MATH-442
Waiting for paperwork. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1067278 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
b8478df284
commit
cc53a6aa67
File diff suppressed because it is too large
Load Diff
|
@ -2220,7 +2220,10 @@ public final class MathUtils {
|
||||||
* @return the copied array.
|
* @return the copied array.
|
||||||
*/
|
*/
|
||||||
public static int[] copyOf(int[] source) {
|
public static int[] copyOf(int[] source) {
|
||||||
return copyOf(source, source.length);
|
final int len = source.length;
|
||||||
|
final int[] output = new int[len];
|
||||||
|
System.arraycopy(source, 0, output, 0, len);
|
||||||
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -2230,36 +2233,9 @@ public final class MathUtils {
|
||||||
* @return the copied array.
|
* @return the copied array.
|
||||||
*/
|
*/
|
||||||
public static double[] copyOf(double[] source) {
|
public static double[] copyOf(double[] source) {
|
||||||
return copyOf(source, source.length);
|
final int len = source.length;
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Creates a copy of the {@code source} array.
|
|
||||||
*
|
|
||||||
* @param source Array to be copied.
|
|
||||||
* @param len Number of entries to copy. If smaller then the source
|
|
||||||
* length, the copy will be truncated, if larger it will padded with
|
|
||||||
* zeroes.
|
|
||||||
* @return the copied array.
|
|
||||||
*/
|
|
||||||
public static int[] copyOf(int[] source, int len) {
|
|
||||||
final int[] output = new int[len];
|
|
||||||
System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length));
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Creates a copy of the {@code source} array.
|
|
||||||
*
|
|
||||||
* @param source Array to be copied.
|
|
||||||
* @param len Number of entries to copy. If smaller then the source
|
|
||||||
* length, the copy will be truncated, if larger it will padded with
|
|
||||||
* zeroes.
|
|
||||||
* @return the copied array.
|
|
||||||
*/
|
|
||||||
public static double[] copyOf(double[] source, int len) {
|
|
||||||
final double[] output = new double[len];
|
final double[] output = new double[len];
|
||||||
System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length));
|
System.arraycopy(source, 0, output, 0, len);
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,667 +0,0 @@
|
||||||
/*
|
|
||||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
||||||
* contributor license agreements. See the NOTICE file distributed with
|
|
||||||
* this work for additional information regarding copyright ownership.
|
|
||||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
||||||
* (the "License"); you may not use this file except in compliance with
|
|
||||||
* the License. You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
package org.apache.commons.math.optimization.direct;
|
|
||||||
|
|
||||||
import java.util.Arrays;
|
|
||||||
import java.util.Random;
|
|
||||||
|
|
||||||
import org.apache.commons.math.MathException;
|
|
||||||
import org.apache.commons.math.analysis.MultivariateRealFunction;
|
|
||||||
import org.apache.commons.math.exception.MathUserException;
|
|
||||||
import org.apache.commons.math.exception.MultiDimensionMismatchException;
|
|
||||||
import org.apache.commons.math.exception.NoDataException;
|
|
||||||
import org.apache.commons.math.exception.NotPositiveException;
|
|
||||||
import org.apache.commons.math.exception.OutOfRangeException;
|
|
||||||
import org.apache.commons.math.optimization.GoalType;
|
|
||||||
import org.apache.commons.math.optimization.MultivariateRealOptimizer;
|
|
||||||
import org.apache.commons.math.optimization.RealPointValuePair;
|
|
||||||
import org.apache.commons.math.random.MersenneTwister;
|
|
||||||
import org.junit.Assert;
|
|
||||||
import org.junit.Test;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Test for {@link CMAESOptimizer}.
