Add HelloWorld example for genetics package.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1549090 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Thomas Neidhart 2013-12-08 18:18:13 +00:00
parent e42da5d9d2
commit c823ac5673
1 changed files with 171 additions and 0 deletions

View File

@ -0,0 +1,171 @@
package org.apache.commons.math3.userguide.genetics;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import org.apache.commons.lang3.ArrayUtils;
import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.genetics.AbstractListChromosome;
import org.apache.commons.math3.genetics.Chromosome;
import org.apache.commons.math3.genetics.ElitisticListPopulation;
import org.apache.commons.math3.genetics.GeneticAlgorithm;
import org.apache.commons.math3.genetics.InvalidRepresentationException;
import org.apache.commons.math3.genetics.MutationPolicy;
import org.apache.commons.math3.genetics.OnePointCrossover;
import org.apache.commons.math3.genetics.Population;
import org.apache.commons.math3.genetics.StoppingCondition;
import org.apache.commons.math3.genetics.TournamentSelection;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;
public class HelloWorldExample {
public static final int POPULATION_SIZE = 1000;
public static final double CROSSOVER_RATE = 0.9;
public static final double MUTATION_RATE = 0.03;
public static final double ELITISM_RATE = 0.1;
public static final int TOURNAMENT_ARITY = 2;
public static final String TARGET_STRING = "Hello World!";
public static final int DIMENSION = TARGET_STRING.length();
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
// initialize a new genetic algorithm
GeneticAlgorithm ga = new GeneticAlgorithm(new OnePointCrossover<Character>(), CROSSOVER_RATE,
new RandomCharacterMutation(), MUTATION_RATE,
new TournamentSelection(TOURNAMENT_ARITY));
// initial population
Population initial = getInitialPopulation();
// stopping condition
StoppingCondition stoppingCondition = new StoppingCondition() {
int generation = 0;
@Override
public boolean isSatisfied(Population population) {
Chromosome fittestChromosome = population.getFittestChromosome();
if (generation == 1 || generation % 10 == 0) {
System.out.println("Generation " + generation + ": " + fittestChromosome.toString());
}
generation++;
double fitness = fittestChromosome.fitness();
if (Precision.equals(fitness, 0.0, 1e-6)) {
return true;
} else {
return false;
}
}
};
System.out.println("Starting evolution ...");
// run the algorithm
Population finalPopulation = ga.evolve(initial, stoppingCondition);
// Get the end time for the simulation.
long endTime = System.currentTimeMillis();
// best chromosome from the final population
Chromosome best = finalPopulation.getFittestChromosome();
System.out.println("Generation " + ga.getGenerationsEvolved() + ": " + best.toString());
System.out.println("Total execution time: " + (endTime - startTime) + "ms");
}
private static List<Character> randomRepresentation(int length) {
return asList(RandomStringUtils.randomAscii(length));
}
private static List<Character> asList(String str) {
return Arrays.asList(ArrayUtils.toObject(str.toCharArray()));
}
private static Population getInitialPopulation() {
List<Chromosome> popList = new LinkedList<Chromosome>();
for (int i = 0; i < POPULATION_SIZE; i++) {
popList.add(new StringChromosome(randomRepresentation(DIMENSION)));
}
return new ElitisticListPopulation(popList, 2 * popList.size(), ELITISM_RATE);
}
/**
* String Chromosome represented by a list of characters.
*/
public static class StringChromosome extends AbstractListChromosome<Character> {
public StringChromosome(List<Character> repr) {
super(repr);
}
public StringChromosome(String str) {
this(asList(str));
}
public double fitness() {
String target = TARGET_STRING;
int f = 0; // start at 0; the best fitness
List<Character> chromosome = getRepresentation();
for (int i = 0, c = target.length(); i < c; i++) {
// subtract the ascii difference between the target character and the chromosome character.
// Thus 'c' is fitter than 'd' when compared to 'a'.
f -= FastMath.abs(target.charAt(i) - chromosome.get(i).charValue());
}
return f;
}
@Override
protected void checkValidity(List<Character> repr) throws InvalidRepresentationException {
for (char c : repr) {
if (c < 32 || c > 126) {
throw new InvalidRepresentationException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME);
}
}
}
public List<Character> getStringRepresentation() {
return getRepresentation();
}
@Override
public StringChromosome newFixedLengthChromosome(List<Character> repr) {
return new StringChromosome(repr);
}
@Override
public String toString() {
StringBuffer sb = new StringBuffer();
for (Character i : getRepresentation()) {
sb.append(i.charValue());
}
return String.format("(f=%s '%s')", getFitness(), sb.toString());
}
}
private static class RandomCharacterMutation implements MutationPolicy {
public Chromosome mutate(Chromosome original) {
if (!(original instanceof StringChromosome)) {
throw new IllegalArgumentException();
}
StringChromosome strChromosome = (StringChromosome) original;
List<Character> characters = strChromosome.getStringRepresentation();
int mutationIndex = GeneticAlgorithm.getRandomGenerator().nextInt(characters.size());
List<Character> mutatedChromosome = new ArrayList<Character>(characters);
char newValue = (char) (32 + GeneticAlgorithm.getRandomGenerator().nextInt(127 - 32));
mutatedChromosome.set(mutationIndex, newValue);
return strChromosome.newFixedLengthChromosome(mutatedChromosome);
}
}
}