MATH-442
Implementation of the CMA-ES optimization algorithm provided by Dietmar Wolz and Nikolaus Hansen. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1071600 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
dee0874ae8
commit
c9d9bdcdbf
File diff suppressed because it is too large
Load Diff
|
@ -52,6 +52,9 @@ The <action> type attribute can be add,update,fix,remove.
|
|||
If the output is not quite correct, check for invisible trailing spaces!
|
||||
-->
|
||||
<release version="3.0" date="TBD" description="TBD">
|
||||
<action dev="erans" type="fix" issue="MATH-442" due-to="Dietmar Wolz">
|
||||
Implementation of the CMA-ES optimization algorithm.
|
||||
</action>
|
||||
<action dev="erans" type="fix" issue="MATH-513">
|
||||
The interface "ParametricRealFunction" (in package "optimization.fitting") has
|
||||
been renamed to "ParametricUnivariateRealFunction" and moved to package "analysis".
|
||||
|
|
|
@ -0,0 +1,667 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.optimization.direct;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Random;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
import org.apache.commons.math.analysis.MultivariateRealFunction;
|
||||
import org.apache.commons.math.exception.MathUserException;
|
||||
import org.apache.commons.math.exception.MultiDimensionMismatchException;
|
||||
import org.apache.commons.math.exception.NoDataException;
|
||||
import org.apache.commons.math.exception.NotPositiveException;
|
||||
import org.apache.commons.math.exception.OutOfRangeException;
|
||||
import org.apache.commons.math.optimization.GoalType;
|
||||
import org.apache.commons.math.optimization.MultivariateRealOptimizer;
|
||||
import org.apache.commons.math.optimization.RealPointValuePair;
|
||||
import org.apache.commons.math.random.MersenneTwister;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
* Test for {@link CMAESOptimizer}.
|
||||
*/
|
||||
public class CMAESOptimizerTest {
|
||||
|
||||
static final int DIM = 13;
|
||||
static final int LAMBDA = 4 + (int)(3.*Math.log(DIM));
|
||||
|
||||
@Test(expected = OutOfRangeException.class)
|
||||
public void testInitOutofbounds() throws MathUserException, MathException {
|
||||
double[] startPoint = point(DIM,3);
|
||||
double[] insigma = null;
|
||||
double[][] boundaries = boundaries(DIM,-1,2);
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test(expected = MultiDimensionMismatchException.class)
|
||||
public void testBoundariesDimensionMismatch() throws MathUserException, MathException {
|
||||
double[] startPoint = point(DIM,0.5);
|
||||
double[] insigma = null;
|
||||
double[][] boundaries = boundaries(DIM+1,-1,2);
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test(expected = NoDataException.class)
|
||||
public void testBoundariesNoData() throws MathUserException, MathException {
|
||||
double[] startPoint = point(DIM,0.5);
|
||||
double[] insigma = null;
|
||||
double[][] boundaries = boundaries(DIM,-1,2);
|
||||
boundaries[1] = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test(expected = NotPositiveException.class)
|
||||
public void testInputSigmaNegative() throws MathUserException, MathException {
|
||||
double[] startPoint = point(DIM,0.5);
|
||||
double[] insigma = point(DIM,-0.5);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test(expected = OutOfRangeException.class)
|
||||
public void testInputSigmaOutOfRange() throws MathUserException, MathException {
|
||||
double[] startPoint = point(DIM,0.5);
|
||||
double[] insigma = point(DIM, 1.1);
|
||||
double[][] boundaries = boundaries(DIM,-1,2);
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test(expected = MultiDimensionMismatchException.class)
|
||||
public void testInputSigmaDimensionMismatch() throws MathUserException, MathException {
|
||||
double[] startPoint = point(DIM,0.5);
|
||||
double[] insigma = point(DIM+1,-0.5);
|
||||
double[][] boundaries = null;;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testRosen() throws MathException {
|
||||
double[] startPoint = point(DIM,0.1);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMaximize() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),1.0);
|
||||
doTest(new MinusElli(), startPoint, insigma, boundaries,
|
||||
GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13,
|
||||
2e-10, 5e-6, 100000, expected);
|
||||
doTest(new MinusElli(), startPoint, insigma, boundaries,
|
||||
GoalType.MAXIMIZE, LAMBDA, false, 0, 1.0-1e-13,
|
||||
2e-10, 5e-6, 100000, expected);
|
||||
boundaries = boundaries(DIM,-0.3,0.3);
|
||||
startPoint = point(DIM,0.1);
|
||||
doTest(new MinusElli(), startPoint, insigma, boundaries,
|
||||
GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13,
|
||||
