Add HelloWorld example for genetics package.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1549090 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
e42da5d9d2
commit
c823ac5673
|
@ -0,0 +1,171 @@
|
||||||
|
package org.apache.commons.math3.userguide.genetics;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.Arrays;
|
||||||
|
import java.util.LinkedList;
|
||||||
|
import java.util.List;
|
||||||
|
|
||||||
|
import org.apache.commons.lang3.ArrayUtils;
|
||||||
|
import org.apache.commons.lang3.RandomStringUtils;
|
||||||
|
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||||
|
import org.apache.commons.math3.genetics.AbstractListChromosome;
|
||||||
|
import org.apache.commons.math3.genetics.Chromosome;
|
||||||
|
import org.apache.commons.math3.genetics.ElitisticListPopulation;
|
||||||
|
import org.apache.commons.math3.genetics.GeneticAlgorithm;
|
||||||
|
import org.apache.commons.math3.genetics.InvalidRepresentationException;
|
||||||
|
import org.apache.commons.math3.genetics.MutationPolicy;
|
||||||
|
import org.apache.commons.math3.genetics.OnePointCrossover;
|
||||||
|
import org.apache.commons.math3.genetics.Population;
|
||||||
|
import org.apache.commons.math3.genetics.StoppingCondition;
|
||||||
|
import org.apache.commons.math3.genetics.TournamentSelection;
|
||||||
|
import org.apache.commons.math3.util.FastMath;
|
||||||
|
import org.apache.commons.math3.util.Precision;
|
||||||
|
|
||||||
|
public class HelloWorldExample {
|
||||||
|
public static final int POPULATION_SIZE = 1000;
|
||||||
|
public static final double CROSSOVER_RATE = 0.9;
|
||||||
|
public static final double MUTATION_RATE = 0.03;
|
||||||
|
public static final double ELITISM_RATE = 0.1;
|
||||||
|
public static final int TOURNAMENT_ARITY = 2;
|
||||||
|
|
||||||
|
public static final String TARGET_STRING = "Hello World!";
|
||||||
|
public static final int DIMENSION = TARGET_STRING.length();
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
long startTime = System.currentTimeMillis();
|
||||||
|
|
||||||
|
// initialize a new genetic algorithm
|
||||||
|
GeneticAlgorithm ga = new GeneticAlgorithm(new OnePointCrossover<Character>(), CROSSOVER_RATE,
|
||||||
|
new RandomCharacterMutation(), MUTATION_RATE,
|
||||||
|
new TournamentSelection(TOURNAMENT_ARITY));
|
||||||
|
|
||||||
|
// initial population
|
||||||
|
Population initial = getInitialPopulation();
|
||||||
|
|
||||||
|
// stopping condition
|
||||||
|
StoppingCondition stoppingCondition = new StoppingCondition() {
|
||||||
|
|
||||||
|
int generation = 0;
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public boolean isSatisfied(Population population) {
|
||||||
|
Chromosome fittestChromosome = population.getFittestChromosome();
|
||||||
|
|
||||||
|
if (generation == 1 || generation % 10 == 0) {
|
||||||
|
System.out.println("Generation " + generation + ": " + fittestChromosome.toString());
|
||||||
|
}
|
||||||
|
generation++;
|
||||||
|
|
||||||
|
double fitness = fittestChromosome.fitness();
|
||||||
|
if (Precision.equals(fitness, 0.0, 1e-6)) {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
System.out.println("Starting evolution ...");
|
||||||
|
|
||||||
|
// run the algorithm
|
||||||
|
Population finalPopulation = ga.evolve(initial, stoppingCondition);
|
||||||
|
|
||||||
|
// Get the end time for the simulation.
