Implementation of the CMA-ES optimization algorithm provided by Dietmar Wolz
and Nikolaus Hansen.


git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1071600 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2011-02-17 13:10:00 +00:00
parent dee0874ae8
commit c9d9bdcdbf
3 changed files with 1987 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -52,6 +52,9 @@ The <action> type attribute can be add,update,fix,remove.
If the output is not quite correct, check for invisible trailing spaces!
-->
<release version="3.0" date="TBD" description="TBD">
<action dev="erans" type="fix" issue="MATH-442" due-to="Dietmar Wolz">
Implementation of the CMA-ES optimization algorithm.
</action>
<action dev="erans" type="fix" issue="MATH-513">
The interface "ParametricRealFunction" (in package "optimization.fitting") has
been renamed to "ParametricUnivariateRealFunction" and moved to package "analysis".

View File

@ -0,0 +1,667 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.optimization.direct;
import java.util.Arrays;
import java.util.Random;
import org.apache.commons.math.MathException;
import org.apache.commons.math.analysis.MultivariateRealFunction;
import org.apache.commons.math.exception.MathUserException;
import org.apache.commons.math.exception.MultiDimensionMismatchException;
import org.apache.commons.math.exception.NoDataException;
import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.OutOfRangeException;
import org.apache.commons.math.optimization.GoalType;
import org.apache.commons.math.optimization.MultivariateRealOptimizer;
import org.apache.commons.math.optimization.RealPointValuePair;
import org.apache.commons.math.random.MersenneTwister;
import org.junit.Assert;
import org.junit.Test;
/**
* Test for {@link CMAESOptimizer}.
*/
public class CMAESOptimizerTest {
static final int DIM = 13;
static final int LAMBDA = 4 + (int)(3.*Math.log(DIM));
@Test(expected = OutOfRangeException.class)
public void testInitOutofbounds() throws MathUserException, MathException {
double[] startPoint = point(DIM,3);
double[] insigma = null;
double[][] boundaries = boundaries(DIM,-1,2);
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test(expected = MultiDimensionMismatchException.class)
public void testBoundariesDimensionMismatch() throws MathUserException, MathException {
double[] startPoint = point(DIM,0.5);
double[] insigma = null;
double[][] boundaries = boundaries(DIM+1,-1,2);
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test(expected = NoDataException.class)
public void testBoundariesNoData() throws MathUserException, MathException {
double[] startPoint = point(DIM,0.5);
double[] insigma = null;
double[][] boundaries = boundaries(DIM,-1,2);
boundaries[1] = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test(expected = NotPositiveException.class)
public void testInputSigmaNegative() throws MathUserException, MathException {
double[] startPoint = point(DIM,0.5);
double[] insigma = point(DIM,-0.5);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test(expected = OutOfRangeException.class)
public void testInputSigmaOutOfRange() throws MathUserException, MathException {
double[] startPoint = point(DIM,0.5);
double[] insigma = point(DIM, 1.1);
double[][] boundaries = boundaries(DIM,-1,2);
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test(expected = MultiDimensionMismatchException.class)
public void testInputSigmaDimensionMismatch() throws MathUserException, MathException {
double[] startPoint = point(DIM,0.5);
double[] insigma = point(DIM+1,-0.5);
double[][] boundaries = null;;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testRosen() throws MathException {
double[] startPoint = point(DIM,0.1);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testMaximize() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),1.0);
doTest(new MinusElli(), startPoint, insigma, boundaries,
GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13,
2e-10, 5e-6, 100000, expected);
doTest(new MinusElli(), startPoint, insigma, boundaries,
GoalType.MAXIMIZE, LAMBDA, false, 0, 1.0-1e-13,
2e-10, 5e-6, 100000, expected);
boundaries = boundaries(DIM,-0.3,0.3);
startPoint = point(DIM,0.1);
doTest(new MinusElli(), startPoint, insigma, boundaries,
GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13,
2e-10, 5e-6, 100000, expected);
}
@Test
public void testEllipse() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new Elli(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
doTest(new Elli(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testElliRotated() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new ElliRotated(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
doTest(new ElliRotated(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testCigar() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new Cigar(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 200000, expected);
doTest(new Cigar(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testTwoAxes() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new TwoAxes(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 200000, expected);
doTest(new TwoAxes(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
1e-8, 1e-3, 200000, expected);
}
@Test
public void testCigTab() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.3);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new CigTab(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 5e-5, 100000, expected);
doTest(new CigTab(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 5e-5, 100000, expected);
}
@Test
public void testSphere() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new Sphere(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
doTest(new Sphere(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testTablet() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new Tablet(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
doTest(new Tablet(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testDiffPow() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new DiffPow(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 10, true, 0, 1e-13,
1e-8, 1e-1, 100000, expected);
doTest(new DiffPow(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 10, false, 0, 1e-13,
1e-8, 2e-1, 100000, expected);
}
@Test
public void testSsDiffPow() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new SsDiffPow(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 10, true, 0, 1e-13,
1e-4, 1e-1, 200000, expected);
doTest(new SsDiffPow(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 10, false, 0, 1e-13,
1e-4, 1e-1, 200000, expected);
}
@Test
public void testAckley() throws MathException {
double[] startPoint = point(DIM,1.0);
double[] insigma = point(DIM,1.0);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new Ackley(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
1e-9, 1e-5, 100000, expected);
doTest(new Ackley(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
1e-9, 1e-5, 100000, expected);
}
@Test
public void testRastrigin() throws MathException {
double[] startPoint = point(DIM,0.1);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,0.0),0.0);
doTest(new Rastrigin(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), true, 0, 1e-13,
1e-13, 1e-6, 200000, expected);
doTest(new Rastrigin(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), false, 0, 1e-13,
1e-13, 1e-6, 200000, expected);
}
@Test
public void testConstrainedRosen() throws MathException {
double[] startPoint = point(DIM,0.1);
double[] insigma = point(DIM,0.1);
double[][] boundaries = boundaries(DIM,-1,2);
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
1e-13, 1e-6, 100000, expected);
}
@Test
public void testDiagonalRosen() throws MathException {
double[] startPoint = point(DIM,0.1);
double[] insigma = point(DIM,0.1);
double[][] boundaries = null;
RealPointValuePair expected =
new RealPointValuePair(point(DIM,1.0),0.0);
doTest(new Rosen(), startPoint, insigma, boundaries,
GoalType.MINIMIZE, LAMBDA, false, 1, 1e-13,
1e-10, 1e-4, 1000000, expected);
}
/**
* @param func Function to optimize.
* @param startPoint Starting point.
* @param inSigma Individual input sigma.
* @param boundaries Upper / lower point limit.
* @param goal Minimization or maximization.
* @param lambda Population size used for offspring.
* @param isActive Covariance update mechanism.
* @param diagonalOnly Simplified covariance update.
* @param stopValue Termination criteria for optimization.
* @param fTol Tolerance relative error on the objective function.
* @param pointTol Tolerance for checking that the optimum is correct.
* @param maxEvaluations Maximum number of evaluations.
* @param expected Expected point / value.
*/
private void doTest(MultivariateRealFunction func,
double[] startPoint,
double[] inSigma,
double[][] boundaries,
GoalType goal,
int lambda,
boolean isActive,
int diagonalOnly,
double stopValue,
double fTol,
double pointTol,
int maxEvaluations,
RealPointValuePair expected)
throws MathException {
int dim = startPoint.length;
// test diagonalOnly = 0 - slow but normally fewer feval#
MultivariateRealOptimizer optim =
new CMAESOptimizer(
lambda, inSigma, boundaries, 30000,
stopValue, isActive, diagonalOnly, 0, new MersenneTwister(),false);
RealPointValuePair result = optim.optimize(maxEvaluations, func, goal, startPoint);
Assert.assertEquals(expected.getValue(),
result.getValue(), fTol);
for (int i = 0; i < dim; i++) {
Assert.assertEquals(expected.getPoint()[i],
result.getPoint()[i], pointTol);
}
}
private static double[] point(int n, double value) {
double[] ds = new double[n];
Arrays.fill(ds, value);
return ds;
}
private static double[][] boundaries(int dim,
double lower, double upper) {
double[][] boundaries = new double[2][dim];
for (int i = 0; i < dim; i++)
boundaries[0][i] = lower;
for (int i = 0; i < dim; i++)
boundaries[1][i] = upper;
return boundaries;
}
private static class Sphere implements MultivariateRealFunction {
public double value(double[] x) {