2e-10, 5e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testEllipse() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new Elli(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
doTest(new Elli(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testElliRotated() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new ElliRotated(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
doTest(new ElliRotated(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCigar() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new Cigar(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 200000, expected);
|
||||
doTest(new Cigar(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testTwoAxes() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new TwoAxes(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 200000, expected);
|
||||
doTest(new TwoAxes(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
|
||||
1e-8, 1e-3, 200000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCigTab() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.3);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new CigTab(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 5e-5, 100000, expected);
|
||||
doTest(new CigTab(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 5e-5, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSphere() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new Sphere(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
doTest(new Sphere(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testTablet() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new Tablet(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
doTest(new Tablet(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDiffPow() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new DiffPow(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 10, true, 0, 1e-13,
|
||||
1e-8, 1e-1, 100000, expected);
|
||||
doTest(new DiffPow(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 10, false, 0, 1e-13,
|
||||
1e-8, 2e-1, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSsDiffPow() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new SsDiffPow(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 10, true, 0, 1e-13,
|
||||
1e-4, 1e-1, 200000, expected);
|
||||
doTest(new SsDiffPow(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 10, false, 0, 1e-13,
|
||||
1e-4, 1e-1, 200000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAckley() throws MathException {
|
||||
double[] startPoint = point(DIM,1.0);
|
||||
double[] insigma = point(DIM,1.0);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new Ackley(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
|
||||
1e-9, 1e-5, 100000, expected);
|
||||
doTest(new Ackley(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
|
||||
1e-9, 1e-5, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testRastrigin() throws MathException {
|
||||
double[] startPoint = point(DIM,0.1);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
||||
doTest(new Rastrigin(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), true, 0, 1e-13,
|
||||
1e-13, 1e-6, 200000, expected);
|
||||
doTest(new Rastrigin(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), false, 0, 1e-13,
|
||||
1e-13, 1e-6, 200000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testConstrainedRosen() throws MathException {
|
||||
double[] startPoint = point(DIM,0.1);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = boundaries(DIM,-1,2);
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
|
||||
1e-13, 1e-6, 100000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDiagonalRosen() throws MathException {
|
||||
double[] startPoint = point(DIM,0.1);
|
||||
double[] insigma = point(DIM,0.1);
|
||||
double[][] boundaries = null;
|
||||
RealPointValuePair expected =
|
||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
||||
GoalType.MINIMIZE, LAMBDA, false, 1, 1e-13,
|
||||
1e-10, 1e-4, 1000000, expected);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param func Function to optimize.
|
||||
* @param startPoint Starting point.
|
||||
* @param inSigma Individual input sigma.
|
||||
* @param boundaries Upper / lower point limit.
|
||||
* @param goal Minimization or maximization.
|
||||
* @param lambda Population size used for offspring.
|
||||
* @param isActive Covariance update mechanism.
|
||||
* @param diagonalOnly Simplified covariance update.
|
||||
* @param stopValue Termination criteria for optimization.
|
||||
* @param fTol Tolerance relative error on the objective function.
|
||||
* @param pointTol Tolerance for checking that the optimum is correct.
|
||||
* @param maxEvaluations Maximum number of evaluations.
|
||||
* @param expected Expected point / value.