|
|
||||||
*/
|
|
||||||
public class CMAESOptimizerTest {
|
|
||||||
|
|
||||||
static final int DIM = 13;
|
|
||||||
static final int LAMBDA = 4 + (int)(3.*Math.log(DIM));
|
|
||||||
|
|
||||||
@Test(expected = OutOfRangeException.class)
|
|
||||||
public void testInitOutofbounds() throws MathUserException, MathException {
|
|
||||||
double[] startPoint = point(DIM,3);
|
|
||||||
double[] insigma = null;
|
|
||||||
double[][] boundaries = boundaries(DIM,-1,2);
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test(expected = MultiDimensionMismatchException.class)
|
|
||||||
public void testBoundariesDimensionMismatch() throws MathUserException, MathException {
|
|
||||||
double[] startPoint = point(DIM,0.5);
|
|
||||||
double[] insigma = null;
|
|
||||||
double[][] boundaries = boundaries(DIM+1,-1,2);
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test(expected = NoDataException.class)
|
|
||||||
public void testBoundariesNoData() throws MathUserException, MathException {
|
|
||||||
double[] startPoint = point(DIM,0.5);
|
|
||||||
double[] insigma = null;
|
|
||||||
double[][] boundaries = boundaries(DIM,-1,2);
|
|
||||||
boundaries[1] = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test(expected = NotPositiveException.class)
|
|
||||||
public void testInputSigmaNegative() throws MathUserException, MathException {
|
|
||||||
double[] startPoint = point(DIM,0.5);
|
|
||||||
double[] insigma = point(DIM,-0.5);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test(expected = OutOfRangeException.class)
|
|
||||||
public void testInputSigmaOutOfRange() throws MathUserException, MathException {
|
|
||||||
double[] startPoint = point(DIM,0.5);
|
|
||||||
double[] insigma = point(DIM, 1.1);
|
|
||||||
double[][] boundaries = boundaries(DIM,-1,2);
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test(expected = MultiDimensionMismatchException.class)
|
|
||||||
public void testInputSigmaDimensionMismatch() throws MathUserException, MathException {
|
|
||||||
double[] startPoint = point(DIM,0.5);
|
|
||||||
double[] insigma = point(DIM+1,-0.5);
|
|
||||||
double[][] boundaries = null;;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testRosen() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,0.1);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testMaximize() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),1.0);
|
|
||||||
doTest(new MinusElli(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13,
|
|
||||||
2e-10, 5e-6, 100000, expected);
|
|
||||||
doTest(new MinusElli(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MAXIMIZE, LAMBDA, false, 0, 1.0-1e-13,
|
|
||||||
2e-10, 5e-6, 100000, expected);
|
|
||||||
boundaries = boundaries(DIM,-0.3,0.3);
|
|
||||||
startPoint = point(DIM,0.1);
|
|
||||||
doTest(new MinusElli(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13,
|
|
||||||
2e-10, 5e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testEllipse() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new Elli(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
doTest(new Elli(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testElliRotated() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new ElliRotated(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
doTest(new ElliRotated(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testCigar() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new Cigar(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 200000, expected);
|
|
||||||
doTest(new Cigar(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testTwoAxes() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new TwoAxes(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 200000, expected);
|
|
||||||
doTest(new TwoAxes(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-8, 1e-3, 200000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testCigTab() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.3);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new CigTab(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 5e-5, 100000, expected);
|
|
||||||
doTest(new CigTab(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 5e-5, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testSphere() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new Sphere(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
doTest(new Sphere(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testTablet() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new Tablet(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
doTest(new Tablet(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testDiffPow() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new DiffPow(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 10, true, 0, 1e-13,
|
|
||||||
1e-8, 1e-1, 100000, expected);
|
|
||||||
doTest(new DiffPow(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 10, false, 0, 1e-13,
|
|
||||||
1e-8, 2e-1, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testSsDiffPow() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new SsDiffPow(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 10, true, 0, 1e-13,
|
|
||||||
1e-4, 1e-1, 200000, expected);
|
|
||||||
doTest(new SsDiffPow(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 10, false, 0, 1e-13,
|
|
||||||
1e-4, 1e-1, 200000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testAckley() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,1.0);
|
|
||||||
double[] insigma = point(DIM,1.0);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new Ackley(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-9, 1e-5, 100000, expected);
|
|
||||||
doTest(new Ackley(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-9, 1e-5, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testRastrigin() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,0.1);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,0.0),0.0);
|
|
||||||
doTest(new Rastrigin(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 200000, expected);
|
|
||||||
doTest(new Rastrigin(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 200000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testConstrainedRosen() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,0.1);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = boundaries(DIM,-1,2);
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13,
|
|
||||||
1e-13, 1e-6, 100000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void testDiagonalRosen() throws MathException {
|
|
||||||
double[] startPoint = point(DIM,0.1);
|
|
||||||
double[] insigma = point(DIM,0.1);
|
|
||||||
double[][] boundaries = null;
|
|
||||||
RealPointValuePair expected =
|
|
||||||
new RealPointValuePair(point(DIM,1.0),0.0);
|
|
||||||
doTest(new Rosen(), startPoint, insigma, boundaries,
|
|
||||||
GoalType.MINIMIZE, LAMBDA, false, 1, 1e-13,
|
|
||||||
1e-10, 1e-4, 1000000, expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @param func Function to optimize.