double f = 0;
for (int i = 0; i < x.length; ++i)
f += x[i] * x[i];
return f;
}
}
private static class Cigar implements MultivariateRealFunction {
private double factor;
Cigar() {
this(1e3);
}
Cigar(double axisratio) {
factor = axisratio * axisratio;
}
public double value(double[] x) {
double f = x[0] * x[0];
for (int i = 1; i < x.length; ++i)
f += factor * x[i] * x[i];
return f;
}
}
private static class Tablet implements MultivariateRealFunction {
private double factor;
Tablet() {
this(1e3);
}
Tablet(double axisratio) {
factor = axisratio * axisratio;
}
public double value(double[] x) {
double f = factor * x[0] * x[0];
for (int i = 1; i < x.length; ++i)
f += x[i] * x[i];
return f;
}
}
private static class CigTab implements MultivariateRealFunction {
private double factor;
CigTab() {
this(1e4);
}
CigTab(double axisratio) {
factor = axisratio;
}
public double value(double[] x) {
int end = x.length - 1;
double f = x[0] * x[0] / factor + factor * x[end] * x[end];
for (int i = 1; i < end; ++i)
f += x[i] * x[i];
return f;
}
}
private static class TwoAxes implements MultivariateRealFunction {
private double factor;
TwoAxes() {
this(1e6);
}
TwoAxes(double axisratio) {
factor = axisratio * axisratio;
}
public double value(double[] x) {
double f = 0;
for (int i = 0; i < x.length; ++i)
f += (i < x.length / 2 ? factor : 1) * x[i] * x[i];
return f;
}
}
private static class ElliRotated implements MultivariateRealFunction {
private Basis B = new Basis();
private double factor;
ElliRotated() {
this(1e3);
}
ElliRotated(double axisratio) {
factor = axisratio * axisratio;
}
public double value(double[] x) {
double f = 0;
x = B.Rotate(x);
for (int i = 0; i < x.length; ++i)
f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i];
return f;
}
}
private static class Elli implements MultivariateRealFunction {
private double factor;
Elli() {
this(1e3);
}
Elli(double axisratio) {
factor = axisratio * axisratio;
}
public double value(double[] x) {
double f = 0;
for (int i = 0; i < x.length; ++i)
f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i];
return f;
}
}
private static class MinusElli implements MultivariateRealFunction {
public double value(double[] x) {
return 1.0-(new Elli().value(x));
}
}
private static class DiffPow implements MultivariateRealFunction {
public double value(double[] x) {
double f = 0;
for (int i = 0; i < x.length; ++i)
f += Math.pow(Math.abs(x[i]), 2. + 10 * (double) i
/ (x.length - 1.));
return f;
}
}
private static class SsDiffPow implements MultivariateRealFunction {
public double value(double[] x) {
double f = Math.pow(new DiffPow().value(x), 0.25);
return f;
}
}
private static class Rosen implements MultivariateRealFunction {
public double value(double[] x) {
double f = 0;
for (int i = 0; i < x.length - 1; ++i)
f += 1e2 * (x[i] * x[i] - x[i + 1]) * (x[i] * x[i] - x[i + 1])
+ (x[i] - 1.) * (x[i] - 1.);
return f;
}
}
private static class Ackley implements MultivariateRealFunction {
private double axisratio;
Ackley(double axra) {
axisratio = axra;
}
public Ackley() {
this(1);
}
public double value(double[] x) {
double f = 0;
double res2 = 0;
double fac = 0;
for (int i = 0; i < x.length; ++i) {
fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.));
f += fac * fac * x[i] * x[i];
res2 += Math.cos(2. * Math.PI * fac * x[i]);
}
f = (20. - 20. * Math.exp(-0.2 * Math.sqrt(f / x.length))
+ Math.exp(1.) - Math.exp(res2 / x.length));
return f;
}
}
private static class Rastrigin implements MultivariateRealFunction {
private double axisratio;
private double amplitude;
Rastrigin() {
this(1, 10);
}
Rastrigin(double axisratio, double amplitude) {
this.axisratio = axisratio;
this.amplitude = amplitude;
}
public double value(double[] x) {
double f = 0;
double fac;
for (int i = 0; i < x.length; ++i) {
fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.));
if (i == 0 && x[i] < 0)
fac *= 1.;
f += fac * fac * x[i] * x[i] + amplitude
* (1. - Math.cos(2. * Math.PI * fac * x[i]));
}
return f;
}
}
private static class Basis {
double[][] basis;
Random rand = new Random(2); // use not always the same basis
double[] Rotate(double[] x) {
GenBasis(x.length);
double[] y = new double[x.length];
for (int i = 0; i < x.length; ++i) {
y[i] = 0;
for (int j = 0; j < x.length; ++j)
y[i] += basis[i][j] * x[j];
}
return y;
}
void GenBasis(int DIM) {
if (basis != null ? basis.length == DIM : false)
return;
double sp;
int i, j, k;
/* generate orthogonal basis */
basis = new double[DIM][DIM];
for (i = 0; i < DIM; ++i) {
/* sample components gaussian */
for (j = 0; j < DIM; ++j)
basis[i][j] = rand.nextGaussian();
/* substract projection of previous vectors */
for (j = i - 1; j >= 0; --j) {
for (sp = 0., k = 0; k < DIM; ++k)
sp += basis[i][k] * basis[j][k]; /* scalar product */
for (k = 0; k < DIM; ++k)
basis[i][k] -= sp * basis[j][k]; /* substract */
}
/* normalize */
for (sp = 0., k = 0; k < DIM; ++k)
sp += basis[i][k] * basis[i][k]; /* squared norm */
for (k = 0; k < DIM; ++k)
basis[i][k] /= Math.sqrt(sp);
}
}
}
}