|
||||
*/
|
||||
private void doTest(MultivariateRealFunction func,
|
||||
double[] startPoint,
|
||||
double[] inSigma,
|
||||
double[][] boundaries,
|
||||
GoalType goal,
|
||||
int lambda,
|
||||
boolean isActive,
|
||||
int diagonalOnly,
|
||||
double stopValue,
|
||||
double fTol,
|
||||
double pointTol,
|
||||
int maxEvaluations,
|
||||
RealPointValuePair expected)
|
||||
throws MathException {
|
||||
int dim = startPoint.length;
|
||||
// test diagonalOnly = 0 - slow but normally fewer feval#
|
||||
MultivariateRealOptimizer optim =
|
||||
new CMAESOptimizer(
|
||||
lambda, inSigma, boundaries, 30000,
|
||||
stopValue, isActive, diagonalOnly, 0, new MersenneTwister(),false);
|
||||
RealPointValuePair result = optim.optimize(maxEvaluations, func, goal, startPoint);
|
||||
Assert.assertEquals(expected.getValue(),
|
||||
result.getValue(), fTol);
|
||||
for (int i = 0; i < dim; i++) {
|
||||
Assert.assertEquals(expected.getPoint()[i],
|
||||
result.getPoint()[i], pointTol);
|
||||
}
|
||||
}
|
||||
|
||||
private static double[] point(int n, double value) {
|
||||
double[] ds = new double[n];
|
||||
Arrays.fill(ds, value);
|
||||
return ds;
|
||||
}
|
||||
|
||||
private static double[][] boundaries(int dim,
|
||||
double lower, double upper) {
|
||||
double[][] boundaries = new double[2][dim];
|
||||
for (int i = 0; i < dim; i++)
|
||||
boundaries[0][i] = lower;
|
||||
for (int i = 0; i < dim; i++)
|
||||
boundaries[1][i] = upper;
|
||||
return boundaries;
|
||||
}
|
||||
|
||||
private static class Sphere implements MultivariateRealFunction {
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
for (int i = 0; i < x.length; ++i)
|
||||
f += x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Cigar implements MultivariateRealFunction {
|
||||
private double factor;
|
||||
|
||||
Cigar() {
|
||||
this(1e3);
|
||||
}
|
||||
|
||||
Cigar(double axisratio) {
|
||||
factor = axisratio * axisratio;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = x[0] * x[0];
|
||||
for (int i = 1; i < x.length; ++i)
|
||||
f += factor * x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Tablet implements MultivariateRealFunction {
|
||||
private double factor;
|
||||
|
||||
Tablet() {
|
||||
this(1e3);
|
||||
}
|
||||
|
||||
Tablet(double axisratio) {
|
||||
factor = axisratio * axisratio;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = factor * x[0] * x[0];
|
||||
for (int i = 1; i < x.length; ++i)
|
||||
f += x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class CigTab implements MultivariateRealFunction {
|
||||
private double factor;
|
||||
|
||||
CigTab() {
|
||||
this(1e4);
|
||||
}
|
||||
|
||||
CigTab(double axisratio) {
|
||||
factor = axisratio;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
int end = x.length - 1;
|
||||
double f = x[0] * x[0] / factor + factor * x[end] * x[end];
|
||||
for (int i = 1; i < end; ++i)
|
||||
f += x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class TwoAxes implements MultivariateRealFunction {
|
||||
|
||||
private double factor;
|
||||
|
||||
TwoAxes() {
|
||||
this(1e6);
|
||||
}
|
||||
|
||||
TwoAxes(double axisratio) {
|
||||
factor = axisratio * axisratio;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
for (int i = 0; i < x.length; ++i)
|
||||
f += (i < x.length / 2 ? factor : 1) * x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class ElliRotated implements MultivariateRealFunction {
|
||||
private Basis B = new Basis();
|
||||
private double factor;
|
||||
|
||||
ElliRotated() {
|
||||
this(1e3);
|
||||
}
|
||||
|
||||
ElliRotated(double axisratio) {
|
||||
factor = axisratio * axisratio;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
x = B.Rotate(x);
|
||||
for (int i = 0; i < x.length; ++i)
|
||||
f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Elli implements MultivariateRealFunction {
|
||||
|
||||
private double factor;
|
||||
|
||||
Elli() {
|
||||
this(1e3);
|
||||
}
|
||||
|
||||
