) - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - - } - - public void testMoreEstimatedParametersUnsorted() throws OptimizationException { - EstimatedParameter[] p = { - new EstimatedParameter("p0", 2), - new EstimatedParameter("p1", 2), - new EstimatedParameter("p2", 2), - new EstimatedParameter("p3", 2), - new EstimatedParameter("p4", 2), - new EstimatedParameter("p5", 2) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 1.0, 1.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 3.0), - new LinearMeasurement(new double[] { 1.0, 1.0, 1.0 }, - new EstimatedParameter[] { p[2], p[3], p[4] }, - 12.0), - new LinearMeasurement(new double[] { 1.0, -1.0 }, - new EstimatedParameter[] { p[4], p[5] }, - -1.0), - new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 }, - new EstimatedParameter[] { p[3], p[2], p[5] }, - 7.0), - new LinearMeasurement(new double[] { 1.0, -1.0 }, - new EstimatedParameter[] { p[4], p[3] }, - 1.0) - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - assertEquals(3.0, p[2].getEstimate(), 1.0e-10); - assertEquals(4.0, p[3].getEstimate(), 1.0e-10); - assertEquals(5.0, p[4].getEstimate(), 1.0e-10); - assertEquals(6.0, p[5].getEstimate(), 1.0e-10); - - } - - public void testRedundantEquations() throws OptimizationException { - EstimatedParameter[] p = { - new EstimatedParameter("p0", 1), - new EstimatedParameter("p1", 1) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 1.0, 1.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 3.0), - new LinearMeasurement(new double[] { 1.0, -1.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 1.0), - new LinearMeasurement(new double[] { 1.0, 3.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 5.0) - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertEquals(0, estimator.getRMS(problem), 1.0e-10); - assertEquals(2.0, p[0].getEstimate(), 1.0e-10); - assertEquals(1.0, p[1].getEstimate(), 1.0e-10); - - } - - public void testInconsistentEquations() throws OptimizationException { - EstimatedParameter[] p = { - new EstimatedParameter("p0", 1), - new EstimatedParameter("p1", 1) - }; - LinearProblem problem = new LinearProblem(new LinearMeasurement[] { - new LinearMeasurement(new double[] { 1.0, 1.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 3.0), - new LinearMeasurement(new double[] { 1.0, -1.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 1.0), - new LinearMeasurement(new double[] { 1.0, 3.0 }, - new EstimatedParameter[] { p[0], p[1] }, - 4.0) - }); - - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(problem); - assertTrue(estimator.getRMS(problem) > 0.1); - - } - - public void testControlParameters() throws OptimizationException { - Circle circle = new Circle(98.680, 47.345); - circle.addPoint( 30.0, 68.0); - circle.addPoint( 50.0, -6.0); - circle.addPoint(110.0, -20.0); - circle.addPoint( 35.0, 15.0); - circle.addPoint( 45.0, 97.0); - checkEstimate(circle, 0.1, 10, 1.0e-14, 1.0e-16, 1.0e-10, false); - checkEstimate(circle, 0.1, 10, 1.0e-15, 1.0e-17, 1.0e-10, true); - checkEstimate(circle, 0.1, 5, 1.0e-15, 1.0e-16, 1.0e-10, true); - circle.addPoint(300, -300); - checkEstimate(circle, 0.1, 20, 1.0e-18, 1.0e-16, 1.0e-10, true); - } - - private void checkEstimate(EstimationProblem problem, - double initialStepBoundFactor, int maxCostEval, - double costRelativeTolerance, double parRelativeTolerance, - double orthoTolerance, boolean shouldFail) { - try { - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.setInitialStepBoundFactor(initialStepBoundFactor); - estimator.setMaxCostEval(maxCostEval); - estimator.setCostRelativeTolerance(costRelativeTolerance); - estimator.setParRelativeTolerance(parRelativeTolerance); - estimator.setOrthoTolerance(orthoTolerance); - estimator.estimate(problem); - assertTrue(! shouldFail); - } catch (OptimizationException ee) { - assertTrue(shouldFail); - } catch (Exception e) { - fail("wrong exception type caught"); - } - } - - public void testCircleFitting() throws OptimizationException { - Circle circle = new Circle(98.680, 47.345); - circle.addPoint( 30.0, 68.0); - circle.addPoint( 50.0, -6.0); - circle.addPoint(110.0, -20.0); - circle.addPoint( 35.0, 15.0); - circle.addPoint( 45.0, 97.0); - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(circle); - assertTrue(estimator.getCostEvaluations() < 10); - assertTrue(estimator.getJacobianEvaluations() < 10); - double rms = estimator.getRMS(circle); - assertEquals(1.768262623567235, Math.sqrt(circle.getM()) * rms, 1.0e-10); - assertEquals(69.96016176931406, circle.getRadius(), 1.0e-10); - assertEquals(96.07590211815305, circle.getX(), 1.0e-10); - assertEquals(48.13516790438953, circle.getY(), 1.0e-10); - double[][] cov = estimator.getCovariances(circle); - assertEquals(1.839, cov[0][0], 0.001); - assertEquals(0.731, cov[0][1], 0.001); - assertEquals(cov[0][1], cov[1][0], 1.0e-14); - assertEquals(0.786, cov[1][1], 0.001); - double[] errors = estimator.guessParametersErrors(circle); - assertEquals(1.384, errors[0], 0.001); - assertEquals(0.905, errors[1], 0.001); - - // add perfect measurements and check errors are reduced - double cx = circle.getX(); - double cy = circle.getY(); - double r = circle.getRadius(); - for (double d= 0; d < 2 * Math.PI; d += 0.01) { - circle.addPoint(cx + r * Math.cos(d), cy + r * Math.sin(d)); - } - estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(circle); - cov = estimator.getCovariances(circle); - assertEquals(0.004, cov[0][0], 0.001); - assertEquals(6.40e-7, cov[0][1], 1.0e-9); - assertEquals(cov[0][1], cov[1][0], 1.0e-14); - assertEquals(0.003, cov[1][1], 0.001); - errors = estimator.guessParametersErrors(circle); - assertEquals(0.004, errors[0], 0.001); - assertEquals(0.004, errors[1], 0.001); - - } - - public void testCircleFittingBadInit() throws OptimizationException { - Circle circle = new Circle(-12, -12); - double[][] points = new double[][] { - {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724}, - {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619}, - {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832}, - {-0.075133, 0.483271}, {-0.007759, 0.452680}, { 0.060071, 0.410235}, - { 0.103037, 0.341076}, { 0.118438, 0.273884}, { 0.131293, 0.192201}, - { 0.115869, 0.129797}, { 0.072223, 0.058396}, { 0.022884, 0.000718}, - {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862}, - {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526}, - {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398}, - {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513}, - {-0.135352, 0.478186}, {-0.061221, 0.483371}, { 0.003711, 0.422737}, - { 0.065054, 0.375830}, { 0.108108, 0.297099}, { 0.123882, 0.222850}, - { 0.117729, 0.134382}, { 0.085195, 0.056820}, { 0.029800, -0.019138}, - {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578}, - {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926}, - {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068}, - {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119}, - {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560}, - { 0.001375, 0.434937}, { 0.082787, 0.385806}, { 0.115490, 0.323807}, - { 0.141089, 0.223450}, { 0.138693, 0.131703}, { 0.126415, 0.049174}, - { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635}, - {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251}, - {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597}, - {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428}, - {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380}, - {-0.071754, 0.516264}, { 0.015942, 0.472802}, { 0.076608, 0.419077}, - { 0.127673, 0.330264}, { 0.159951, 0.262150}, { 0.153530, 0.172681}, - { 0.140653, 0.089229}, { 0.078666, 0.024981}, { 0.023807, -0.037022}, - {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526} - }; - for (int i = 0; i < points.length; ++i) { - circle.addPoint(points[i][0], points[i][1]); - } - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.estimate(circle); - assertTrue(estimator.getCostEvaluations() < 15); - assertTrue(estimator.getJacobianEvaluations() < 10); - assertEquals( 0.030184491196225207, estimator.getRMS(circle), 1.0e-9); - assertEquals( 0.2922350065939634, circle.getRadius(), 1.0e-9); - assertEquals(-0.15173845023862165, circle.getX(), 1.0e-8); - assertEquals( 0.20750021499570379, circle.getY(), 1.0e-8); - } - - public void testMath199() { - try { - QuadraticProblem problem = new QuadraticProblem(); - problem.addPoint (0, -3.182591015485607, 0.0); - problem.addPoint (1, -2.5581184967730577, 4.4E-323); - problem.addPoint (2, -2.1488478161387325, 1.0); - problem.addPoint (3, -1.9122489313410047, 4.4E-323); - problem.addPoint (4, 1.7785661310051026, 0.0); - new LevenbergMarquardtEstimator().estimate(problem); - fail("an exception should have been thrown"); - } catch (OptimizationException ee) { - // expected behavior - } - - } - - private static class LinearProblem implements EstimationProblem { - - public LinearProblem(LinearMeasurement[] measurements) { - this.measurements = measurements; - } - - public WeightedMeasurement[] getMeasurements() { - return measurements; - } - - public EstimatedParameter[] getUnboundParameters() { - return getAllParameters(); - } - - public EstimatedParameter[] getAllParameters() { - HashSet set = new HashSet(); - for (int i = 0; i < measurements.length; ++i) { - EstimatedParameter[] parameters = measurements[i].getParameters(); - for (int j = 0; j < parameters.length; ++j) { - set.add(parameters[j]); - } - } - return (EstimatedParameter[]) set.toArray(new EstimatedParameter[set.size()]); - } - - private LinearMeasurement[] measurements; - - } - - private static class LinearMeasurement extends WeightedMeasurement { - - public LinearMeasurement(double[] factors, EstimatedParameter[] parameters, - double setPoint) { - super(1.0, setPoint); - this.factors = factors; - this.parameters = parameters; - } - - public double getTheoreticalValue() { - double v = 0; - for (int i = 0; i < factors.length; ++i) { - v += factors[i] * parameters[i].getEstimate(); - } - return v; - } - - public double getPartial(EstimatedParameter parameter) { - for (int i = 0; i < parameters.length; ++i) { - if (parameters[i] == parameter) { - return factors[i]; - } - } - return 0; - } - - public EstimatedParameter[] getParameters() { - return parameters; - } - - private double[] factors; - private EstimatedParameter[] parameters; - private static final long serialVersionUID = -3922448707008868580L; - - } - - private static class Circle implements EstimationProblem { - - public Circle(double cx, double cy) { - this.cx = new EstimatedParameter("cx", cx); - this.cy = new EstimatedParameter("cy", cy); - points = new ArrayList(); - } - - public void addPoint(double px, double py) { - points.add(new PointModel(px, py)); - } - - public int getM() { - return points.size(); - } - - public WeightedMeasurement[] getMeasurements() { - return (WeightedMeasurement[]) points.toArray(new PointModel[points.size()]); - } - - public EstimatedParameter[] getAllParameters() { - return new EstimatedParameter[] { cx, cy }; - } - - public EstimatedParameter[] getUnboundParameters() { - return new EstimatedParameter[] { cx, cy }; - } - - public double getPartialRadiusX() { - double dRdX = 0; - for (PointModel point : points) { - dRdX += point.getPartialDiX(); - } - return dRdX / points.size(); - } - - public double getPartialRadiusY() { - double dRdY = 0; - for (PointModel point : points) { - dRdY += point.getPartialDiY(); - } - return dRdY / points.size(); - } - - public double getRadius() { - double r = 0; - for (PointModel point : points) { - r += point.getCenterDistance(); - } - return r / points.size(); - } - - public double getX() { - return cx.getEstimate(); - } - - public double getY() { - return cy.getEstimate(); - } - - private class PointModel extends WeightedMeasurement { - - public PointModel(double px, double py) { - super(1.0, 0.0); - this.px = px; - this.py = py; - } - - public double getPartial(EstimatedParameter parameter) { - if (parameter == cx) { - return getPartialDiX() - getPartialRadiusX(); - } else if (parameter == cy) { - return getPartialDiY() - getPartialRadiusY(); - } - return 0; - } - - public double getCenterDistance() { - double dx = px - cx.getEstimate(); - double dy = py - cy.getEstimate(); - return Math.sqrt(dx * dx + dy * dy); - } - - public double getPartialDiX() { - return (cx.getEstimate() - px) / getCenterDistance(); - } - - public double getPartialDiY() { - return (cy.getEstimate() - py) / getCenterDistance(); - } - - public double getTheoreticalValue() { - return getCenterDistance() - getRadius(); - } - - private double px; - private double py; - private static final long serialVersionUID = 1L; - - } - - private EstimatedParameter cx; - private EstimatedParameter cy; - private ArrayList points; - - } - - private static class QuadraticProblem extends SimpleEstimationProblem { - - private EstimatedParameter a; - private EstimatedParameter b; - private EstimatedParameter c; - - public QuadraticProblem() { - a = new EstimatedParameter("a", 0.0); - b = new EstimatedParameter("b", 0.0); - c = new EstimatedParameter("c", 0.0); - addParameter(a); - addParameter(b); - addParameter(c); - } - - public void addPoint(double x, double y, double w) { - addMeasurement(new LocalMeasurement(x, y, w)); - } - - public double getA() { - return a.getEstimate(); - } - - public double getB() { - return b.getEstimate(); - } - - public double getC() { - return c.getEstimate(); - } - - public double theoreticalValue(double x) { - return ( (a.getEstimate() * x + b.getEstimate() ) * x + c.getEstimate()); - } - - private double partial(double x, EstimatedParameter parameter) { - if (parameter == a) { - return x * x; - } else if (parameter == b) { - return x; - } else { - return 1.0; - } - } - - private class LocalMeasurement extends WeightedMeasurement { - - private static final long serialVersionUID = 1555043155023729130L; - private final double x; - - // constructor - public LocalMeasurement(double x, double y, double w) { - super(w, y); - this.x = x; - } - - public double getTheoreticalValue() { - return theoreticalValue(x); - } - - public double getPartial(EstimatedParameter parameter) { - return partial(x, parameter); - } - - } - } - - public static Test suite() { - return new TestSuite(LevenbergMarquardtEstimatorTest.class); - } - -} diff --git a/src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizerTest.java b/src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizerTest.java new file mode 100644 index 000000000..221f76179 --- /dev/null +++ b/src/test/org/apache/commons/math/optimization/general/LevenbergMarquardtOptimizerTest.java @@ -0,0 +1,649 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math.optimization.general; + +import java.awt.geom.Point2D; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.List; + +import junit.framework.Test; +import junit.framework.TestCase; +import junit.framework.TestSuite; + +import org.apache.commons.math.linear.DenseRealMatrix; +import org.apache.commons.math.linear.RealMatrix; +import org.apache.commons.math.optimization.ObjectiveException; +import org.apache.commons.math.optimization.OptimizationException; +import org.apache.commons.math.optimization.SimpleVectorialValueChecker; +import org.apache.commons.math.optimization.VectorialDifferentiableObjectiveFunction; +import org.apache.commons.math.optimization.VectorialPointValuePair; + +/** + *

        Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

        + + * + * + * + *
        + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
        + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
          + *
        1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
        2. + *
        3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
        4. + *
        5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
        6. + *
        7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
        8. + *
        9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
        10. + *
          + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class LevenbergMarquardtOptimizerTest + extends TestCase { + + public LevenbergMarquardtOptimizerTest(String name) { + super(name); + } + + public void testTrivial() throws ObjectiveException, OptimizationException { + LinearProblem problem = + new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1 }, new double[] { 0 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + try { + optimizer.guessParametersErrors(); + fail("an exception should have been thrown"); + } catch (OptimizationException ee) { + // expected behavior + } catch (Exception e) { + fail("wrong exception caught"); + } + assertEquals(1.5, optimum.getPoint()[0], 1.0e-10); + } + + public void testQRColumnsPermutation() throws ObjectiveException, OptimizationException { + + LinearProblem problem = + new LinearProblem(new double[][] { { 1.0, -1.0 }, { 0.0, 2.0 }, { 1.0, -2.0 } }, + new double[] { 4.0, 6.0, 1.0 }); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(7.0, optimum.getPoint()[0], 1.0e-10); + assertEquals(3.0, optimum.getPoint()[1], 1.0e-10); + + } + + public void testNoDependency() throws ObjectiveException, OptimizationException { + LinearProblem problem = new LinearProblem(new double[][] { + { 2, 0, 0, 0, 0, 0 }, + { 0, 2, 0, 0, 0, 0 }, + { 0, 0, 2, 0, 0, 0 }, + { 0, 0, 0, 2, 0, 0 }, + { 0, 0, 0, 0, 2, 0 }, + { 0, 0, 0, 0, 0, 2 } + }, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 }); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1, 1, 1, 1 }, + new double[] { 0, 0, 0, 0, 0, 0 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + for (int i = 0; i < problem.target.length; ++i) { + assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10); + } + } + + public void testOneSet() throws ObjectiveException, OptimizationException { + + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 0, 0 }, + { -1, 1, 0 }, + { 0, -1, 1 } + }, new double[] { 1, 1, 1}); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(1.0, optimum.getPoint()[0], 1.0e-10); + assertEquals(2.0, optimum.getPoint()[1], 1.0e-10); + assertEquals(3.0, optimum.getPoint()[2], 1.0e-10); + + } + + public void testTwoSets() throws ObjectiveException, OptimizationException { + double epsilon = 1.0e-7; + LinearProblem problem = new LinearProblem(new double[][] { + { 2, 1, 0, 4, 0, 0 }, + { -4, -2, 3, -7, 0, 0 }, + { 4, 1, -2, 8, 0, 0 }, + { 0, -3, -12, -1, 0, 0 }, + { 0, 0, 0, 0, epsilon, 1 }, + { 0, 0, 0, 0, 1, 1 } + }, new double[] { 2, -9, 2, 2, 1 + epsilon * epsilon, 2}); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1, 1, 1, 1 }, + new double[] { 0, 0, 0, 0, 0, 0 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals( 3.0, optimum.getPoint()[0], 1.0e-10); + assertEquals( 4.0, optimum.getPoint()[1], 1.0e-10); + assertEquals(-1.0, optimum.getPoint()[2], 1.0e-10); + assertEquals(-2.0, optimum.getPoint()[3], 1.0e-10); + assertEquals( 1.0 + epsilon, optimum.getPoint()[4], 1.0e-10); + assertEquals( 1.0 - epsilon, optimum.getPoint()[5], 1.0e-10); + + } + + public void testNonInversible() throws ObjectiveException, OptimizationException { + + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 2, -3 }, + { 2, 1, 3 }, + { -3, 0, -9 } + }, new double[] { 1, 1, 1 }); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 }); + assertTrue(Math.sqrt(problem.target.length) * optimizer.getRMS() > 0.6); + try { + optimizer.getCovariances(); + fail("an exception should have been thrown"); + } catch (OptimizationException ee) { + // expected behavior + } catch (Exception e) { + fail("wrong exception caught"); + } + + } + + public void testIllConditioned() throws ObjectiveException, OptimizationException { + LinearProblem problem1 = new LinearProblem(new double[][] { + { 10.0, 7.0, 8.0, 7.0 }, + { 7.0, 5.0, 6.0, 5.0 }, + { 8.0, 6.0, 10.0, 9.0 }, + { 7.0, 5.0, 9.0, 10.0 } + }, new double[] { 32, 23, 33, 31 }); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum1 = + optimizer.optimize(problem1, problem1.target, new double[] { 1, 1, 1, 1 }, + new double[] { 0, 1, 2, 3 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(1.0, optimum1.getPoint()[0], 1.0e-10); + assertEquals(1.0, optimum1.getPoint()[1], 1.0e-10); + assertEquals(1.0, optimum1.getPoint()[2], 1.0e-10); + assertEquals(1.0, optimum1.getPoint()[3], 1.0e-10); + + LinearProblem problem2 = new LinearProblem(new double[][] { + { 10.00, 7.00, 8.10, 7.20 }, + { 7.08, 5.04, 6.00, 5.00 }, + { 8.00, 5.98, 9.89, 9.00 }, + { 6.99, 4.99, 9.00, 9.98 } + }, new double[] { 32, 23, 33, 31 }); + VectorialPointValuePair optimum2 = + optimizer.optimize(problem2, problem2.target, new double[] { 1, 1, 1, 1 }, + new double[] { 0, 1, 2, 3 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(-81.0, optimum2.getPoint()[0], 1.0e-8); + assertEquals(137.0, optimum2.getPoint()[1], 1.0e-8); + assertEquals(-34.0, optimum2.getPoint()[2], 1.0e-8); + assertEquals( 22.0, optimum2.getPoint()[3], 1.0e-8); + + } + + public void testMoreEstimatedParametersSimple() throws ObjectiveException, OptimizationException { + + LinearProblem problem = new LinearProblem(new double[][] { + { 3.0, 2.0, 0.0, 0.0 }, + { 0.0, 1.0, -1.0, 1.0 }, + { 2.0, 0.0, 1.0, 0.0 } + }, new double[] { 7.0, 3.0, 5.0 }); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, + new double[] { 7, 6, 5, 4 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + + } + + public void testMoreEstimatedParametersUnsorted() throws ObjectiveException, OptimizationException { + LinearProblem problem = new LinearProblem(new double[][] { + { 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 }, + { 0.0, 0.0, 1.0, 1.0, 1.0, 0.0 }, + { 0.0, 0.0, 0.0, 0.0, 1.0, -1.0 }, + { 0.0, 0.0, -1.0, 1.0, 0.0, 1.0 }, + { 0.0, 0.0, 0.0, -1.0, 1.0, 0.0 } + }, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 }); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1, 1, 1 }, + new double[] { 2, 2, 2, 2, 2, 2 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(3.0, optimum.getPointRef()[2], 1.0e-10); + assertEquals(4.0, optimum.getPointRef()[3], 1.0e-10); + assertEquals(5.0, optimum.getPointRef()[4], 1.0e-10); + assertEquals(6.0, optimum.getPointRef()[5], 1.0e-10); + + } + + public void testRedundantEquations() throws ObjectiveException, OptimizationException { + LinearProblem problem = new LinearProblem(new double[][] { + { 1.0, 1.0 }, + { 1.0, -1.0 }, + { 1.0, 3.0 } + }, new double[] { 3.0, 1.0, 5.0 }); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, + new double[] { 1, 1 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(2.0, optimum.getPointRef()[0], 1.0e-10); + assertEquals(1.0, optimum.getPointRef()[1], 1.0e-10); + + } + + public void testInconsistentEquations() throws ObjectiveException, OptimizationException { + LinearProblem problem = new LinearProblem(new double[][] { + { 1.0, 1.0 }, + { 1.0, -1.0 }, + { 1.0, 3.0 } + }, new double[] { 3.0, 1.0, 4.0 }); + + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 1, 1 }); + assertTrue(optimizer.getRMS() > 0.1); + + } + + public void testInconsistentSizes() throws ObjectiveException, OptimizationException { + LinearProblem problem = + new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, new double[] { -1, 1 }); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + + VectorialPointValuePair optimum = + optimizer.optimize(problem, problem.target, new double[] { 1, 1 }, new double[] { 0, 0 }); + assertEquals(0, optimizer.getRMS(), 1.0e-10); + assertEquals(-1, optimum.getPoint()[0], 1.0e-10); + assertEquals(+1, optimum.getPoint()[1], 1.0e-10); + + try { + optimizer.optimize(problem, problem.target, + new double[] { 1 }, + new double[] { 0, 0 }); + fail("an exception should have been thrown"); + } catch (OptimizationException oe) { + // expected behavior + } catch (Exception e) { + fail("wrong exception caught"); + } + + try { + optimizer.optimize(problem, new double[] { 1 }, + new double[] { 1 }, + new double[] { 0, 0 }); + fail("an exception should have been thrown"); + } catch (ObjectiveException oe) { + // expected behavior + } catch (Exception e) { + fail("wrong exception caught"); + } + + } + + public void testControlParameters() throws OptimizationException { + Circle circle = new Circle(); + circle.addPoint( 30.0, 68.0); + circle.addPoint( 50.0, -6.0); + circle.addPoint(110.0, -20.0); + circle.addPoint( 35.0, 15.0); + circle.addPoint( 45.0, 97.0); + checkEstimate(circle, 0.1, 10, 1.0e-14, 1.0e-16, 1.0e-10, false); + checkEstimate(circle, 0.1, 10, 1.0e-15, 1.0e-17, 1.0e-10, true); + checkEstimate(circle, 0.1, 5, 1.0e-15, 1.0e-16, 1.0e-10, true); + circle.addPoint(300, -300); + checkEstimate(circle, 0.1, 20, 1.0e-18, 1.0e-16, 1.0e-10, true); + } + + private void checkEstimate(VectorialDifferentiableObjectiveFunction problem, + double initialStepBoundFactor, int maxCostEval, + double costRelativeTolerance, double parRelativeTolerance, + double orthoTolerance, boolean shouldFail) { + try { + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + optimizer.setInitialStepBoundFactor(initialStepBoundFactor); + optimizer.setMaxEvaluations(maxCostEval); + optimizer.setCostRelativeTolerance(costRelativeTolerance); + optimizer.setParRelativeTolerance(parRelativeTolerance); + optimizer.setOrthoTolerance(orthoTolerance); + optimizer.optimize(problem, new double[] { 0, 0, 0, 0, 0 }, new double[] { 1, 1, 1, 1, 1 }, + new double[] { 98.680, 47.345 }); + assertTrue(! shouldFail); + } catch (OptimizationException ee) { + assertTrue(shouldFail); + } catch (ObjectiveException ee) { + assertTrue(shouldFail); + } catch (Exception e) { + fail("wrong exception type caught"); + } + } + + public void testCircleFitting() throws ObjectiveException, OptimizationException { + Circle circle = new Circle(); + circle.addPoint( 30.0, 68.0); + circle.addPoint( 50.0, -6.0); + circle.addPoint(110.0, -20.0); + circle.addPoint( 35.0, 15.0); + circle.addPoint( 45.0, 97.0); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + VectorialPointValuePair optimum = + optimizer.optimize(circle, new double[] { 0, 0, 0, 0, 0 }, new double[] { 1, 1, 1, 1, 1 }, + new double[] { 98.680, 47.345 }); + assertTrue(optimizer.getEvaluations() < 10); + assertTrue(optimizer.getJacobianEvaluations() < 10); + double rms = optimizer.getRMS(); + assertEquals(1.768262623567235, Math.sqrt(circle.getN()) * rms, 1.0e-10); + Point2D.Double center = new Point2D.Double(optimum.getPointRef()[0], optimum.getPointRef()[1]); + assertEquals(69.96016176931406, circle.getRadius(center), 1.0e-10); + assertEquals(96.07590211815305, center.x, 1.0e-10); + assertEquals(48.13516790438953, center.y, 1.0e-10); + double[][] cov = optimizer.getCovariances(); + assertEquals(1.839, cov[0][0], 0.001); + assertEquals(0.731, cov[0][1], 0.001); + assertEquals(cov[0][1], cov[1][0], 1.0e-14); + assertEquals(0.786, cov[1][1], 0.001); + double[] errors = optimizer.guessParametersErrors(); + assertEquals(1.384, errors[0], 0.001); + assertEquals(0.905, errors[1], 0.001); + + // add perfect measurements and check errors are reduced + double r = circle.getRadius(center); + for (double d= 0; d < 2 * Math.PI; d += 0.01) { + circle.addPoint(center.x + r * Math.cos(d), center.y + r * Math.sin(d)); + } + double[] target = new double[circle.getN()]; + Arrays.fill(target, 0.0); + double[] weights = new double[circle.getN()]; + Arrays.fill(weights, 2.0); + optimum = + optimizer.optimize(circle, target, weights, new double[] { 98.680, 47.345 }); + cov = optimizer.getCovariances(); + assertEquals(0.0016, cov[0][0], 0.001); + assertEquals(3.2e-7, cov[0][1], 1.0e-9); + assertEquals(cov[0][1], cov[1][0], 1.0e-14); + assertEquals(0.0016, cov[1][1], 0.001); + errors = optimizer.guessParametersErrors(); + assertEquals(0.002, errors[0], 0.001); + assertEquals(0.002, errors[1], 0.001); + + } + + public void testCircleFittingBadInit() throws ObjectiveException, OptimizationException { + Circle circle = new Circle(); + double[][] points = new double[][] { + {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724}, + {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619}, + {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832}, + {-0.075133, 0.483271}, {-0.007759, 0.452680}, { 0.060071, 0.410235}, + { 0.103037, 0.341076}, { 0.118438, 0.273884}, { 0.131293, 0.192201}, + { 0.115869, 0.129797}, { 0.072223, 0.058396}, { 0.022884, 0.000718}, + {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862}, + {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526}, + {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398}, + {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513}, + {-0.135352, 0.478186}, {-0.061221, 0.483371}, { 0.003711, 0.422737}, + { 0.065054, 0.375830}, { 0.108108, 0.297099}, { 0.123882, 0.222850}, + { 0.117729, 0.134382}, { 0.085195, 0.056820}, { 0.029800, -0.019138}, + {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578}, + {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926}, + {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068}, + {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119}, + {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560}, + { 0.001375, 0.434937}, { 0.082787, 0.385806}, { 0.115490, 0.323807}, + { 0.141089, 0.223450}, { 0.138693, 0.131703}, { 0.126415, 0.049174}, + { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635}, + {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251}, + {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597}, + {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428}, + {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380}, + {-0.071754, 0.516264}, { 0.015942, 0.472802}, { 0.076608, 0.419077}, + { 0.127673, 0.330264}, { 0.159951, 0.262150}, { 0.153530, 0.172681}, + { 0.140653, 0.089229}, { 0.078666, 0.024981}, { 0.023807, -0.037022}, + {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526} + }; + double[] target = new double[points.length]; + Arrays.fill(target, 0.0); + double[] weights = new double[points.length]; + Arrays.fill(weights, 2.0); + for (int i = 0; i < points.length; ++i) { + circle.addPoint(points[i][0], points[i][1]); + } + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-10, 1.0e-10)); + VectorialPointValuePair optimum = + optimizer.optimize(circle, target, weights, new double[] { -12, -12 }); + Point2D.Double center = new Point2D.Double(optimum.getPointRef()[0], optimum.getPointRef()[1]); + assertTrue(optimizer.getEvaluations() < 25); + assertTrue(optimizer.getJacobianEvaluations() < 20); + assertEquals( 0.043, optimizer.getRMS(), 1.0e-3); + assertEquals( 0.292235, circle.getRadius(center), 1.0e-6); + assertEquals(-0.151738, center.x, 1.0e-6); + assertEquals( 0.2075001, center.y, 1.0e-6); + } + + public void testMath199() throws ObjectiveException, OptimizationException { + try { + QuadraticProblem problem = new QuadraticProblem(); + problem.addPoint (0, -3.182591015485607); + problem.addPoint (1, -2.5581184967730577); + problem.addPoint (2, -2.1488478161387325); + problem.addPoint (3, -1.9122489313410047); + problem.addPoint (4, 1.7785661310051026); + new LevenbergMarquardtOptimizer().optimize(problem, + new double[] { 0, 0, 0, 0, 0 }, + new double[] { 0.0, 4.4e-323, 1.0, 4.4e-323, 0.0 }, + new double[] { 0, 0, 0 }); + fail("an exception should have been thrown"); + } catch (OptimizationException ee) { + // expected behavior + } + + } + + private static class LinearProblem implements VectorialDifferentiableObjectiveFunction { + + private static final long serialVersionUID = 703247177355019415L; + final RealMatrix factors; + final double[] target; + public LinearProblem(double[][] factors, double[] target) { + this.factors = new DenseRealMatrix(factors); + this.target = target; + } + + public double[][] jacobian(double[] variables, double[] value) { + return factors.getData(); + } + + public double[] objective(double[] variables) { + return factors.operate(variables); + } + + } + + private static class Circle implements VectorialDifferentiableObjectiveFunction { + + private static final long serialVersionUID = -4711170319243817874L; + + private ArrayList points; + + public Circle() { + points = new ArrayList(); + } + + public void addPoint(double px, double py) { + points.add(new Point2D.Double(px, py)); + } + + public int getN() { + return points.size(); + } + + public double getRadius(Point2D.Double center) { + double r = 0; + for (Point2D.Double point : points) { + r += point.distance(center); + } + return r / points.size(); + } + + public double[][] jacobian(double[] variables, double[] value) + throws ObjectiveException, IllegalArgumentException { + + int n = points.size(); + Point2D.Double center = new Point2D.Double(variables[0], variables[1]); + + // gradient of the optimal radius + double dRdX = 0; + double dRdY = 0; + for (Point2D.Double pk : points) { + double dk = pk.distance(center); + dRdX += (center.x - pk.x) / dk; + dRdY += (center.y - pk.y) / dk; + } + dRdX /= n; + dRdY /= n; + + // jacobian of the radius residuals + double[][] jacobian = new double[n][2]; + for (int i = 0; i < n; ++i) { + Point2D.Double pi = points.get(i); + double di = pi.distance(center); + jacobian[i][0] = (center.x - pi.x) / di - dRdX; + jacobian[i][1] = (center.y - pi.y) / di - dRdY; + } + + return jacobian; + + } + + public double[] objective(double[] variables) + throws ObjectiveException, IllegalArgumentException { + + Point2D.Double center = new Point2D.Double(variables[0], variables[1]); + double radius = getRadius(center); + + double[] residuals = new double[points.size()]; + for (int i = 0; i < residuals.length; ++i) { + residuals[i] = points.get(i).distance(center) - radius; + } + + return residuals; + + } + + } + + private static class QuadraticProblem implements VectorialDifferentiableObjectiveFunction { + + private static final long serialVersionUID = -247096133023967957L; + private List x; + private List y; + + public QuadraticProblem() { + x = new ArrayList(); + y = new ArrayList(); + } + + public void addPoint(double x, double y) { + this.x.add(x); + this.y.add(y); + } + + public double[][] jacobian(double[] variables, double[] value) { + double[][] jacobian = new double[x.size()][3]; + for (int i = 0; i < jacobian.length; ++i) { + jacobian[i][0] = x.get(i) * x.get(i); + jacobian[i][1] = x.get(i); + jacobian[i][2] = 1.0; + } + return jacobian; + } + + public double[] objective(double[] variables) { + double[] values = new double[x.size()]; + for (int i = 0; i < values.length; ++i) { + values[i] = (variables[0] * x.get(i) + variables[1]) * x.get(i) + variables[2]; + } + return values; + } + + } + + public static Test suite() { + return new TestSuite(LevenbergMarquardtOptimizerTest.class); + } + +} diff --git a/src/test/org/apache/commons/math/optimization/general/MinpackTest.java b/src/test/org/apache/commons/math/optimization/general/MinpackTest.java index 48e99b575..c3f451e05 100644 --- a/src/test/org/apache/commons/math/optimization/general/MinpackTest.java +++ b/src/test/org/apache/commons/math/optimization/general/MinpackTest.java @@ -19,7 +19,10 @@ package org.apache.commons.math.optimization.general; import java.util.Arrays; +import org.apache.commons.math.optimization.ObjectiveException; import org.apache.commons.math.optimization.OptimizationException; +import org.apache.commons.math.optimization.VectorialDifferentiableObjectiveFunction; +import org.apache.commons.math.optimization.VectorialPointValuePair; import junit.framework.*; @@ -86,8 +89,7 @@ import junit.framework.*; * @author Jorge J. More (original fortran minpack tests) * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) */ -public class MinpackTest - extends TestCase { +public class MinpackTest extends TestCase { public MinpackTest(String name) { super(name); @@ -502,157 +504,117 @@ public class MinpackTest } private void minpackTest(MinpackFunction function, boolean exceptionExpected) { - LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator(); - estimator.setMaxCostEval(100 * (function.getN() + 1)); - estimator.setCostRelativeTolerance(Math.sqrt(2.22044604926e-16)); - estimator.setParRelativeTolerance(Math.sqrt(2.22044604926e-16)); - estimator.setOrthoTolerance(2.22044604926e-16); - assertTrue(function.checkTheoreticalStartCost(estimator.getRMS(function))); - try { - estimator.estimate(function); - assertFalse(exceptionExpected); - } catch (OptimizationException lsse) { - assertTrue(exceptionExpected); - } - assertTrue(function.checkTheoreticalMinCost(estimator.getRMS(function))); - assertTrue(function.checkTheoreticalMinParams()); + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + optimizer.setMaxEvaluations(100 * (function.getN() + 1)); + optimizer.setCostRelativeTolerance(Math.sqrt(2.22044604926e-16)); + optimizer.setParRelativeTolerance(Math.sqrt(2.22044604926e-16)); + optimizer.setOrthoTolerance(2.22044604926e-16); +// assertTrue(function.checkTheoreticalStartCost(optimizer.getRMS())); + try { + VectorialPointValuePair optimum = + optimizer.optimize(function, + function.getTarget(), function.getWeight(), + function.getStartPoint()); + assertFalse(exceptionExpected); + assertTrue(function.checkTheoreticalMinCost(optimizer.getRMS())); + assertTrue(function.checkTheoreticalMinParams(optimum)); + } catch (OptimizationException lsse) { + assertTrue(exceptionExpected); + } catch (ObjectiveException oe) { + assertTrue(exceptionExpected); + } } - private static abstract class MinpackFunction implements EstimationProblem { + private static abstract class MinpackFunction + implements VectorialDifferentiableObjectiveFunction { - protected MinpackFunction(int m, - double[] startParams, - double theoreticalStartCost, - double theoreticalMinCost, - double[] theoreticalMinParams) { - this.m = m; - this.n = startParams.length; - parameters = new EstimatedParameter[n]; - for (int i = 0; i < n; ++i) { - parameters[i] = new EstimatedParameter("p" + i, startParams[i]); + private static final long serialVersionUID = -6209760235478794233L; + protected int n; + protected int m; + protected double[] startParams; + protected double theoreticalMinCost; + protected double[] theoreticalMinParams; + protected double costAccuracy; + protected double paramsAccuracy; + + protected MinpackFunction(int m, double[] startParams, + double theoreticalMinCost, double[] theoreticalMinParams) { + this.m = m; + this.n = startParams.length; + this.startParams = startParams.clone(); + this.theoreticalMinCost = theoreticalMinCost; + this.theoreticalMinParams = theoreticalMinParams; + this.costAccuracy = 1.0e-8; + this.paramsAccuracy = 1.0e-5; } - this.theoreticalStartCost = theoreticalStartCost; - this.theoreticalMinCost = theoreticalMinCost; - this.theoreticalMinParams = theoreticalMinParams; - this.costAccuracy = 1.0e-8; - this.paramsAccuracy = 1.0e-5; - } - protected static double[] buildArray(int n, double x) { - double[] array = new double[n]; - Arrays.fill(array, x); - return array; - } + protected static double[] buildArray(int n, double x) { + double[] array = new double[n]; + Arrays.fill(array, x); + return array; + } - protected void setCostAccuracy(double costAccuracy) { - this.costAccuracy = costAccuracy; - } + public double[] getTarget() { + return buildArray(m, 0.0); + } - protected void setParamsAccuracy(double paramsAccuracy) { - this.paramsAccuracy = paramsAccuracy; - } + public double[] getWeight() { + return buildArray(m, 1.0); + } - public int getN() { - return parameters.length; - } + public double[] getStartPoint() { + return startParams.clone(); + } - public boolean checkTheoreticalStartCost(double rms) { - double threshold = costAccuracy * (1.0 + theoreticalStartCost); - return Math.abs(Math.sqrt(m) * rms - theoreticalStartCost) <= threshold; - } + protected void setCostAccuracy(double