|
||||||
|
long endTime = System.currentTimeMillis();
|
||||||
|
|
||||||
|
// best chromosome from the final population
|
||||||
|
Chromosome best = finalPopulation.getFittestChromosome();
|
||||||
|
System.out.println("Generation " + ga.getGenerationsEvolved() + ": " + best.toString());
|
||||||
|
System.out.println("Total execution time: " + (endTime - startTime) + "ms");
|
||||||
|
}
|
||||||
|
|
||||||
|
private static List<Character> randomRepresentation(int length) {
|
||||||
|
return asList(RandomStringUtils.randomAscii(length));
|
||||||
|
}
|
||||||
|
|
||||||
|
private static List<Character> asList(String str) {
|
||||||
|
return Arrays.asList(ArrayUtils.toObject(str.toCharArray()));
|
||||||
|
}
|
||||||
|
|
||||||
|
private static Population getInitialPopulation() {
|
||||||
|
List<Chromosome> popList = new LinkedList<Chromosome>();
|
||||||
|
|
||||||
|
for (int i = 0; i < POPULATION_SIZE; i++) {
|
||||||
|
popList.add(new StringChromosome(randomRepresentation(DIMENSION)));
|
||||||
|
}
|
||||||
|
return new ElitisticListPopulation(popList, 2 * popList.size(), ELITISM_RATE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* String Chromosome represented by a list of characters.
|
||||||
|
*/
|
||||||
|
public static class StringChromosome extends AbstractListChromosome<Character> {
|
||||||
|
|
||||||
|
public StringChromosome(List<Character> repr) {
|
||||||
|
super(repr);
|
||||||
|
}
|
||||||
|
|
||||||
|
public StringChromosome(String str) {
|
||||||
|
this(asList(str));
|
||||||
|
}
|
||||||
|
|
||||||
|
public double fitness() {
|
||||||
|
String target = TARGET_STRING;
|
||||||
|
int f = 0; // start at 0; the best fitness
|
||||||
|
List<Character> chromosome = getRepresentation();
|
||||||
|
for (int i = 0, c = target.length(); i < c; i++) {
|
||||||
|
// subtract the ascii difference between the target character and the chromosome character.
|
||||||
|
// Thus 'c' is fitter than 'd' when compared to 'a'.
|
||||||
|
f -= FastMath.abs(target.charAt(i) - chromosome.get(i).charValue());
|
||||||
|
}
|
||||||
|
return f;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
protected void checkValidity(List<Character> repr) throws InvalidRepresentationException {
|
||||||
|
for (char c : repr) {
|
||||||
|
if (c < 32 || c > 126) {
|
||||||
|
throw new InvalidRepresentationException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public List<Character> getStringRepresentation() {
|
||||||
|
return getRepresentation();
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public StringChromosome newFixedLengthChromosome(List<Character> repr) {
|
||||||
|
return new StringChromosome(repr);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public String toString() {
|
||||||
|
StringBuffer sb = new StringBuffer();
|
||||||
|
for (Character i : getRepresentation()) {
|
||||||
|
sb.append(i.charValue());
|
||||||
|
}
|
||||||
|
return String.format("(f=%s '%s')", getFitness(), sb.toString());
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
private static class RandomCharacterMutation implements MutationPolicy {
|
||||||
|
public Chromosome mutate(Chromosome original) {
|
||||||
|
if (!(original instanceof StringChromosome)) {
|
||||||
|
throw new IllegalArgumentException();
|
||||||
|
}
|
||||||
|
|
||||||
|
StringChromosome strChromosome = (StringChromosome) original;
|
||||||
|
List<Character> characters = strChromosome.getStringRepresentation();
|
||||||
|
|
||||||
|
int mutationIndex = GeneticAlgorithm.getRandomGenerator().nextInt(characters.size());
|
||||||
|
|
||||||
|
List<Character> mutatedChromosome = new ArrayList<Character>(characters);
|
||||||
|
char newValue = (char) (32 + GeneticAlgorithm.getRandomGenerator().nextInt(127 - 32));
|
||||||
|
mutatedChromosome.set(mutationIndex, newValue);
|
||||||
|
|
||||||
|
return strChromosome.newFixedLengthChromosome(mutatedChromosome);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue