fixed javadoc links

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/branches/MATH_2_0@673953 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2008-07-04 08:25:26 +00:00
parent 31b3876063
commit c52ab55875
2 changed files with 22 additions and 22 deletions

View File

@ -80,7 +80,7 @@ public class CombinedEventsManager implements Serializable {
* @return an unmodifiable collection of the added event handlers
* @see #addEventHandler(EventHandler, double, double, int)
* @see #clearEventsHandlers()
* @see #getEventStates()
* @see #getEventsStates()
*/
public Collection<EventHandler> getEventsHandlers() {
final List<EventHandler> list = new ArrayList<EventHandler>();
@ -100,7 +100,7 @@ public class CombinedEventsManager implements Serializable {
/** Get all the events state wrapping the handlers that have been added to the manager.
* @return a collection of the events states
* @see #getEventHandlers()
* @see #getEventsHandlers()
*/
public Collection<EventState> getEventsStates() {
return states;

View File

@ -34,7 +34,7 @@ All integrators provide dense output. This means that besides
computing the state vector at discrete times, they also provide a
cheap mean to get the state between the time steps. They do so through
classes extending the {@link
org.apache.commons.math.ode.StepInterpolator StepInterpolator}
org.apache.commons.math.ode.sampling.StepInterpolator StepInterpolator}
abstract class, which are made available to the user at the end of
each step.
</p>
@ -69,10 +69,10 @@ the integration process is copied in the <code>y</code> array of the
FirstOrderIntegrator.integrate} method. The second one should be used
when more in-depth information is needed throughout the integration
process. The user can register an object implementing the {@link
org.apache.commons.math.ode.StepHandler StepHandler} interface or a
{@link org.apache.commons.math.ode.StepNormalizer StepNormalizer}
org.apache.commons.math.ode.sampling.StepHandler StepHandler} interface or a
{@link org.apache.commons.math.ode.sampling.StepNormalizer StepNormalizer}
object wrapping a user-specified object implementing the {@link
org.apache.commons.math.ode.FixedStepHandler FixedStepHandler}
org.apache.commons.math.ode.sampling.FixedStepHandler FixedStepHandler}
interface into the integrator before calling the {@link
org.apache.commons.math.ode.FirstOrderIntegrator#integrate
FirstOrderIntegrator.integrate} method. The user object will be called
@ -96,11 +96,11 @@ integrated problem by itself.
<p>
Other default implementations of the {@link
org.apache.commons.math.ode.StepHandler StepHandler} interface are
org.apache.commons.math.ode.sampling.StepHandler StepHandler} interface are
available for general needs ({@link
org.apache.commons.math.ode.DummyStepHandler DummyStepHandler}, {@link
org.apache.commons.math.ode.StepNormalizer StepNormalizer}) and custom
implementations can be developped for specific needs. As an example,
org.apache.commons.math.ode.sampling.DummyStepHandler DummyStepHandler}, {@link
org.apache.commons.math.ode.sampling.StepNormalizer StepNormalizer}) and custom
implementations can be developed for specific needs. As an example,
if an application is to be completely driven by the integration
process, then most of the application code will be run inside a step
handler specific to this application.
@ -111,14 +111,14 @@ Some integrators (the simple ones) use fixed steps that are set at
creation time. The more efficient integrators use variable steps that
are handled internally in order to control the integration error with
respect to a specified accuracy (these integrators extend the {@link
org.apache.commons.math.ode.AdaptiveStepsizeIntegrator
org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator
AdaptiveStepsizeIntegrator} abstract class). In this case, the step
handler which is called after each successful step shows up the
variable stepsize. The {@link
org.apache.commons.math.ode.StepNormalizer StepNormalizer} class can
org.apache.commons.math.ode.sampling.StepNormalizer StepNormalizer} class can
be used to convert the variable stepsize into a fixed stepsize that
can be handled by classes implementing the {@link
org.apache.commons.math.ode.FixedStepHandler FixedStepHandler}
org.apache.commons.math.ode.sampling.FixedStepHandler FixedStepHandler}
interface. Adaptive stepsize integrators can automatically compute the
initial stepsize by themselves, however the user can specify it if he
prefers to retain full control over the integration or if the
@ -129,21 +129,21 @@ automatic guess is wrong.
<table border="1" align="center">
<tr BGCOLOR="#CCCCFF"><td colspan=2><font size="+2">Fixed Step Integrators</font></td></tr>
<tr BGCOLOR="#EEEEFF"><font size="+1"><td>Name</td><td>Order</td></font></tr>
<tr><td>{@link org.apache.commons.math.ode.EulerIntegrator Euler}</td><td>1</td></tr>
<tr><td>{@link org.apache.commons.math.ode.MidpointIntegrator Midpoint}</td><td>2</td></tr>
<tr><td>{@link org.apache.commons.math.ode.ClassicalRungeKuttaIntegrator Classical Runge-Kutta}</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.GillIntegrator Gill}</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.ThreeEighthesIntegrator 3/8}</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.EulerIntegrator Euler}</td><td>1</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.MidpointIntegrator Midpoint}</td><td>2</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.ClassicalRungeKuttaIntegrator Classical Runge-Kutta}</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.GillIntegrator Gill}</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.ThreeEighthesIntegrator 3/8}</td><td>4</td></tr>
</table>
</p>
<table border="1" align="center">
<tr BGCOLOR="#CCCCFF"><td colspan=3><font size="+2">Adaptive Stepsize Integrators</font></td></tr>
<tr BGCOLOR="#EEEEFF"><font size="+1"><td>Name</td><td>Integration Order</td><td>Error Estimation Order</td></font></tr>
<tr><td>{@link org.apache.commons.math.ode.HighamHall54Integrator Higham and Hall}</td><td>5</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.DormandPrince54Integrator Dormand-Prince 5(4)}</td><td>5</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.DormandPrince853Integrator Dormand-Prince 8(5,3)}</td><td>8</td><td>5 and 3</td></tr>
<tr><td>{@link org.apache.commons.math.ode.GraggBulirschStoerIntegrator Gragg-Bulirsch-Stoer}</td><td>variable (up to 18 by default)</td><td>variable</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.HighamHall54Integrator Higham and Hall}</td><td>5</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.DormandPrince54Integrator Dormand-Prince 5(4)}</td><td>5</td><td>4</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.DormandPrince853Integrator Dormand-Prince 8(5,3)}</td><td>8</td><td>5 and 3</td></tr>
<tr><td>{@link org.apache.commons.math.ode.nonstiff.GraggBulirschStoerIntegrator Gragg-Bulirsch-Stoer}</td><td>variable (up to 18 by default)</td><td>variable</td></tr>
</table>
</p>