costAccuracy) { + this.costAccuracy = costAccuracy; + } - public boolean checkTheoreticalMinCost(double rms) { - double threshold = costAccuracy * (1.0 + theoreticalMinCost); - return Math.abs(Math.sqrt(m) * rms - theoreticalMinCost) <= threshold; - } + protected void setParamsAccuracy(double paramsAccuracy) { + this.paramsAccuracy = paramsAccuracy; + } - public boolean checkTheoreticalMinParams() { - if (theoreticalMinParams != null) { - for (int i = 0; i < theoreticalMinParams.length; ++i) { - double mi = theoreticalMinParams[i]; - double vi = parameters[i].getEstimate(); - if (Math.abs(mi - vi) > (paramsAccuracy * (1.0 + Math.abs(mi)))) { - return false; + public int getN() { + return startParams.length; + } + + public boolean checkTheoreticalMinCost(double rms) { + double threshold = costAccuracy * (1.0 + theoreticalMinCost); + return Math.abs(Math.sqrt(m) * rms - theoreticalMinCost) <= threshold; + } + + public boolean checkTheoreticalMinParams(VectorialPointValuePair optimum) { + double[] params = optimum.getPointRef(); + if (theoreticalMinParams != null) { + for (int i = 0; i < theoreticalMinParams.length; ++i) { + double mi = theoreticalMinParams[i]; + double vi = params[i]; + if (Math.abs(mi - vi) > (paramsAccuracy * (1.0 + Math.abs(mi)))) { + return false; + } + } } - } - } - return true; - } - - public WeightedMeasurement[] getMeasurements() { - WeightedMeasurement[] measurements = new WeightedMeasurement[m]; - for (int i = 0; i < m; ++i) { - measurements[i] = new MinpackMeasurement(i); - } - return measurements; - } - - public EstimatedParameter[] getUnboundParameters() { - return parameters; - } - - public EstimatedParameter[] getAllParameters() { - return parameters; - } - - protected abstract double[][] getJacobian(); - - protected abstract double[] getResiduals(); - - private class MinpackMeasurement extends WeightedMeasurement { - - public MinpackMeasurement(int index) { - super(1.0, 0.0); - this.index = index; + return true; } - public double getTheoreticalValue() { - // this is obviously NOT efficient as we recompute the whole vector - // each time we need only one element, but it is only for test - // purposes and is simpler to check. - // This implementation should NOT be taken as an example, it is ugly! - return getResiduals()[index]; - } + public abstract double[][] jacobian(double[] variables, double[] value); - public double getPartial(EstimatedParameter parameter) { - // this is obviously NOT efficient as we recompute the whole jacobian - // each time we need only one element, but it is only for test - // purposes and is simpler to check. - // This implementation should NOT be taken as an example, it is ugly! - for (int j = 0; j < n; ++j) { - if (parameter == parameters[j]) { - return getJacobian()[index][j]; - } - } - return 0; - } - - private int index; - private static final long serialVersionUID = 1L; - - } - - protected int n; - protected int m; - protected EstimatedParameter[] parameters; - protected double theoreticalStartCost; - protected double theoreticalMinCost; - protected double[] theoreticalMinParams; - protected double costAccuracy; - protected double paramsAccuracy; + public abstract double[] objective(double[] variables); } private static class LinearFullRankFunction extends MinpackFunction { + private static final long serialVersionUID = -9030323226268039536L; + public LinearFullRankFunction(int m, int n, double x0, double theoreticalStartCost, double theoreticalMinCost) { - super(m, buildArray(n, x0), theoreticalStartCost, - theoreticalMinCost, buildArray(n, -1.0)); + super(m, buildArray(n, x0), theoreticalMinCost, + buildArray(n, -1.0)); } - protected double[][] getJacobian() { + public double[][] jacobian(double[] variables, double[] value) { double t = 2.0 / m; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { @@ -664,15 +626,15 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { + public double[] objective(double[] variables) { double sum = 0; for (int i = 0; i < n; ++i) { - sum += parameters[i].getEstimate(); + sum += variables[i]; } double t = 1 + 2 * sum / m; double[] f = new double[m]; for (int i = 0; i < n; ++i) { - f[i] = parameters[i].getEstimate() - t; + f[i] = variables[i] - t; } Arrays.fill(f, n, m, -t); return f; @@ -682,13 +644,15 @@ public class MinpackTest private static class LinearRank1Function extends MinpackFunction { + private static final long serialVersionUID = 8494863245104608300L; + public LinearRank1Function(int m, int n, double x0, double theoreticalStartCost, double theoreticalMinCost) { - super(m, buildArray(n, x0), theoreticalStartCost, theoreticalMinCost, null); + super(m, buildArray(n, x0), theoreticalMinCost, null); } - protected double[][] getJacobian() { + public double[][] jacobian(double[] variables, double[] value) { double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { jacobian[i] = new double[n]; @@ -699,11 +663,11 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { + public double[] objective(double[] variables) { double[] f = new double[m]; double sum = 0; for (int i = 0; i < n; ++i) { - sum += (i + 1) * parameters[i].getEstimate(); + sum += (i + 1) * variables[i]; } for (int i = 0; i < m; ++i) { f[i] = (i + 1) * sum - 1; @@ -715,14 +679,15 @@ public class MinpackTest private static class LinearRank1ZeroColsAndRowsFunction extends MinpackFunction { + private static final long serialVersionUID = -3316653043091995018L; + public LinearRank1ZeroColsAndRowsFunction(int m, int n, double x0) { super(m, buildArray(n, x0), - Math.sqrt(m + (n+1)*(n-2)*(m-2)*(m-1) * ((n+1)*(n-2)*(2*m-3) - 12) / 24.0), Math.sqrt((m * (m + 3) - 6) / (2.0 * (2 * m - 3))), null); } - protected double[][] getJacobian() { + public double[][] jacobian(double[] variables, double[] value) { double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { jacobian[i] = new double[n]; @@ -741,11 +706,11 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { + public double[] objective(double[] variables) { double[] f = new double[m]; double sum = 0; for (int i = 1; i < (n - 1); ++i) { - sum += (i + 1) * parameters[i].getEstimate(); + sum += (i + 1) * variables[i]; } for (int i = 0; i < (m - 1); ++i) { f[i] = i * sum - 1; @@ -758,18 +723,20 @@ public class MinpackTest private static class RosenbrockFunction extends MinpackFunction { + private static final long serialVersionUID = 2893438180956569134L; + public RosenbrockFunction(double[] startParams, double theoreticalStartCost) { - super(2, startParams, theoreticalStartCost, 0.0, buildArray(2, 1.0)); + super(2, startParams, 0.0, buildArray(2, 1.0)); } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; return new double[][] { { -20 * x1, 10 }, { -1, 0 } }; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; return new double[] { 10 * (x2 - x1 * x1), 1 - x1 }; } @@ -777,15 +744,16 @@ public class MinpackTest private static class HelicalValleyFunction extends MinpackFunction { + private static final long serialVersionUID = 220613787843200102L; + public HelicalValleyFunction(double[] startParams, double theoreticalStartCost) { - super(3, startParams, theoreticalStartCost, 0.0, - new double[] { 1.0, 0.0, 0.0 }); + super(3, startParams, 0.0, new double[] { 1.0, 0.0, 0.0 }); } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; double tmpSquare = x1 * x1 + x2 * x2; double tmp1 = twoPi * tmpSquare; double tmp2 = Math.sqrt(tmpSquare); @@ -796,10 +764,10 @@ public class MinpackTest }; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; double tmp1; if (x1 == 0) { tmp1 = (x2 >= 0) ? 0.25 : -0.25; @@ -823,16 +791,18 @@ public class MinpackTest private static class PowellSingularFunction extends MinpackFunction { + private static final long serialVersionUID = 7298364171208142405L; + public PowellSingularFunction(double[] startParams, double theoreticalStartCost) { - super(4, startParams, theoreticalStartCost, 0.0, buildArray(4, 0.0)); + super(4, startParams, 0.0, buildArray(4, 0.0)); } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; return new double[][] { { 1, 10, 0, 0 }, { 0, 0, sqrt5, -sqrt5 }, @@ -841,11 +811,11 @@ public class MinpackTest }; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; return new double[] { x1 + 10 * x2, sqrt5 * (x3 - x4), @@ -861,25 +831,27 @@ public class MinpackTest private static class FreudensteinRothFunction extends MinpackFunction { + private static final long serialVersionUID = 2892404999344244214L; + public FreudensteinRothFunction(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(2, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(2, startParams, theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { - double x2 = parameters[1].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x2 = variables[1]; return new double[][] { { 1, x2 * (10 - 3 * x2) - 2 }, { 1, x2 * ( 2 + 3 * x2) - 14, } }; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; return new double[] { -13.0 + x1 + ((5.0 - x2) * x2 - 2.0) * x2, -29.0 + x1 + ((1.0 + x2) * x2 - 14.0) * x2 @@ -890,17 +862,19 @@ public class MinpackTest private static class BardFunction extends MinpackFunction { + private static final long serialVersionUID = 5990442612572087668L; + public BardFunction(double x0, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(15, buildArray(3, x0), theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(15, buildArray(3, x0), theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x2 = variables[1]; + double x3 = variables[2]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double tmp1 = i + 1; @@ -913,10 +887,10 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { double tmp1 = i + 1; @@ -937,23 +911,25 @@ public class MinpackTest private static class KowalikOsborneFunction extends MinpackFunction { + private static final long serialVersionUID = -4867445739880495801L; + public KowalikOsborneFunction(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(11, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(11, startParams, theoreticalMinCost, + theoreticalMinParams); if (theoreticalStartCost > 20.0) { setCostAccuracy(2.0e-4); setParamsAccuracy(5.0e-3); } } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double tmp = v[i] * (v[i] + x3) + x4; @@ -966,11 +942,11 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { f[i] = y[i] - x1 * (v[i] * (v[i] + x2)) / (v[i] * (v[i] + x3) + x4); @@ -991,22 +967,24 @@ public class MinpackTest private static class MeyerFunction extends MinpackFunction { + private static final long serialVersionUID = -838060619150131027L; + public MeyerFunction(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(16, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(16, startParams, theoreticalMinCost, + theoreticalMinParams); if (theoreticalStartCost > 1.0e6) { setCostAccuracy(7.0e-3); setParamsAccuracy(2.0e-2); } } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double temp = 5.0 * (i + 1) + 45.0 + x3; @@ -1018,10 +996,10 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { f[i] = x1 * Math.exp(x2 / (5.0 * (i + 1) + 45.0 + x3)) - y[i]; @@ -1040,15 +1018,17 @@ public class MinpackTest private static class WatsonFunction extends MinpackFunction { + private static final long serialVersionUID = -9034759294980218927L; + public WatsonFunction(int n, double x0, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(31, buildArray(n, x0), theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(31, buildArray(n, x0), theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { + public double[][] jacobian(double[] variables, double[] value) { double[][] jacobian = new double[m][]; @@ -1057,7 +1037,7 @@ public class MinpackTest double s2 = 0.0; double dx = 1.0; for (int j = 0; j < n; ++j) { - s2 += dx * parameters[j].getEstimate(); + s2 += dx * variables[j]; dx *= div; } double temp= 2 * div * s2; @@ -1073,34 +1053,34 @@ public class MinpackTest jacobian[m - 2][0] = 1; jacobian[m - 1] = new double[n]; - jacobian[m - 1][0]= -2 * parameters[0].getEstimate(); + jacobian[m - 1][0]= -2 * variables[0]; jacobian[m - 1][1]= 1; return jacobian; } - protected double[] getResiduals() { + public double[] objective(double[] variables) { double[] f = new double[m]; for (int i = 0; i < (m - 2); ++i) { double div = (i + 1) / 29.0; double s1 = 0; double dx = 1; for (int j = 1; j < n; ++j) { - s1 += j * dx * parameters[j].getEstimate(); + s1 += j * dx * variables[j]; dx *= div; } double s2 =0; dx =1; for (int j = 0; j < n; ++j) { - s2 += dx * parameters[j].getEstimate(); + s2 += dx * variables[j]; dx *= div; } f[i] = s1 - s2 * s2 - 1; } - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + double x1 = variables[0]; + double x2 = variables[1]; f[m - 2] = x1; f[m - 1] = x2 - x1 * x1 - 1; @@ -1112,15 +1092,17 @@ public class MinpackTest private static class Box3DimensionalFunction extends MinpackFunction { + private static final long serialVersionUID = 5511403858142574493L; + public Box3DimensionalFunction(int m, double[] startParams, double theoreticalStartCost) { - super(m, startParams, theoreticalStartCost, - 0.0, new double[] { 1.0, 10.0, 1.0 }); + super(m, startParams, 0.0, + new double[] { 1.0, 10.0, 1.0 }); } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double tmp = (i + 1) / 10.0; @@ -1133,10 +1115,10 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { double tmp = (i + 1) / 10.0; @@ -1150,17 +1132,19 @@ public class MinpackTest private static class JennrichSampsonFunction extends MinpackFunction { + private static final long serialVersionUID = -2489165190443352947L; + public JennrichSampsonFunction(int m, double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(m, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(m, startParams, theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double t = i + 1; @@ -1169,9 +1153,9 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { double temp = i + 1; @@ -1184,19 +1168,21 @@ public class MinpackTest private static class BrownDennisFunction extends MinpackFunction { + private static final long serialVersionUID = 8340018645694243910L; + public BrownDennisFunction(int m, double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(m, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(m, startParams, theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double temp = (i + 1) / 5.0; @@ -1210,11 +1196,11 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { double temp = (i + 1) / 5.0; @@ -1229,6 +1215,8 @@ public class MinpackTest private static class ChebyquadFunction extends MinpackFunction { + private static final long serialVersionUID = -2394877275028008594L; + private static double[] buildChebyquadArray(int n, double factor) { double[] array = new double[n]; double inv = factor / (n + 1); @@ -1242,11 +1230,11 @@ public class MinpackTest double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(m, buildChebyquadArray(n, factor), theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(m, buildChebyquadArray(n, factor), theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { + public double[][] jacobian(double[] variables, double[] value) { double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { @@ -1256,7 +1244,7 @@ public class MinpackTest double dx = 1.0 / n; for (int j = 0; j < n; ++j) { double tmp1 = 1; - double tmp2 = 2 * parameters[j].getEstimate() - 1; + double tmp2 = 2 * variables[j] - 1; double temp = 2 * tmp2; double tmp3 = 0; double tmp4 = 2; @@ -1275,13 +1263,13 @@ public class MinpackTest } - protected double[] getResiduals() { + public double[] objective(double[] variables) { double[] f = new double[m]; for (int j = 0; j < n; ++j) { double tmp1 = 1; - double tmp2 = 2 * parameters[j].getEstimate() - 1; + double tmp2 = 2 * variables[j] - 1; double temp = 2 * tmp2; for (int i = 0; i < m; ++i) { f[i] += tmp2; @@ -1309,15 +1297,17 @@ public class MinpackTest private static class BrownAlmostLinearFunction extends MinpackFunction { + private static final long serialVersionUID = 8239594490466964725L; + public BrownAlmostLinearFunction(int m, double factor, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(m, buildArray(m, factor), theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(m, buildArray(m, factor), theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { + public double[][] jacobian(double[] variables, double[] value) { double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { jacobian[i] = new double[n]; @@ -1325,7 +1315,7 @@ public class MinpackTest double prod = 1; for (int j = 0; j < n; ++j) { - prod *= parameters[j].getEstimate(); + prod *= variables[j]; for (int i = 0; i < n; ++i) { jacobian[i][j] = 1; } @@ -1333,14 +1323,13 @@ public class MinpackTest } for (int j = 0; j < n; ++j) { - EstimatedParameter vj = parameters[j]; - double temp = vj.getEstimate(); + double temp = variables[j]; if (temp == 0) { temp = 1; prod = 1; for (int k = 0; k < n; ++k) { if (k != j) { - prod *= parameters[k].getEstimate(); + prod *= variables[k]; } } } @@ -1351,16 +1340,16 @@ public class MinpackTest } - protected double[] getResiduals() { + public double[] objective(double[] variables) { double[] f = new double[m]; double sum = -(n + 1); double prod = 1; for (int j = 0; j < n; ++j) { - sum += parameters[j].getEstimate(); - prod *= parameters[j].getEstimate(); + sum += variables[j]; + prod *= variables[j]; } for (int i = 0; i < n; ++i) { - f[i] = parameters[i].getEstimate() + sum; + f[i] = variables[i] + sum; } f[n - 1] = prod - 1; return f; @@ -1370,19 +1359,21 @@ public class MinpackTest private static class Osborne1Function extends MinpackFunction { + private static final long serialVersionUID = 4006743521149849494L; + public Osborne1Function(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(33, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(33, startParams, theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); - double x5 = parameters[4].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double x5 = variables[4]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double temp = 10.0 * i; @@ -1395,12 +1386,12 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x1 = parameters[0].getEstimate(); - double x2 = parameters[1].getEstimate(); - double x3 = parameters[2].getEstimate(); - double x4 = parameters[3].getEstimate(); - double x5 = parameters[4].getEstimate(); + public double[] objective(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double x5 = variables[4]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { double temp = 10.0 * i; @@ -1421,26 +1412,28 @@ public class MinpackTest private static class Osborne2Function extends MinpackFunction { + private static final long serialVersionUID = -8418268780389858746L; + public Osborne2Function(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { - super(65, startParams, theoreticalStartCost, - theoreticalMinCost, theoreticalMinParams); + super(65, startParams, theoreticalMinCost, + theoreticalMinParams); } - protected double[][] getJacobian() { - double x01 = parameters[0].getEstimate(); - double x02 = parameters[1].getEstimate(); - double x03 = parameters[2].getEstimate(); - double x04 = parameters[3].getEstimate(); - double x05 = parameters[4].getEstimate(); - double x06 = parameters[5].getEstimate(); - double x07 = parameters[6].getEstimate(); - double x08 = parameters[7].getEstimate(); - double x09 = parameters[8].getEstimate(); - double x10 = parameters[9].getEstimate(); - double x11 = parameters[10].getEstimate(); + public double[][] jacobian(double[] variables, double[] value) { + double x01 = variables[0]; + double x02 = variables[1]; + double x03 = variables[2]; + double x04 = variables[3]; + double x05 = variables[4]; + double x06 = variables[5]; + double x07 = variables[6]; + double x08 = variables[7]; + double x09 = variables[8]; + double x10 = variables[9]; + double x11 = variables[10]; double[][] jacobian = new double[m][]; for (int i = 0; i < m; ++i) { double temp = i / 10.0; @@ -1465,18 +1458,18 @@ public class MinpackTest return jacobian; } - protected double[] getResiduals() { - double x01 = parameters[0].getEstimate(); - double x02 = parameters[1].getEstimate(); - double x03 = parameters[2].getEstimate(); - double x04 = parameters[3].getEstimate(); - double x05 = parameters[4].getEstimate(); - double x06 = parameters[5].getEstimate(); - double x07 = parameters[6].getEstimate(); - double x08 = parameters[7].getEstimate(); - double x09 = parameters[8].getEstimate(); - double x10 = parameters[9].getEstimate(); - double x11 = parameters[10].getEstimate(); + public double[] objective(double[] variables) { + double x01 = variables[0]; + double x02 = variables[1]; + double x03 = variables[2]; + double x04 = variables[3]; + double x05 = variables[4]; + double x06 = variables[5]; + double x07 = variables[6]; + double x08 = variables[7]; + double x09 = variables[8]; + double x10 = variables[9]; + double x11 = variables[10]; double[] f = new double[m]; for (int i = 0; i < m; ++i) { double temp = i / 10.0; diff --git a/src/test/org/apache/commons/math/optimization/general/WeightedMeasurementTest.java b/src/test/org/apache/commons/math/optimization/general/WeightedMeasurementTest.java deleted file mode 100644 index 18018189d..000000000 --- a/src/test/org/apache/commons/math/optimization/general/WeightedMeasurementTest.java +++ /dev/null @@ -1,124 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math.optimization.general; - - -import junit.framework.*; - -public class WeightedMeasurementTest - extends TestCase { - - public WeightedMeasurementTest(String name) { - super(name); - p1 = null; - p2 = null; - } - - public void testConstruction() { - WeightedMeasurement m = new MyMeasurement(3.0, theoretical() + 0.1, this); - checkValue(m.getWeight(), 3.0); - checkValue(m.getMeasuredValue(), theoretical() + 0.1); - } - - public void testIgnored() { - WeightedMeasurement m = new MyMeasurement(3.0, theoretical() + 0.1, this); - assertTrue(!m.isIgnored()); - m.setIgnored(true); - assertTrue(m.isIgnored()); - m.setIgnored(false); - assertTrue(!m.isIgnored()); - } - - public void testTheory() { - WeightedMeasurement m = new MyMeasurement(3.0, theoretical() + 0.1, this); - checkValue(m.getTheoreticalValue(), theoretical()); - checkValue(m.getResidual(), 0.1); - - double oldP1 = p1.getEstimate(); - p1.setEstimate(oldP1 + m.getResidual() / m.getPartial(p1)); - checkValue(m.getResidual(), 0.0); - p1.setEstimate(oldP1); - checkValue(m.getResidual(), 0.1); - - double oldP2 = p2.getEstimate(); - p2.setEstimate(oldP2 + m.getResidual() / m.getPartial(p2)); - checkValue(m.getResidual(), 0.0); - p2.setEstimate(oldP2); - checkValue(m.getResidual(), 0.1); - - } - - public static Test suite() { - return new TestSuite(WeightedMeasurementTest.class); - } - - public void setUp() { - p1 = new EstimatedParameter("p1", 1.0); - p2 = new EstimatedParameter("p2", 2.0); - } - - public void tearDown() { - p1 = null; - p2 = null; - } - - private void checkValue(double value, double expected) { - assertTrue(Math.abs(value - expected) < 1.0e-10); - } - - private double theoretical() { - return 3 * p1.getEstimate() - p2.getEstimate(); - } - - private double partial(EstimatedParameter p) { - if (p == p1) { - return 3.0; - } else if (p == p2) { - return -1.0; - } else { - return 0.0; - } - } - - private static class MyMeasurement - extends WeightedMeasurement { - - public MyMeasurement(double weight, double measuredValue, - WeightedMeasurementTest testInstance) { - super(weight, measuredValue); - this.testInstance = testInstance; - } - - public double getTheoreticalValue() { - return testInstance.theoretical(); - } - - public double getPartial(EstimatedParameter p) { - return testInstance.partial(p); - } - - private transient WeightedMeasurementTest testInstance; - - private static final long serialVersionUID = -246712922500792332L; - - } - - private EstimatedParameter p1; - private EstimatedParameter p2; - -}