Elli(double axisratio) {
|
||||
factor = axisratio * axisratio;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
for (int i = 0; i < x.length; ++i)
|
||||
f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i];
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class MinusElli implements MultivariateRealFunction {
|
||||
|
||||
public double value(double[] x) {
|
||||
return 1.0-(new Elli().value(x));
|
||||
}
|
||||
}
|
||||
|
||||
private static class DiffPow implements MultivariateRealFunction {
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
for (int i = 0; i < x.length; ++i)
|
||||
f += Math.pow(Math.abs(x[i]), 2. + 10 * (double) i
|
||||
/ (x.length - 1.));
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class SsDiffPow implements MultivariateRealFunction {
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = Math.pow(new DiffPow().value(x), 0.25);
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Rosen implements MultivariateRealFunction {
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
for (int i = 0; i < x.length - 1; ++i)
|
||||
f += 1e2 * (x[i] * x[i] - x[i + 1]) * (x[i] * x[i] - x[i + 1])
|
||||
+ (x[i] - 1.) * (x[i] - 1.);
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Ackley implements MultivariateRealFunction {
|
||||
private double axisratio;
|
||||
|
||||
Ackley(double axra) {
|
||||
axisratio = axra;
|
||||
}
|
||||
|
||||
public Ackley() {
|
||||
this(1);
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
double res2 = 0;
|
||||
double fac = 0;
|
||||
for (int i = 0; i < x.length; ++i) {
|
||||
fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.));
|
||||
f += fac * fac * x[i] * x[i];
|
||||
res2 += Math.cos(2. * Math.PI * fac * x[i]);
|
||||
}
|
||||
f = (20. - 20. * Math.exp(-0.2 * Math.sqrt(f / x.length))
|
||||
+ Math.exp(1.) - Math.exp(res2 / x.length));
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Rastrigin implements MultivariateRealFunction {
|
||||
|
||||
private double axisratio;
|
||||
private double amplitude;
|
||||
|
||||
Rastrigin() {
|
||||
this(1, 10);
|
||||
}
|
||||
|
||||
Rastrigin(double axisratio, double amplitude) {
|
||||
this.axisratio = axisratio;
|
||||
this.amplitude = amplitude;
|
||||
}
|
||||
|
||||
public double value(double[] x) {
|
||||
double f = 0;
|
||||
double fac;
|
||||
for (int i = 0; i < x.length; ++i) {
|
||||
fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.));
|
||||
if (i == 0 && x[i] < 0)
|
||||
fac *= 1.;
|
||||
f += fac * fac * x[i] * x[i] + amplitude
|
||||
* (1. - Math.cos(2. * Math.PI * fac * x[i]));
|
||||
}
|
||||
return f;
|
||||
}
|
||||
}
|
||||
|
||||
private static class Basis {
|
||||
double[][] basis;
|
||||
Random rand = new Random(2); // use not always the same basis
|
||||
|
||||
double[] Rotate(double[] x) {
|
||||
GenBasis(x.length);
|
||||
double[] y = new double[x.length];
|
||||
for (int i = 0; i < x.length; ++i) {
|
||||
y[i] = 0;
|
||||
for (int j = 0; j < x.length; ++j)
|
||||
y[i] += basis[i][j] * x[j];
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
void GenBasis(int DIM) {
|
||||
if (basis != null ? basis.length == DIM : false)
|
||||
return;
|
||||
|
||||
double sp;
|
||||
int i, j, k;
|
||||
|
||||
/* generate orthogonal basis */
|
||||
basis = new double[DIM][DIM];
|
||||
for (i = 0; i < DIM; ++i) {
|
||||
/* sample components gaussian */
|
||||
for (j = 0; j < DIM; ++j)
|
||||
basis[i][j] = rand.nextGaussian();
|
||||
/* substract projection of previous vectors */
|
||||
for (j = i - 1; j >= 0; --j) {
|
||||
for (sp = 0., k = 0; k < DIM; ++k)
|
||||
sp += basis[i][k] * basis[j][k]; /* scalar product */
|
||||
for (k = 0; k < DIM; ++k)
|
||||
basis[i][k] -= sp * basis[j][k]; /* substract */
|
||||
}
|
||||
/* normalize */
|
||||
for (sp = 0., k = 0; k < DIM; ++k)
|
||||
sp += basis[i][k] * basis[i][k]; /* squared norm */
|
||||
for (k = 0; k < DIM; ++k)
|
||||
basis[i][k] /= Math.sqrt(sp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue