From c528afa780aaff21003e3500baa0d11dd5321117 Mon Sep 17 00:00:00 2001 From: Luc Maisonobe Date: Sun, 27 Oct 2013 09:52:44 +0000 Subject: [PATCH] Added SparseGradient to deal efficiently with numerous variables. This new class is devoted to differentiation computation when the number of variables is very large but most computations depend only on a few of subset of the variables. Thanks to Ajo Fod for the contribution. JIRA: MATH-1036 git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1536073 13f79535-47bb-0310-9956-ffa450edef68 --- src/changes/changes.xml | 5 + .../differentiation/SparseGradient.java | 926 ++++++++++++++ .../differentiation/SparseGradientTest.java | 1128 +++++++++++++++++ 3 files changed, 2059 insertions(+) create mode 100644 src/main/java/org/apache/commons/math3/analysis/differentiation/SparseGradient.java create mode 100644 src/test/java/org/apache/commons/math3/analysis/differentiation/SparseGradientTest.java diff --git a/src/changes/changes.xml b/src/changes/changes.xml index 29d382d3a..48d2257b8 100644 --- a/src/changes/changes.xml +++ b/src/changes/changes.xml @@ -51,6 +51,11 @@ If the output is not quite correct, check for invisible trailing spaces! + + Added SparseGradient to deal efficiently with first derivatives when the number + of variables is very large but most computations depend only on a few of the + variables. + Added logDensity methods to AbstractReal/IntegerDistribution with naive default implementations and improved implementations for some current distributions. diff --git a/src/main/java/org/apache/commons/math3/analysis/differentiation/SparseGradient.java b/src/main/java/org/apache/commons/math3/analysis/differentiation/SparseGradient.java new file mode 100644 index 000000000..085f3ab73 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/analysis/differentiation/SparseGradient.java @@ -0,0 +1,926 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.analysis.differentiation; + +import java.io.Serializable; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +import org.apache.commons.math3.Field; +import org.apache.commons.math3.FieldElement; +import org.apache.commons.math3.RealFieldElement; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.MathArrays; +import org.apache.commons.math3.util.MathUtils; +import org.apache.commons.math3.util.Precision; + +/** + * First derivative computation with large number of variables. + *

+ * This class plays a similar role to {@link DerivativeStructure}, with + * a focus on efficiency when dealing with large numer of independent variables + * and most computation depend only on a few of them, and when only first derivative + * is desired. When these conditions are met, this class should be much faster than + * {@link DerivativeStructure} and use less memory. + *

+ * + * @version $Id$ + * @since 3.3 + */ +public class SparseGradient implements RealFieldElement, Serializable { + + /** Serializable UID. */ + private static final long serialVersionUID = 20131025L; + + /** Value of the calculation. */ + private double value; + + /** Stored derivative, each key representing a different independent variable. */ + private final Map derivatives; + + /** Internal constructor. + * @param value value of the function + * @param derivatives derivatives map, a deep copy will be performed, + * so the map given here will remain safe from changes in the new instance, + * may be null to create an empty derivatives map, i.e. a constant value + */ + private SparseGradient(final double value, final Map derivatives) { + this.value = value; + this.derivatives = new HashMap(); + if (derivatives != null) { + this.derivatives.putAll(derivatives); + } + } + + /** Internal constructor. + * @param value value of the function + * @param scale scaling factor to apply to all deerivatives + * @param derivatives derivatives map, a deep copy will be performed, + * so the map given here will remain safe from changes in the new instance, + * may be null to create an empty derivatives map, i.e. a constant value + */ + private SparseGradient(final double value, final double scale, + final Map derivatives) { + this.value = value; + this.derivatives = new HashMap(); + if (derivatives != null) { + for (final Map.Entry entry : derivatives.entrySet()) { + this.derivatives.put(entry.getKey(), scale * entry.getValue()); + } + } + } + + /** Factory method creating a constant. + * @param value value of the constant + * @return a new instance + */ + public static SparseGradient createConstant(final double value) { + return new SparseGradient(value, Collections. emptyMap()); + } + + /** Factory method creating an independent variable. + * @param idx index of the variable + * @param value value of the variable + * @return a new instance + */ + public static SparseGradient createVariable(final int idx, final double value) { + return new SparseGradient(value, Collections.singletonMap(idx, 1.0)); + } + + /** + * Find the number of variables. + * @return number of variables + */ + public int numVars() { + return derivatives.size(); + } + + /** + * Get the derivative with respect to a particular index variable. + * + * @param index index to differentiate with. + * @return derivative with respect to a particular index variable + */ + public double getDerivative(final int index) { + final Double out = derivatives.get(index); + return (out == null) ? 0.0 : out; + } + + /** + * Get the value of the function. + * @return value of the function. + */ + public double getValue() { + return value; + } + + /** {@inheritDoc} */ + @Override + public double getReal() { + return value; + } + + /** {@inheritDoc} */ + public SparseGradient add(final SparseGradient a) { + final SparseGradient out = new SparseGradient(value + a.value, derivatives); + for (Map.Entry entry : a.derivatives.entrySet()) { + final int id = entry.getKey(); + final Double old = out.derivatives.get(id); + if (old == null) { + out.derivatives.put(id, entry.getValue()); + } else { + out.derivatives.put(id, old + entry.getValue()); + } + } + + return out; + } + + /** + * Add in place. + *

+ * This method is designed to be faster when used multiple times in a loop. + *

+ *

+ * The instance is changed here, in order to not change the + * instance the {@link #add(SparseGradient)} method should + * be used. + *

+ * @param a instance to add + */ + public void addInPlace(final SparseGradient a) { + value += a.value; + for (final Map.Entry entry : a.derivatives.entrySet()) { + final int id = entry.getKey(); + final Double old = derivatives.get(id); + if (old == null) { + derivatives.put(id, entry.getValue()); + } else { + derivatives.put(id, old + entry.getValue()); + } + } + } + + /** {@inheritDoc} */ + public SparseGradient add(final double c) { + final SparseGradient out = new SparseGradient(value + c, derivatives); + return out; + } + + /** {@inheritDoc} */ + public SparseGradient subtract(final SparseGradient a) { + final SparseGradient out = new SparseGradient(value - a.value, derivatives); + for (Map.Entry entry : a.derivatives.entrySet()) { + final int id = entry.getKey(); + final Double old = out.derivatives.get(id); + if (old == null) { + out.derivatives.put(id, -entry.getValue()); + } else { + out.derivatives.put(id, old - entry.getValue()); + } + } + return out; + } + + /** {@inheritDoc} */ + public SparseGradient subtract(double c) { + return new SparseGradient(value - c, derivatives); + } + + /** {@inheritDoc} */ + public SparseGradient multiply(final SparseGradient a) { + final SparseGradient out = + new SparseGradient(value * a.value, Collections. emptyMap()); + + // Derivatives. + for (Map.Entry entry : derivatives.entrySet()) { + out.derivatives.put(entry.getKey(), a.value * entry.getValue()); + } + for (Map.Entry entry : a.derivatives.entrySet()) { + final int id = entry.getKey(); + final Double old = out.derivatives.get(id); + if (old == null) { + out.derivatives.put(id, value * entry.getValue()); + } else { + out.derivatives.put(id, old + value * entry.getValue()); + } + } + return out; + } + + /** + * Multiply in place. + *

+ * This method is designed to be faster when used multiple times in a loop. + *

+ *

+ * The instance is changed here, in order to not change the + * instance the {@link #add(SparseGradient)} method should + * be used. + *

+ * @param a instance to multiply + */ + public void multInPlace(final SparseGradient a) { + // Derivatives. + for (Map.Entry entry : derivatives.entrySet()) { + derivatives.put(entry.getKey(), a.value * entry.getValue()); + } + for (Map.Entry entry : a.derivatives.entrySet()) { + final int id = entry.getKey(); + final Double old = derivatives.get(id); + if (old == null) { + derivatives.put(id, value * entry.getValue()); + } else { + derivatives.put(id, old + value * entry.getValue()); + } + } + value *= a.value; + } + + /** {@inheritDoc} */ + public SparseGradient multiply(final double c) { + return new SparseGradient(value * c, c, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient multiply(final int n) { + return new SparseGradient(value * n, n, derivatives); + } + + /** {@inheritDoc} */ + public SparseGradient divide(final SparseGradient a) { + final SparseGradient out = new SparseGradient(value / a.value, Collections. emptyMap()); + + // Derivatives. + for (Map.Entry entry : derivatives.entrySet()) { + out.derivatives.put(entry.getKey(), entry.getValue() / a.value); + } + for (Map.Entry entry : a.derivatives.entrySet()) { + final int id = entry.getKey(); + final Double old = out.derivatives.get(id); + if (old == null) { + out.derivatives.put(id, -out.value / a.value * entry.getValue()); + } else { + out.derivatives.put(id, old - out.value / a.value * entry.getValue()); + } + } + return out; + } + + /** {@inheritDoc} */ + public SparseGradient divide(final double c) { + return new SparseGradient(value / c, 1.0 / c, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient negate() { + return new SparseGradient(-value, -1.0, derivatives); + } + + /** {@inheritDoc} */ + @Override + public Field getField() { + return new Field() { + + /** {@inheritDoc} */ + public SparseGradient getZero() { + return createConstant(0); + } + + /** {@inheritDoc} */ + public SparseGradient getOne() { + return createConstant(1); + } + + /** {@inheritDoc} */ + public Class> getRuntimeClass() { + return SparseGradient.class; + } + + }; + } + + /** {@inheritDoc} */ + @Override + public SparseGradient remainder(final double a) { + return new SparseGradient(FastMath.IEEEremainder(value, a), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient remainder(final SparseGradient a) { + + // compute k such that lhs % rhs = lhs - k rhs + final double rem = FastMath.IEEEremainder(value, a.value); + final double k = FastMath.rint((value - rem) / a.value); + + return subtract(a.multiply(k)); + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient abs() { + if (Double.doubleToLongBits(value) < 0) { + // we use the bits representation to also handle -0.0 + return negate(); + } else { + return this; + } + } + + /** {@inheritDoc} */ + @Override + public SparseGradient ceil() { + return createConstant(FastMath.ceil(value)); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient floor() { + return createConstant(FastMath.floor(value)); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient rint() { + return createConstant(FastMath.rint(value)); + } + + /** {@inheritDoc} */ + @Override + public long round() { + return FastMath.round(value); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient signum() { + return createConstant(FastMath.signum(value)); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient copySign(final SparseGradient sign) { + final long m = Double.doubleToLongBits(value); + final long s = Double.doubleToLongBits(sign.value); + if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK + return this; + } + return negate(); // flip sign + } + + /** {@inheritDoc} */ + @Override + public SparseGradient copySign(final double sign) { + final long m = Double.doubleToLongBits(value); + final long s = Double.doubleToLongBits(sign); + if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK + return this; + } + return negate(); // flip sign + } + + /** {@inheritDoc} */ + @Override + public SparseGradient scalb(final int n) { + final SparseGradient out = new SparseGradient(FastMath.scalb(value, n), Collections. emptyMap()); + for (Map.Entry entry : derivatives.entrySet()) { + out.derivatives.put(entry.getKey(), FastMath.scalb(entry.getValue(), n)); + } + return out; + } + + /** {@inheritDoc} */ + @Override + public SparseGradient hypot(final SparseGradient y) { + if (Double.isInfinite(value) || Double.isInfinite(y.value)) { + return createConstant(Double.POSITIVE_INFINITY); + } else if (Double.isNaN(value) || Double.isNaN(y.value)) { + return createConstant(Double.NaN); + } else { + + final int expX = FastMath.getExponent(value); + final int expY = FastMath.getExponent(y.value); + if (expX > expY + 27) { + // y is neglectible with respect to x + return abs(); + } else if (expY > expX + 27) { + // x is neglectible with respect to y + return y.abs(); + } else { + + // find an intermediate scale to avoid both overflow and underflow + final int middleExp = (expX + expY) / 2; + + // scale parameters without losing precision + final SparseGradient scaledX = scalb(-middleExp); + final SparseGradient scaledY = y.scalb(-middleExp); + + // compute scaled hypotenuse + final SparseGradient scaledH = + scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt(); + + // remove scaling + return scaledH.scalb(middleExp); + + } + + } + } + + /** + * Returns the hypotenuse of a triangle with sides {@code x} and {@code y} + * - sqrt(x2 +y2)
+ * avoiding intermediate overflow or underflow. + * + *
    + *
  • If either argument is infinite, then the result is positive infinity.
  • + *
  • else, if either argument is NaN then the result is NaN.
  • + *
+ * + * @param x a value + * @param y a value + * @return sqrt(x2 +y2) + */ + public static SparseGradient hypot(final SparseGradient x, final SparseGradient y) { + return x.hypot(y); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient reciprocal() { + return new SparseGradient(1.0 / value, -1.0 / (value * value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient sqrt() { + final double sqrt = FastMath.sqrt(value); + return new SparseGradient(sqrt, 0.5 / sqrt, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient cbrt() { + final double cbrt = FastMath.cbrt(value); + return new SparseGradient(cbrt, 1.0 / (3 * cbrt * cbrt), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient rootN(final int n) { + if (n == 2) { + return sqrt(); + } else if (n == 3) { + return cbrt(); + } else { + final double root = FastMath.pow(value, 1.0 / n); + return new SparseGradient(root, 1.0 / (n * FastMath.pow(root, n - 1)), derivatives); + } + } + + /** {@inheritDoc} */ + @Override + public SparseGradient pow(final double p) { + return new SparseGradient(FastMath.pow(value, p), p * FastMath.pow(value, p - 1), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient pow(final int n) { + if (n == 0) { + return getField().getOne(); + } else { + final double valueNm1 = FastMath.pow(value, n - 1); + return new SparseGradient(value * valueNm1, n * valueNm1, derivatives); + } + } + + /** {@inheritDoc} */ + @Override + public SparseGradient pow(final SparseGradient e) { + return log().multiply(e).exp(); + } + + /** Compute ax where a is a double and x a {@link SparseGradient} + * @param a number to exponentiate + * @param x power to apply + * @return ax + */ + public static SparseGradient pow(final double a, final SparseGradient x) { + if (a == 0) { + if (x.value == 0) { + return x.compose(1.0, Double.NEGATIVE_INFINITY); + } else if (x.value < 0) { + return x.compose(Double.NaN, Double.NaN); + } else { + return x.getField().getZero(); + } + } else { + final double ax = FastMath.pow(a, x.value); + return new SparseGradient(ax, ax * FastMath.log(a), x.derivatives); + } + } + + /** {@inheritDoc} */ + @Override + public SparseGradient exp() { + final double e = FastMath.exp(value); + return new SparseGradient(e, e, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient expm1() { + return new SparseGradient(FastMath.expm1(value), FastMath.exp(value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient log() { + return new SparseGradient(FastMath.log(value), 1.0 / value, derivatives); + } + + /** Base 10 logarithm. + * @return base 10 logarithm of the instance + */ + public SparseGradient log10() { + return new SparseGradient(FastMath.log10(value), 1.0 / (FastMath.log(10.0) * value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient log1p() { + return new SparseGradient(FastMath.log1p(value), 1.0 / (1.0 + value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient cos() { + return new SparseGradient(FastMath.cos(value), -FastMath.sin(value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient sin() { + return new SparseGradient(FastMath.sin(value), FastMath.cos(value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient tan() { + final double t = FastMath.tan(value); + return new SparseGradient(t, 1 + t * t, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient acos() { + return new SparseGradient(FastMath.acos(value), -1.0 / FastMath.sqrt(1 - value * value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient asin() { + return new SparseGradient(FastMath.asin(value), 1.0 / FastMath.sqrt(1 - value * value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient atan() { + return new SparseGradient(FastMath.atan(value), 1.0 / (1 + value * value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient atan2(final SparseGradient x) { + + // compute r = sqrt(x^2+y^2) + final SparseGradient r = multiply(this).add(x.multiply(x)).sqrt(); + + final SparseGradient a; + if (x.value >= 0) { + + // compute atan2(y, x) = 2 atan(y / (r + x)) + a = divide(r.add(x)).atan().multiply(2); + + } else { + + // compute atan2(y, x) = +/- pi - 2 atan(y / (r - x)) + final SparseGradient tmp = divide(r.subtract(x)).atan().multiply(-2); + a = tmp.add(tmp.value <= 0 ? -FastMath.PI : FastMath.PI); + + } + + // fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly + a.value = FastMath.atan2(value, x.value); + + return a; + + } + + /** Two arguments arc tangent operation. + * @param y first argument of the arc tangent + * @param x second argument of the arc tangent + * @return atan2(y, x) + */ + public static SparseGradient atan2(final SparseGradient y, final SparseGradient x) { + return y.atan2(x); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient cosh() { + return new SparseGradient(FastMath.cosh(value), FastMath.sinh(value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient sinh() { + return new SparseGradient(FastMath.sinh(value), FastMath.cosh(value), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient tanh() { + final double t = FastMath.tanh(value); + return new SparseGradient(t, 1 - t * t, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient acosh() { + return new SparseGradient(FastMath.acosh(value), 1.0 / FastMath.sqrt(value * value - 1.0), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient asinh() { + return new SparseGradient(FastMath.asinh(value), 1.0 / FastMath.sqrt(value * value + 1.0), derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient atanh() { + return new SparseGradient(FastMath.atanh(value), 1.0 / (1.0 - value * value), derivatives); + } + + /** Convert radians to degrees, with error of less than 0.5 ULP + * @return instance converted into degrees + */ + public SparseGradient toDegrees() { + return new SparseGradient(FastMath.toDegrees(value), FastMath.toDegrees(1.0), derivatives); + } + + /** Convert degrees to radians, with error of less than 0.5 ULP + * @return instance converted into radians + */ + public SparseGradient toRadians() { + return new SparseGradient(FastMath.toRadians(value), FastMath.toRadians(1.0), derivatives); + } + + /** Evaluate Taylor expansion of a sparse gradient. + * @param delta parameters offsets (Δx, Δy, ...) + * @return value of the Taylor expansion at x + Δx, y + Δy, ... + */ + public double taylor(final double ... delta) { + double y = value; + for (int i = 0; i < delta.length; ++i) { + y += delta[i] * getDerivative(i); + } + return y; + } + + /** Compute composition of the instance by a univariate function. + * @param f0 value of the function at (i.e. f({@link #getValue()})) + * @param f1 first derivative of the function at + * the current point (i.e. f'({@link #getValue()})) + * @return f(this) + */ + public SparseGradient compose(final double f0, final double f1) { + return new SparseGradient(f0, f1, derivatives); + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final SparseGradient[] a, + final SparseGradient[] b) + throws DimensionMismatchException { + + // compute a simple value, with all partial derivatives + SparseGradient out = a[0].getField().getZero(); + for (int i = 0; i < a.length; ++i) { + out = out.add(a[i].multiply(b[i])); + } + + // recompute an accurate value, taking care of cancellations + final double[] aDouble = new double[a.length]; + for (int i = 0; i < a.length; ++i) { + aDouble[i] = a[i].getValue(); + } + final double[] bDouble = new double[b.length]; + for (int i = 0; i < b.length; ++i) { + bDouble[i] = b[i].getValue(); + } + out.value = MathArrays.linearCombination(aDouble, bDouble); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final double[] a, final SparseGradient[] b) { + + // compute a simple value, with all partial derivatives + SparseGradient out = b[0].getField().getZero(); + for (int i = 0; i < a.length; ++i) { + out = out.add(b[i].multiply(a[i])); + } + + // recompute an accurate value, taking care of cancellations + final double[] bDouble = new double[b.length]; + for (int i = 0; i < b.length; ++i) { + bDouble[i] = b[i].getValue(); + } + out.value = MathArrays.linearCombination(a, bDouble); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1, + final SparseGradient a2, final SparseGradient b2) { + + // compute a simple value, with all partial derivatives + SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)); + + // recompute an accurate value, taking care of cancellations + out.value = MathArrays.linearCombination(a1.value, b1.value, a2.value, b2.value); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final double a1, final SparseGradient b1, + final double a2, final SparseGradient b2) { + + // compute a simple value, with all partial derivatives + SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)); + + // recompute an accurate value, taking care of cancellations + out.value = MathArrays.linearCombination(a1, b1.value, a2, b2.value); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1, + final SparseGradient a2, final SparseGradient b2, + final SparseGradient a3, final SparseGradient b3) { + + // compute a simple value, with all partial derivatives + SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3)); + + // recompute an accurate value, taking care of cancellations + out.value = MathArrays.linearCombination(a1.value, b1.value, + a2.value, b2.value, + a3.value, b3.value); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final double a1, final SparseGradient b1, + final double a2, final SparseGradient b2, + final double a3, final SparseGradient b3) { + + // compute a simple value, with all partial derivatives + SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3)); + + // recompute an accurate value, taking care of cancellations + out.value = MathArrays.linearCombination(a1, b1.value, + a2, b2.value, + a3, b3.value); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1, + final SparseGradient a2, final SparseGradient b2, + final SparseGradient a3, final SparseGradient b3, + final SparseGradient a4, final SparseGradient b4) { + + // compute a simple value, with all partial derivatives + SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3)).add(a4.multiply(b4)); + + // recompute an accurate value, taking care of cancellations + out.value = MathArrays.linearCombination(a1.value, b1.value, + a2.value, b2.value, + a3.value, b3.value, + a4.value, b4.value); + + return out; + + } + + /** {@inheritDoc} */ + @Override + public SparseGradient linearCombination(final double a1, final SparseGradient b1, + final double a2, final SparseGradient b2, + final double a3, final SparseGradient b3, + final double a4, final SparseGradient b4) { + + // compute a simple value, with all partial derivatives + SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3)).add(b4.multiply(a4)); + + // recompute an accurate value, taking care of cancellations + out.value = MathArrays.linearCombination(a1, b1.value, + a2, b2.value, + a3, b3.value, + a4, b4.value); + + return out; + + } + + /** + * Test for the equality of two sparse gradients. + *

