Modified to extend AbstractContinuousDistribution.

Changed to throw IllegalArgumentException instead of returning NaN for
inverseCumulativeProbability argument not in [0,1].


git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141281 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2004-06-06 16:38:05 +00:00
parent d41fbb2325
commit c9f353cee2
1 changed files with 55 additions and 13 deletions

View File

@ -22,10 +22,10 @@ import org.apache.commons.math.MathException;
/** /**
* The default implementation of {@link ExponentialDistribution} * The default implementation of {@link ExponentialDistribution}
* *
* @version $Revision: 1.16 $ $Date: 2004/06/02 00:15:16 $ * @version $Revision: 1.17 $ $Date: 2004/06/06 16:38:05 $
*/ */
public class ExponentialDistributionImpl public class ExponentialDistributionImpl extends AbstractContinuousDistribution
implements ExponentialDistribution, Serializable { implements ExponentialDistribution, Serializable {
/** Serializable version identifier */ /** Serializable version identifier */
static final long serialVersionUID = 2401296428283614780L; static final long serialVersionUID = 2401296428283614780L;
@ -95,12 +95,14 @@ public class ExponentialDistributionImpl
* @return x, such that P(X &lt; x) = <code>p</code> * @return x, such that P(X &lt; x) = <code>p</code>
* @throws MathException if the inverse cumulative probability can not be * @throws MathException if the inverse cumulative probability can not be
* computed due to convergence or other numerical errors. * computed due to convergence or other numerical errors.
* @throws IllegalArgumentException if p < 0 or p > 1.
*/ */
public double inverseCumulativeProbability(double p) throws MathException{ public double inverseCumulativeProbability(double p) throws MathException {
double ret; double ret;
if (p < 0.0 || p > 1.0) { if (p < 0.0 || p > 1.0) {
ret = Double.NaN; throw new IllegalArgumentException
("probability argument must be between 0 and 1 (inclusive)");
} else if (p == 1.0) { } else if (p == 1.0) {
ret = Double.POSITIVE_INFINITY; ret = Double.POSITIVE_INFINITY;
} else { } else {
@ -111,14 +113,54 @@ public class ExponentialDistributionImpl
} }
/** /**
* For this disbution, X, this method returns P(x0 &lt; X &lt; x1). * Access the domain value lower bound, based on <code>p</code>, used to
* @param x0 the lower bound * bracket a CDF root.
* @param x1 the upper bound *
* @return the cumulative probability. * @param p the desired probability for the critical value
* @throws MathException if the cumulative probability can not be * @return domain value lower bound, i.e.
* computed due to convergence or other numerical errors. * P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
*/ */
public double cumulativeProbability(double x0, double x1) throws MathException{ protected double getDomainLowerBound(double p) {
return cumulativeProbability(x1) - cumulativeProbability(x0); return 0;
}
/**
* Access the domain value upper bound, based on <code>p</code>, used to
* bracket a CDF root.
*
* @param p the desired probability for the critical value
* @return domain value upper bound, i.e.
* P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
*/
protected double getDomainUpperBound(double p) {
// NOTE: exponential is skewed to the left
// NOTE: therefore, P(X < &mu;) > .5
if (p < .5) {
// use mean
return getMean();
} else {
// use max
return Double.MAX_VALUE;
}
}
/**
* Access the initial domain value, based on <code>p</code>, used to
* bracket a CDF root.
*
* @param p the desired probability for the critical value
* @return initial domain value
*/
protected double getInitialDomain(double p) {
// TODO: try to improve on this estimate
// Exponential is skewed to the left, therefore, P(X < &mu;) > .5
if (p < .5) {
// use 1/2 mean
return getMean() * .5;
} else {
// use mean
return getMean();
}
} }
} }