+ * Sparse gradients are considered equal if they have the same value + * and the same derivatives. + *

+ * @param other Object to test for equality to this + * @return true if two sparse gradients are equal + */ + @Override + public boolean equals(Object other) { + + if (this == other) { + return true; + } + + if (other instanceof SparseGradient) { + final SparseGradient rhs = (SparseGradient)other; + if (!Precision.equals(value, rhs.value, 1)) { + return false; + } + if (derivatives.size() != rhs.derivatives.size()) { + return false; + } + for (final Map.Entry entry : derivatives.entrySet()) { + if (!rhs.derivatives.containsKey(entry.getKey())) { + return false; + } + if (!Precision.equals(entry.getValue(), rhs.derivatives.get(entry.getKey()), 1)) { + return false; + } + } + return true; + } + + return false; + + } + + /** + * Get a hashCode for the derivative structure. + * @return a hash code value for this object + * @since 3.2 + */ + @Override + public int hashCode() { + return 743 + 809 * + 233 * MathUtils.hash(value) + 167 * derivatives.hashCode(); + } + +} diff --git a/src/test/java/org/apache/commons/math3/analysis/differentiation/SparseGradientTest.java b/src/test/java/org/apache/commons/math3/analysis/differentiation/SparseGradientTest.java new file mode 100644 index 000000000..8fa168330 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/analysis/differentiation/SparseGradientTest.java @@ -0,0 +1,1128 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.analysis.differentiation; + +import java.util.Arrays; +import java.util.List; + +import org.apache.commons.math3.ExtendedFieldElementAbstractTest; +import org.apache.commons.math3.TestUtils; +import org.apache.commons.math3.analysis.polynomials.PolynomialFunction; +import org.apache.commons.math3.random.Well1024a; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +public class SparseGradientTest extends ExtendedFieldElementAbstractTest { + + @Override + protected SparseGradient build(final double x) { + return SparseGradient.createVariable(0, x); + } + + @Test + public void testConstant() { + double c = 1.0; + SparseGradient grad = SparseGradient.createConstant(c); + Assert.assertEquals(c, grad.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(0, grad.numVars(), 1.0e-15); // has no variables + } + + @Test + public void testVariable() { + double v = 1.0; + int id = 0; + SparseGradient grad = SparseGradient.createVariable(id, v); + Assert.assertEquals(v, grad.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(1, grad.numVars(), 1.0e-15); // has one variable + Assert.assertEquals(1.0, grad.getDerivative(id), 1.0e-15); // derivative wr.t itself is 1 + } + + @Test + public void testVarAddition() { + final double v1 = 1.0; + final double v2 = 2.0; + final int id1 = -1; + final int id2 = 3; + final SparseGradient var1 = SparseGradient.createVariable(id1, v1); + final SparseGradient var2 = SparseGradient.createVariable(id2, v2); + final SparseGradient sum = var1.add(var2); + + Assert.assertEquals(v1 + v2, sum.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(2, sum.numVars()); + Assert.assertEquals(1.0, sum.getDerivative(id1), 1.0e-15); + Assert.assertEquals(1.0, sum.getDerivative(id2), 1.0e-15); + } + + @Test + public void testSubtraction() { + final double v1 = 1.0; + final double v2 = 2.0; + final int id1 = -1; + final int id2 = 3; + final SparseGradient var1 = SparseGradient.createVariable(id1, v1); + final SparseGradient var2 = SparseGradient.createVariable(id2, v2); + final SparseGradient sum = var1.subtract(var2); + + Assert.assertEquals(v1 - v2, sum.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(2, sum.numVars()); + Assert.assertEquals(1.0, sum.getDerivative(id1), 1.0e-15); + Assert.assertEquals(-1.0, sum.getDerivative(id2), 1.0e-15); + } + + @Test + public void testDivision() { + final double v1 = 1.0; + final double v2 = 2.0; + final int id1 = -1; + final int id2 = 3; + final SparseGradient var1 = SparseGradient.createVariable(id1, v1); + final SparseGradient var2 = SparseGradient.createVariable(id2, v2); + final SparseGradient out = var1.divide(var2); + Assert.assertEquals(v1 / v2, out.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(2, out.numVars()); + Assert.assertEquals(1 / v2, out.getDerivative(id1), 1.0e-15); + Assert.assertEquals(-1 / (v2 * v2), out.getDerivative(id2), 1.0e-15); + } + + @Test + public void testMult() { + final double v1 = 1.0; + final double c1 = 0.5; + final double v2 = 2.0; + final int id1 = -1; + final int id2 = 3; + final SparseGradient var1 = SparseGradient.createVariable(id1, v1); + final SparseGradient unit1 = var1.multiply(c1); + final SparseGradient unit2 = SparseGradient.createVariable(id2, v2).multiply(var1); + final SparseGradient sum = unit1.add(unit2); + Assert.assertEquals(v1 * c1 + v2 * v1, sum.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(2, sum.numVars()); + Assert.assertEquals(c1 + v2, sum.getDerivative(id1), 1.0e-15); + Assert.assertEquals(v1, sum.getDerivative(id2), 1.0e-15); + } + + @Test + public void testVarMultInPlace() { + final double v1 = 1.0; + final double c1 = 0.5; + final double v2 = 2.0; + final int id1 = -1; + final int id2 = 3; + final SparseGradient var1 = SparseGradient.createVariable(id1, v1); + final SparseGradient sum = var1.multiply(c1); + final SparseGradient mult = SparseGradient.createVariable(id2, v2); + mult.multInPlace(var1); + sum.addInPlace(mult); + Assert.assertEquals(v1 * c1 + v2 * v1, sum.getValue(), 1.0e-15); // returns the value + Assert.assertEquals(2, sum.numVars()); + Assert.assertEquals(c1 + v2, sum.getDerivative(id1), 1.0e-15); + Assert.assertEquals(v1, sum.getDerivative(id2), 1.0e-15); + } + + @Test + public void testPrimitiveAdd() { + checkF0F1(SparseGradient.createVariable(0, 1.0).add(5), 6.0, 1.0, 0.0, 0.0); + checkF0F1(SparseGradient.createVariable(1, 2.0).add(5), 7.0, 0.0, 1.0, 0.0); + checkF0F1(SparseGradient.createVariable(2, 3.0).add(5), 8.0, 0.0, 0.0, 1.0); + } + + @Test + public void testAdd() { + SparseGradient x = SparseGradient.createVariable(0, 1.0); + SparseGradient y = SparseGradient.createVariable(1, 2.0); + SparseGradient z = SparseGradient.createVariable(2, 3.0); + SparseGradient xyz = x.add(y.add(z)); + checkF0F1(xyz, x.getValue() + y.getValue() + z.getValue(), 1.0, 1.0, 1.0); + } + + @Test + public void testPrimitiveSubtract() { + checkF0F1(SparseGradient.createVariable(0, 1.0).subtract(5), -4.0, 1.0, 0.0, 0.0); + checkF0F1(SparseGradient.createVariable(1, 2.0).subtract(5), -3.0, 0.0, 1.0, 0.0); + checkF0F1(SparseGradient.createVariable(2, 3.0).subtract(5), -2.0, 0.0, 0.0, 1.0); + } + + @Test + public void testSubtract() { + SparseGradient x = SparseGradient.createVariable(0, 1.0); + SparseGradient y = SparseGradient.createVariable(1, 2.0); + SparseGradient z = SparseGradient.createVariable(2, 3.0); + SparseGradient xyz = x.subtract(y.subtract(z)); + checkF0F1(xyz, x.getValue() - (y.getValue() - z.getValue()), 1.0, -1.0, 1.0); + } + + @Test + public void testPrimitiveMultiply() { + checkF0F1(SparseGradient.createVariable(0, 1.0).multiply(5), 5.0, 5.0, 0.0, 0.0); + checkF0F1(SparseGradient.createVariable(1, 2.0).multiply(5), 10.0, 0.0, 5.0, 0.0); + checkF0F1(SparseGradient.createVariable(2, 3.0).multiply(5), 15.0, 0.0, 0.0, 5.0); + } + + @Test + public void testMultiply() { + SparseGradient x = SparseGradient.createVariable(0, 1.0); + SparseGradient y = SparseGradient.createVariable(1, 2.0); + SparseGradient z = SparseGradient.createVariable(2, 3.0); + SparseGradient xyz = x.multiply(y.multiply(z)); + checkF0F1(xyz, 6.0, 6.0, 3.0, 2.0); + } + + @Test + public void testNegate() { + checkF0F1(SparseGradient.createVariable(0, 1.0).negate(), -1.0, -1.0, 0.0, 0.0); + checkF0F1(SparseGradient.createVariable(1, 2.0).negate(), -2.0, 0.0, -1.0, 0.0); + checkF0F1(SparseGradient.createVariable(2, 3.0).negate(), -3.0, 0.0, 0.0, -1.0); + } + + @Test + public void testReciprocal() { + for (double x = 0.1; x < 1.2; x += 0.1) { + SparseGradient r = SparseGradient.createVariable(0, x).reciprocal(); + Assert.assertEquals(1 / x, r.getValue(), 1.0e-15); + final double expected = -1 / (x * x); + Assert.assertEquals(expected, r.getDerivative(0), 1.0e-15 * FastMath.abs(expected)); + } + } + + @Test + public void testPow() { + for (int n = 0; n < 10; ++n) { + + SparseGradient x = SparseGradient.createVariable(0, 1.0); + SparseGradient y = SparseGradient.createVariable(1, 2.0); + SparseGradient z = SparseGradient.createVariable(2, 3.0); + List list = Arrays.asList(x, y, z, + x.add(y).add(z), + x.multiply(y).multiply(z)); + + if (n == 0) { + for (SparseGradient sg : list) { + Assert.assertEquals(sg.getField().getOne(), sg.pow(n)); + } + } else if (n == 1) { + for (SparseGradient sg : list) { + Assert.assertEquals(sg, sg.pow(n)); + } + } else { + for (SparseGradient sg : list) { + SparseGradient p = sg.getField().getOne(); + for (int i = 0; i < n; ++i) { + p = p.multiply(sg); + } + Assert.assertEquals(p, sg.pow(n)); + } + } + } + } + + @Test + public void testPowDoubleDS() { + for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { + + SparseGradient x = SparseGradient.createVariable(0, 0.1); + SparseGradient y = SparseGradient.createVariable(1, 0.2); + SparseGradient z = SparseGradient.createVariable(2, 0.3); + List list = Arrays.asList(x, y, z, + x.add(y).add(z), + x.multiply(y).multiply(z)); + + for (SparseGradient sg : list) { + // the special case a = 0 is included here + for (double a : new double[] { 0.0, 0.1, 1.0, 2.0, 5.0 }) { + SparseGradient reference = (a == 0) ? + x.getField().getZero() : + SparseGradient.createConstant(a).pow(sg); + SparseGradient result = SparseGradient.pow(a, sg); + Assert.assertEquals(reference, result); + } + + } + + // negative base: -1^x can be evaluated for integers only, so value is sometimes OK, derivatives are always NaN + SparseGradient negEvenInteger = SparseGradient.pow(-2.0, SparseGradient.createVariable(0, 2.0)); + Assert.assertEquals(4.0, negEvenInteger.getValue(), 1.0e-15); + Assert.assertTrue(Double.isNaN(negEvenInteger.getDerivative(0))); + SparseGradient negOddInteger = SparseGradient.pow(-2.0, SparseGradient.createVariable(0, 3.0)); + Assert.assertEquals(-8.0, negOddInteger.getValue(), 1.0e-15); + Assert.assertTrue(Double.isNaN(negOddInteger.getDerivative(0))); + SparseGradient negNonInteger = SparseGradient.pow(-2.0, SparseGradient.createVariable(0, 2.001)); + Assert.assertTrue(Double.isNaN(negNonInteger.getValue())); + Assert.assertTrue(Double.isNaN(negNonInteger.getDerivative(0))); + + SparseGradient zeroNeg = SparseGradient.pow(0.0, SparseGradient.createVariable(0, -1.0)); + Assert.assertTrue(Double.isNaN(zeroNeg.getValue())); + Assert.assertTrue(Double.isNaN(zeroNeg.getDerivative(0))); + SparseGradient posNeg = SparseGradient.pow(2.0, SparseGradient.createVariable(0, -2.0)); + Assert.assertEquals(1.0 / 4.0, posNeg.getValue(), 1.0e-15); + Assert.assertEquals(FastMath.log(2.0) / 4.0, posNeg.getDerivative(0), 1.0e-15); + + // very special case: a = 0 and power = 0 + SparseGradient zeroZero = SparseGradient.pow(0.0, SparseGradient.createVariable(0, 0.0)); + + // this should be OK for simple first derivative with one variable only ... + Assert.assertEquals(1.0, zeroZero.getValue(), 1.0e-15); + Assert.assertEquals(Double.NEGATIVE_INFINITY, zeroZero.getDerivative(0), 1.0e-15); + Assert.assertEquals(0.0, zeroZero.getDerivative(1), 1.0e-15); + Assert.assertEquals(0.0, zeroZero.getDerivative(2), 1.0e-15); + + } + + } + + @Test + public void testExpression() { + double epsilon = 2.5e-13; + for (double x = 0; x < 2; x += 0.2) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = 0; y < 2; y += 0.2) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + for (double z = 0; z >- 2; z -= 0.2) { + SparseGradient sgZ = SparseGradient.createVariable(2, z); + + // f(x, y, z) = x + 5 x y - 2 z + (8 z x - y)^3 + SparseGradient sg = + sgZ.linearCombination(1, sgX, + 5, sgX.multiply(sgY), + -2, sgZ, + 1, sgZ.linearCombination(8, sgZ.multiply(sgX), -1, sgY).pow(3)); + double f = x + 5 * x * y - 2 * z + FastMath.pow(8 * z * x - y, 3); + Assert.assertEquals(f, sg.getValue(), FastMath.abs(epsilon * f)); + + // df/dx = 1 + 5 y + 24 (8 z x - y)^2 z + double dfdx = 1 + 5 * y + 24 * z * FastMath.pow(8 * z * x - y, 2); + Assert.assertEquals(dfdx, sg.getDerivative(0), FastMath.abs(epsilon * dfdx)); + + } + + } + } + } + + @Test + public void testCompositionOneVariableX() { + double epsilon = 1.0e-13; + for (double x = 0.1; x < 1.2; x += 0.1) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = 0.1; y < 1.2; y += 0.1) { + SparseGradient sgY = SparseGradient.createConstant(y); + SparseGradient f = sgX.divide(sgY).sqrt(); + double f0 = FastMath.sqrt(x / y); + Assert.assertEquals(f0, f.getValue(), FastMath.abs(epsilon * f0)); + double f1 = 1 / (2 * FastMath.sqrt(x * y)); + Assert.assertEquals(f1, f.getDerivative(0), FastMath.abs(epsilon * f1)); + } + } + } + + @Test + public void testTrigo() { + double epsilon = 2.0e-12; + for (double x = 0.1; x < 1.2; x += 0.1) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = 0.1; y < 1.2; y += 0.1) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + for (double z = 0.1; z < 1.2; z += 0.1) { + SparseGradient sgZ = SparseGradient.createVariable(2, z); + SparseGradient f = sgX.divide(sgY.cos().add(sgZ.tan())).sin(); + double a = FastMath.cos(y) + FastMath.tan(z); + double f0 = FastMath.sin(x / a); + Assert.assertEquals(f0, f.getValue(), FastMath.abs(epsilon * f0)); + double dfdx = FastMath.cos(x / a) / a; + Assert.assertEquals(dfdx, f.getDerivative(0), FastMath.abs(epsilon * dfdx)); + double dfdy = x * FastMath.sin(y) * dfdx / a; + Assert.assertEquals(dfdy, f.getDerivative(1), FastMath.abs(epsilon * dfdy)); + double cz = FastMath.cos(z); + double cz2 = cz * cz; + double dfdz = -x * dfdx / (a * cz2); + Assert.assertEquals(dfdz, f.getDerivative(2), FastMath.abs(epsilon * dfdz)); + } + } + } + } + + @Test + public void testSqrtDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient sqrt1 = sgX.pow(0.5); + SparseGradient sqrt2 = sgX.sqrt(); + SparseGradient zero = sqrt1.subtract(sqrt2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testRootNSingularity() { + for (int n = 2; n < 10; ++n) { + SparseGradient sgZero = SparseGradient.createVariable(0, 0.0); + SparseGradient rootN = sgZero.rootN(n); + Assert.assertEquals(0.0, rootN.getValue(), 1.0e-5); + Assert.assertTrue(Double.isInfinite(rootN.getDerivative(0))); + Assert.assertTrue(rootN.getDerivative(0) > 0); + } + + } + + @Test + public void testSqrtPow2() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.multiply(sgX).sqrt(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testCbrtDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient cbrt1 = sgX.pow(1.0 / 3.0); + SparseGradient cbrt2 = sgX.cbrt(); + SparseGradient zero = cbrt1.subtract(cbrt2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testCbrtPow3() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.multiply(sgX.multiply(sgX)).cbrt(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testPowReciprocalPow() { + for (double x = 0.1; x < 1.2; x += 0.01) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = 0.1; y < 1.2; y += 0.01) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + SparseGradient rebuiltX = sgX.pow(sgY).pow(sgY.reciprocal()); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0, 0.0); + } + } + } + + @Test + public void testHypotDefinition() { + for (double x = -1.7; x < 2; x += 0.2) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = -1.7; y < 2; y += 0.2) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + SparseGradient hypot = SparseGradient.hypot(sgY, sgX); + SparseGradient ref = sgX.multiply(sgX).add(sgY.multiply(sgY)).sqrt(); + SparseGradient zero = hypot.subtract(ref); + checkF0F1(zero, 0.0, 0.0, 0.0); + + } + } + } + + @Test + public void testHypotNoOverflow() { + + SparseGradient sgX = SparseGradient.createVariable(0, +3.0e250); + SparseGradient sgY = SparseGradient.createVariable(1, -4.0e250); + SparseGradient hypot = SparseGradient.hypot(sgX, sgY); + Assert.assertEquals(5.0e250, hypot.getValue(), 1.0e235); + Assert.assertEquals(sgX.getValue() / hypot.getValue(), hypot.getDerivative(0), 1.0e-10); + Assert.assertEquals(sgY.getValue() / hypot.getValue(), hypot.getDerivative(1), 1.0e-10); + + SparseGradient sqrt = sgX.multiply(sgX).add(sgY.multiply(sgY)).sqrt(); + Assert.assertTrue(Double.isInfinite(sqrt.getValue())); + + } + + @Test + public void testHypotNeglectible() { + + SparseGradient sgSmall = SparseGradient.createVariable(0, +3.0e-10); + SparseGradient sgLarge = SparseGradient.createVariable(1, -4.0e25); + + Assert.assertEquals(sgLarge.abs().getValue(), + SparseGradient.hypot(sgSmall, sgLarge).getValue(), + 1.0e-10); + Assert.assertEquals(0, + SparseGradient.hypot(sgSmall, sgLarge).getDerivative(0), + 1.0e-10); + Assert.assertEquals(-1, + SparseGradient.hypot(sgSmall, sgLarge).getDerivative(1), + 1.0e-10); + + Assert.assertEquals(sgLarge.abs().getValue(), + SparseGradient.hypot(sgLarge, sgSmall).getValue(), + 1.0e-10); + Assert.assertEquals(0, + SparseGradient.hypot(sgLarge, sgSmall).getDerivative(0), + 1.0e-10); + Assert.assertEquals(-1, + SparseGradient.hypot(sgLarge, sgSmall).getDerivative(1), + 1.0e-10); + + } + + @Test + public void testHypotSpecial() { + Assert.assertTrue(Double.isNaN(SparseGradient.hypot(SparseGradient.createVariable(0, Double.NaN), + SparseGradient.createVariable(0, +3.0e250)).getValue())); + Assert.assertTrue(Double.isNaN(SparseGradient.hypot(SparseGradient.createVariable(0, +3.0e250), + SparseGradient.createVariable(0, Double.NaN)).getValue())); + Assert.assertTrue(Double.isInfinite(SparseGradient.hypot(SparseGradient.createVariable(0, Double.POSITIVE_INFINITY), + SparseGradient.createVariable(0, +3.0e250)).getValue())); + Assert.assertTrue(Double.isInfinite(SparseGradient.hypot(SparseGradient.createVariable(0, +3.0e250), + SparseGradient.createVariable(0, Double.POSITIVE_INFINITY)).getValue())); + } + + @Test + public void testPrimitiveRemainder() { + for (double x = -1.7; x < 2; x += 0.2) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = -1.7; y < 2; y += 0.2) { + SparseGradient remainder = sgX.remainder(y); + SparseGradient ref = sgX.subtract(x - FastMath.IEEEremainder(x, y)); + SparseGradient zero = remainder.subtract(ref); + checkF0F1(zero, 0.0, 0.0, 0.0); + } + } + } + + @Test + public void testRemainder() { + for (double x = -1.7; x < 2; x += 0.2) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = -1.7; y < 2; y += 0.2) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + SparseGradient remainder = sgX.remainder(sgY); + SparseGradient ref = sgX.subtract(sgY.multiply((x - FastMath.IEEEremainder(x, y)) / y)); + SparseGradient zero = remainder.subtract(ref); + checkF0F1(zero, 0.0, 0.0, 0.0); + } + } + } + + @Override + @Test + public void testExp() { + for (double x = 0.1; x < 1.2; x += 0.001) { + double refExp = FastMath.exp(x); + checkF0F1(SparseGradient.createVariable(0, x).exp(), refExp, refExp); + } + } + + @Test + public void testExpm1Definition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient expm11 = sgX.expm1(); + SparseGradient expm12 = sgX.exp().subtract(sgX.getField().getOne()); + SparseGradient zero = expm11.subtract(expm12); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Override + @Test + public void testLog() { + for (double x = 0.1; x < 1.2; x += 0.001) { + checkF0F1(SparseGradient.createVariable(0, x).log(), FastMath.log(x), 1.0 / x); + } + } + + @Test + public void testLog1pDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient log1p1 = sgX.log1p(); + SparseGradient log1p2 = sgX.add(sgX.getField().getOne()).log(); + SparseGradient zero = log1p1.subtract(log1p2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testLog10Definition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient log101 = sgX.log10(); + SparseGradient log102 = sgX.log().divide(FastMath.log(10.0)); + SparseGradient zero = log101.subtract(log102); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testLogExp() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.exp().log(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testLog1pExpm1() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.expm1().log1p(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testLog10Power() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = SparseGradient.pow(10.0, sgX).log10(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testSinCos() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient sin = sgX.sin(); + SparseGradient cos = sgX.cos(); + double s = FastMath.sin(x); + double c = FastMath.cos(x); + checkF0F1(sin, s, c); + checkF0F1(cos, c, -s); + } + } + + @Test + public void testSinAsin() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.sin().asin(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testCosAcos() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.cos().acos(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testTanAtan() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.tan().atan(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testTangentDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient tan1 = sgX.sin().divide(sgX.cos()); + SparseGradient tan2 = sgX.tan(); + SparseGradient zero = tan1.subtract(tan2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Override + @Test + public void testAtan2() { + for (double x = -1.7; x < 2; x += 0.2) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = -1.7; y < 2; y += 0.2) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + SparseGradient atan2 = SparseGradient.atan2(sgY, sgX); + SparseGradient ref = sgY.divide(sgX).atan(); + if (x < 0) { + ref = (y < 0) ? ref.subtract(FastMath.PI) : ref.add(FastMath.PI); + } + SparseGradient zero = atan2.subtract(ref); + checkF0F1(zero, 0.0, 0.0); + } + } + } + + @Test + public void testAtan2SpecialCases() { + + SparseGradient pp = + SparseGradient.atan2(SparseGradient.createVariable(1, +0.0), + SparseGradient.createVariable(1, +0.0)); + Assert.assertEquals(0, pp.getValue(), 1.0e-15); + Assert.assertEquals(+1, FastMath.copySign(1, pp.getValue()), 1.0e-15); + + SparseGradient pn = + SparseGradient.atan2(SparseGradient.createVariable(1, +0.0), + SparseGradient.createVariable(1, -0.0)); + Assert.assertEquals(FastMath.PI, pn.getValue(), 1.0e-15); + + SparseGradient np = + SparseGradient.atan2(SparseGradient.createVariable(1, -0.0), + SparseGradient.createVariable(1, +0.0)); + Assert.assertEquals(0, np.getValue(), 1.0e-15); + Assert.assertEquals(-1, FastMath.copySign(1, np.getValue()), 1.0e-15); + + SparseGradient nn = + SparseGradient.atan2(SparseGradient.createVariable(1, -0.0), + SparseGradient.createVariable(1, -0.0)); + Assert.assertEquals(-FastMath.PI, nn.getValue(), 1.0e-15); + + } + + @Test + public void testSinhDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient sinh1 = sgX.exp().subtract(sgX.exp().reciprocal()).multiply(0.5); + SparseGradient sinh2 = sgX.sinh(); + SparseGradient zero = sinh1.subtract(sinh2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testCoshDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient cosh1 = sgX.exp().add(sgX.exp().reciprocal()).multiply(0.5); + SparseGradient cosh2 = sgX.cosh(); + SparseGradient zero = cosh1.subtract(cosh2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testTanhDefinition() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient tanh1 = sgX.exp().subtract(sgX.exp().reciprocal()).divide(sgX.exp().add(sgX.exp().reciprocal())); + SparseGradient tanh2 = sgX.tanh(); + SparseGradient zero = tanh1.subtract(tanh2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testSinhAsinh() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.sinh().asinh(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testCoshAcosh() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.cosh().acosh(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testTanhAtanh() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.tanh().atanh(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testCompositionOneVariableY() { + for (double x = 0.1; x < 1.2; x += 0.1) { + SparseGradient sgX = SparseGradient.createConstant(x); + for (double y = 0.1; y < 1.2; y += 0.1) { + SparseGradient sgY = SparseGradient.createVariable(0, y); + SparseGradient f = sgX.divide(sgY).sqrt(); + double f0 = FastMath.sqrt(x / y); + double f1 = -x / (2 * y * y * f0); + checkF0F1(f, f0, f1); + } + } + } + + @Test + public void testTaylorPolynomial() { + for (double x = 0; x < 1.2; x += 0.1) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + for (double y = 0; y < 1.2; y += 0.2) { + SparseGradient sgY = SparseGradient.createVariable(1, y); + for (double z = 0; z < 1.2; z += 0.2) { + SparseGradient sgZ = SparseGradient.createVariable(2, z); + SparseGradient f = sgX.multiply(3).add(sgZ.multiply(-2)).add(sgY.multiply(5)); + for (double dx = -0.2; dx < 0.2; dx += 0.2) { + for (double dy = -0.2; dy < 0.2; dy += 0.1) { + for (double dz = -0.2; dz < 0.2; dz += 0.1) { + double ref = 3 * (x + dx) + 5 * (y + dy) -2 * (z + dz); + Assert.assertEquals(ref, f.taylor(dx, dy, dz), 3.0e-15); + } + } + } + } + } + } + } + + @Test + public void testTaylorAtan2() { + double x0 = 0.1; + double y0 = -0.3; + SparseGradient sgX = SparseGradient.createVariable(0, x0); + SparseGradient sgY = SparseGradient.createVariable(1, y0); + SparseGradient atan2 = SparseGradient.atan2(sgY, sgX); + double maxError = 0; + for (double dx = -0.05; dx < 0.05; dx += 0.001) { + for (double dy = -0.05; dy < 0.05; dy += 0.001) { + double ref = FastMath.atan2(y0 + dy, x0 + dx); + maxError = FastMath.max(maxError, FastMath.abs(ref - atan2.taylor(dx, dy))); + } + } + double expectedError = 0.0241; + Assert.assertEquals(expectedError, maxError, 0.01 * expectedError); + } + + @Override + @Test + public void testAbs() { + + SparseGradient minusOne = SparseGradient.createVariable(0, -1.0); + Assert.assertEquals(+1.0, minusOne.abs().getValue(), 1.0e-15); + Assert.assertEquals(-1.0, minusOne.abs().getDerivative(0), 1.0e-15); + + SparseGradient plusOne = SparseGradient.createVariable(0, +1.0); + Assert.assertEquals(+1.0, plusOne.abs().getValue(), 1.0e-15); + Assert.assertEquals(+1.0, plusOne.abs().getDerivative(0), 1.0e-15); + + SparseGradient minusZero = SparseGradient.createVariable(0, -0.0); + Assert.assertEquals(+0.0, minusZero.abs().getValue(), 1.0e-15); + Assert.assertEquals(-1.0, minusZero.abs().getDerivative(0), 1.0e-15); + + SparseGradient plusZero = SparseGradient.createVariable(0, +0.0); + Assert.assertEquals(+0.0, plusZero.abs().getValue(), 1.0e-15); + Assert.assertEquals(+1.0, plusZero.abs().getDerivative(0), 1.0e-15); + + } + + @Override + @Test + public void testSignum() { + + SparseGradient minusOne = SparseGradient.createVariable(0, -1.0); + Assert.assertEquals(-1.0, minusOne.signum().getValue(), 1.0e-15); + Assert.assertEquals( 0.0, minusOne.signum().getDerivative(0), 1.0e-15); + + SparseGradient plusOne = SparseGradient.createVariable(0, +1.0); + Assert.assertEquals(+1.0, plusOne.signum().getValue(), 1.0e-15); + Assert.assertEquals( 0.0, plusOne.signum().getDerivative(0), 1.0e-15); + + SparseGradient minusZero = SparseGradient.createVariable(0, -0.0); + Assert.assertEquals(-0.0, minusZero.signum().getValue(), 1.0e-15); + Assert.assertTrue(Double.doubleToLongBits(minusZero.signum().getValue()) < 0); + Assert.assertEquals( 0.0, minusZero.signum().getDerivative(0), 1.0e-15); + + SparseGradient plusZero = SparseGradient.createVariable(0, +0.0); + Assert.assertEquals(+0.0, plusZero.signum().getValue(), 1.0e-15); + Assert.assertTrue(Double.doubleToLongBits(plusZero.signum().getValue()) == 0); + Assert.assertEquals( 0.0, plusZero.signum().getDerivative(0), 1.0e-15); + + } + + @Test + public void testCeilFloorRintLong() { + + SparseGradient x = SparseGradient.createVariable(0, -1.5); + Assert.assertEquals(-1.5, x.getValue(), 1.0e-15); + Assert.assertEquals(+1.0, x.getDerivative(0), 1.0e-15); + Assert.assertEquals(-1.0, x.ceil().getValue(), 1.0e-15); + Assert.assertEquals(+0.0, x.ceil().getDerivative(0), 1.0e-15); + Assert.assertEquals(-2.0, x.floor().getValue(), 1.0e-15); + Assert.assertEquals(+0.0, x.floor().getDerivative(0), 1.0e-15); + Assert.assertEquals(-2.0, x.rint().getValue(), 1.0e-15); + Assert.assertEquals(+0.0, x.rint().getDerivative(0), 1.0e-15); + Assert.assertEquals(-2.0, x.subtract(x.getField().getOne()).rint().getValue(), 1.0e-15); + Assert.assertEquals(-1l, x.round(), 1.0e-15); + + } + + @Test + public void testCopySign() { + + SparseGradient minusOne = SparseGradient.createVariable(0, -1.0); + Assert.assertEquals(+1.0, minusOne.copySign(+1.0).getValue(), 1.0e-15); + Assert.assertEquals(-1.0, minusOne.copySign(+1.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(-1.0, minusOne.copySign(-1.0).getValue(), 1.0e-15); + Assert.assertEquals(+1.0, minusOne.copySign(-1.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(+1.0, minusOne.copySign(+0.0).getValue(), 1.0e-15); + Assert.assertEquals(-1.0, minusOne.copySign(+0.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(-1.0, minusOne.copySign(-0.0).getValue(), 1.0e-15); + Assert.assertEquals(+1.0, minusOne.copySign(-0.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(+1.0, minusOne.copySign(Double.NaN).getValue(), 1.0e-15); + Assert.assertEquals(-1.0, minusOne.copySign(Double.NaN).getDerivative(0), 1.0e-15); + + SparseGradient plusOne = SparseGradient.createVariable(0, +1.0); + Assert.assertEquals(+1.0, plusOne.copySign(+1.0).getValue(), 1.0e-15); + Assert.assertEquals(+1.0, plusOne.copySign(+1.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(-1.0, plusOne.copySign(-1.0).getValue(), 1.0e-15); + Assert.assertEquals(-1.0, plusOne.copySign(-1.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(+1.0, plusOne.copySign(+0.0).getValue(), 1.0e-15); + Assert.assertEquals(+1.0, plusOne.copySign(+0.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(-1.0, plusOne.copySign(-0.0).getValue(), 1.0e-15); + Assert.assertEquals(-1.0, plusOne.copySign(-0.0).getDerivative(0), 1.0e-15); + Assert.assertEquals(+1.0, plusOne.copySign(Double.NaN).getValue(), 1.0e-15); + Assert.assertEquals(+1.0, plusOne.copySign(Double.NaN).getDerivative(0), 1.0e-15); + + } + + @Test + public void testToDegreesDefinition() { + double epsilon = 3.0e-16; + for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + Assert.assertEquals(FastMath.toDegrees(x), sgX.toDegrees().getValue(), epsilon); + Assert.assertEquals(180 / FastMath.PI, sgX.toDegrees().getDerivative(0), epsilon); + } + } + } + + @Test + public void testToRadiansDefinition() { + double epsilon = 3.0e-16; + for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + Assert.assertEquals(FastMath.toRadians(x), sgX.toRadians().getValue(), epsilon); + Assert.assertEquals(FastMath.PI / 180, sgX.toRadians().getDerivative(0), epsilon); + } + } + } + + @Test + public void testDegRad() { + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient rebuiltX = sgX.toDegrees().toRadians(); + SparseGradient zero = rebuiltX.subtract(sgX); + checkF0F1(zero, 0, 0); + } + } + + @Test + public void testCompose() { + PolynomialFunction poly = + new PolynomialFunction(new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }); + for (double x = 0.1; x < 1.2; x += 0.001) { + SparseGradient sgX = SparseGradient.createVariable(0, x); + SparseGradient sgY1 = sgX.getField().getZero(); + for (int i = poly.degree(); i >= 0; --i) { + sgY1 = sgY1.multiply(sgX).add(poly.getCoefficients()[i]); + } + SparseGradient sgY2 = sgX.compose(poly.value(x), poly.derivative().value(x)); + SparseGradient zero = sgY1.subtract(sgY2); + checkF0F1(zero, 0.0, 0.0); + } + } + + @Test + public void testField() { + SparseGradient x = SparseGradient.createVariable(0, 1.0); + checkF0F1(x.getField().getZero(), 0.0, 0.0, 0.0, 0.0); + checkF0F1(x.getField().getOne(), 1.0, 0.0, 0.0, 0.0); + Assert.assertEquals(SparseGradient.class, x.getField().getRuntimeClass()); + } + + @Test + public void testLinearCombination1DSDS() { + final SparseGradient[] a = new SparseGradient[] { + SparseGradient.createVariable(0, -1321008684645961.0 / 268435456.0), + SparseGradient.createVariable(1, -5774608829631843.0 / 268435456.0), + SparseGradient.createVariable(2, -7645843051051357.0 / 8589934592.0) + }; + final SparseGradient[] b = new SparseGradient[] { + SparseGradient.createVariable(3, -5712344449280879.0 / 2097152.0), + SparseGradient.createVariable(4, -4550117129121957.0 / 2097152.0), + SparseGradient.createVariable(5, 8846951984510141.0 / 131072.0) + }; + + final SparseGradient abSumInline = a[0].linearCombination(a[0], b[0], a[1], b[1], a[2], b[2]); + final SparseGradient abSumArray = a[0].linearCombination(a, b); + + Assert.assertEquals(abSumInline.getValue(), abSumArray.getValue(), 1.0e-15); + Assert.assertEquals(-1.8551294182586248737720779899, abSumInline.getValue(), 1.0e-15); + Assert.assertEquals(b[0].getValue(), abSumInline.getDerivative(0), 1.0e-15); + Assert.assertEquals(b[1].getValue(), abSumInline.getDerivative(1), 1.0e-15); + Assert.assertEquals(b[2].getValue(), abSumInline.getDerivative(2), 1.0e-15); + Assert.assertEquals(a[0].getValue(), abSumInline.getDerivative(3), 1.0e-15); + Assert.assertEquals(a[1].getValue(), abSumInline.getDerivative(4), 1.0e-15); + Assert.assertEquals(a[2].getValue(), abSumInline.getDerivative(5), 1.0e-15); + + } + + @Test + public void testLinearCombination1DoubleDS() { + final double[] a = new double[] { + -1321008684645961.0 / 268435456.0, + -5774608829631843.0 / 268435456.0, + -7645843051051357.0 / 8589934592.0 + }; + final SparseGradient[] b = new SparseGradient[] { + SparseGradient.createVariable(0, -5712344449280879.0 / 2097152.0), + SparseGradient.createVariable(1, -4550117129121957.0 / 2097152.0), + SparseGradient.createVariable(2, 8846951984510141.0 / 131072.0) + }; + + final SparseGradient abSumInline = b[0].linearCombination(a[0], b[0], + a[1], b[1], + a[2], b[2]); + final SparseGradient abSumArray = b[0].linearCombination(a, b); + + Assert.assertEquals(abSumInline.getValue(), abSumArray.getValue(), 1.0e-15); + Assert.assertEquals(-1.8551294182586248737720779899, abSumInline.getValue(), 1.0e-15); + Assert.assertEquals(a[0], abSumInline.getDerivative(0), 1.0e-15); + Assert.assertEquals(a[1], abSumInline.getDerivative(1), 1.0e-15); + Assert.assertEquals(a[2], abSumInline.getDerivative(2), 1.0e-15); + + } + + @Test + public void testLinearCombination2DSDS() { + // we compare accurate versus naive dot product implementations + // on regular vectors (i.e. not extreme cases like in the previous test) + Well1024a random = new Well1024a(0xc6af886975069f11l); + + for (int i = 0; i < 10000; ++i) { + final SparseGradient[] u = new SparseGradient[4]; + final SparseGradient[] v = new SparseGradient[4]; + for (int j = 0; j < u.length; ++j) { + u[j] = SparseGradient.createVariable(j, 1e17 * random.nextDouble()); + v[j] = SparseGradient.createConstant(1e17 * random.nextDouble()); + } + + SparseGradient lin = u[0].linearCombination(u[0], v[0], u[1], v[1]); + double ref = u[0].getValue() * v[0].getValue() + + u[1].getValue() * v[1].getValue(); + Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); + Assert.assertEquals(v[0].getValue(), lin.getDerivative(0), 1.0e-15 * FastMath.abs(v[0].getValue())); + Assert.assertEquals(v[1].getValue(), lin.getDerivative(1), 1.0e-15 * FastMath.abs(v[1].getValue())); + + lin = u[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2]); + ref = u[0].getValue() * v[0].getValue() + + u[1].getValue() * v[1].getValue() + + u[2].getValue() * v[2].getValue(); + Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); + Assert.assertEquals(v[0].getValue(), lin.getDerivative(0), 1.0e-15 * FastMath.abs(v[0].getValue())); + Assert.assertEquals(v[1].getValue(), lin.getDerivative(1), 1.0e-15 * FastMath.abs(v[1].getValue())); + Assert.assertEquals(v[2].getValue(), lin.getDerivative(2), 1.0e-15 * FastMath.abs(v[2].getValue())); + + lin = u[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2], u[3], v[3]); + ref = u[0].getValue() * v[0].getValue() + + u[1].getValue() * v[1].getValue() + + u[2].getValue() * v[2].getValue() + + u[3].getValue() * v[3].getValue(); + Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); + Assert.assertEquals(v[0].getValue(), lin.getDerivative(0), 1.0e-15 * FastMath.abs(v[0].getValue())); + Assert.assertEquals(v[1].getValue(), lin.getDerivative(1), 1.0e-15 * FastMath.abs(v[1].getValue())); + Assert.assertEquals(v[2].getValue(), lin.getDerivative(2), 1.0e-15 * FastMath.abs(v[2].getValue())); + Assert.assertEquals(v[3].getValue(), lin.getDerivative(3), 1.0e-15 * FastMath.abs(v[3].getValue())); + + } + } + + @Test + public void testLinearCombination2DoubleDS() { + // we compare accurate versus naive dot product implementations + // on regular vectors (i.e. not extreme cases like in the previous test) + Well1024a random = new Well1024a(0xc6af886975069f11l); + + for (int i = 0; i < 10000; ++i) { + final double[] u = new double[4]; + final SparseGradient[] v = new SparseGradient[4]; + for (int j = 0; j < u.length; ++j) { + u[j] = 1e17 * random.nextDouble(); + v[j] = SparseGradient.createVariable(j, 1e17 * random.nextDouble()); + } + + SparseGradient lin = v[0].linearCombination(u[0], v[0], u[1], v[1]); + double ref = u[0] * v[0].getValue() + + u[1] * v[1].getValue(); + Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); + Assert.assertEquals(u[0], lin.getDerivative(0), 1.0e-15 * FastMath.abs(v[0].getValue())); + Assert.assertEquals(u[1], lin.getDerivative(1), 1.0e-15 * FastMath.abs(v[1].getValue())); + + lin = v[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2]); + ref = u[0] * v[0].getValue() + + u[1] * v[1].getValue() + + u[2] * v[2].getValue(); + Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); + Assert.assertEquals(u[0], lin.getDerivative(0), 1.0e-15 * FastMath.abs(v[0].getValue())); + Assert.assertEquals(u[1], lin.getDerivative(1), 1.0e-15 * FastMath.abs(v[1].getValue())); + Assert.assertEquals(u[2], lin.getDerivative(2), 1.0e-15 * FastMath.abs(v[2].getValue())); + + lin = v[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2], u[3], v[3]); + ref = u[0] * v[0].getValue() + + u[1] * v[1].getValue() + + u[2] * v[2].getValue() + + u[3] * v[3].getValue(); + Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); + Assert.assertEquals(u[0], lin.getDerivative(0), 1.0e-15 * FastMath.abs(v[0].getValue())); + Assert.assertEquals(u[1], lin.getDerivative(1), 1.0e-15 * FastMath.abs(v[1].getValue())); + Assert.assertEquals(u[2], lin.getDerivative(2), 1.0e-15 * FastMath.abs(v[2].getValue())); + Assert.assertEquals(u[3], lin.getDerivative(3), 1.0e-15 * FastMath.abs(v[3].getValue())); + + } + } + + @Test + public void testSerialization() { + SparseGradient a = SparseGradient.createVariable(0, 1.3); + SparseGradient b = (SparseGradient) TestUtils.serializeAndRecover(a); + Assert.assertEquals(a, b); + } + + private void checkF0F1(SparseGradient sg, double value, double...derivatives) { + + // check value + Assert.assertEquals(value, sg.getValue(), 1.0e-13); + + // check first order derivatives + for (int i = 0; i < derivatives.length; ++i) { + Assert.assertEquals(derivatives[i], sg.getDerivative(i), 1.0e-13); + } + + } + +}