|
|
||||||
* @param startPoint Starting point.
|
|
||||||
* @param inSigma Individual input sigma.
|
|
||||||
* @param boundaries Upper / lower point limit.
|
|
||||||
* @param goal Minimization or maximization.
|
|
||||||
* @param lambda Population size used for offspring.
|
|
||||||
* @param isActive Covariance update mechanism.
|
|
||||||
* @param diagonalOnly Simplified covariance update.
|
|
||||||
* @param stopValue Termination criteria for optimization.
|
|
||||||
* @param fTol Tolerance relative error on the objective function.
|
|
||||||
* @param pointTol Tolerance for checking that the optimum is correct.
|
|
||||||
* @param maxEvaluations Maximum number of evaluations.
|
|
||||||
* @param expected Expected point / value.
|
|
||||||
*/
|
|
||||||
private void doTest(MultivariateRealFunction func,
|
|
||||||
double[] startPoint,
|
|
||||||
double[] inSigma,
|
|
||||||
double[][] boundaries,
|
|
||||||
GoalType goal,
|
|
||||||
int lambda,
|
|
||||||
boolean isActive,
|
|
||||||
int diagonalOnly,
|
|
||||||
double stopValue,
|
|
||||||
double fTol,
|
|
||||||
double pointTol,
|
|
||||||
int maxEvaluations,
|
|
||||||
RealPointValuePair expected)
|
|
||||||
throws MathException {
|
|
||||||
int dim = startPoint.length;
|
|
||||||
// test diagonalOnly = 0 - slow but normally fewer feval#
|
|
||||||
MultivariateRealOptimizer optim =
|
|
||||||
new CMAESOptimizer(
|
|
||||||
lambda, inSigma, boundaries, 30000,
|
|
||||||
stopValue, isActive, diagonalOnly, 0, new MersenneTwister(),false);
|
|
||||||
RealPointValuePair result = optim.optimize(maxEvaluations, func, goal, startPoint);
|
|
||||||
Assert.assertEquals(expected.getValue(),
|
|
||||||
result.getValue(), fTol);
|
|
||||||
for (int i = 0; i < dim; i++) {
|
|
||||||
Assert.assertEquals(expected.getPoint()[i],
|
|
||||||
result.getPoint()[i], pointTol);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static double[] point(int n, double value) {
|
|
||||||
double[] ds = new double[n];
|
|
||||||
Arrays.fill(ds, value);
|
|
||||||
return ds;
|
|
||||||
}
|
|
||||||
|
|
||||||
private static double[][] boundaries(int dim,
|
|
||||||
double lower, double upper) {
|
|
||||||
double[][] boundaries = new double[2][dim];
|
|
||||||
for (int i = 0; i < dim; i++)
|
|
||||||
boundaries[0][i] = lower;
|
|
||||||
for (int i = 0; i < dim; i++)
|
|
||||||
boundaries[1][i] = upper;
|
|
||||||
return boundaries;
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Sphere implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
for (int i = 0; i < x.length; ++i)
|
|
||||||
f += x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Cigar implements MultivariateRealFunction {
|
|
||||||
private double factor;
|
|
||||||
|
|
||||||
Cigar() {
|
|
||||||
this(1e3);
|
|
||||||
}
|
|
||||||
|
|
||||||
Cigar(double axisratio) {
|
|
||||||
factor = axisratio * axisratio;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = x[0] * x[0];
|
|
||||||
for (int i = 1; i < x.length; ++i)
|
|
||||||
f += factor * x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Tablet implements MultivariateRealFunction {
|
|
||||||
private double factor;
|
|
||||||
|
|
||||||
Tablet() {
|
|
||||||
this(1e3);
|
|
||||||
}
|
|
||||||
|
|
||||||
Tablet(double axisratio) {
|
|
||||||
factor = axisratio * axisratio;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = factor * x[0] * x[0];
|
|
||||||
for (int i = 1; i < x.length; ++i)
|
|
||||||
f += x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class CigTab implements MultivariateRealFunction {
|
|
||||||
private double factor;
|
|
||||||
|
|
||||||
CigTab() {
|
|
||||||
this(1e4);
|
|
||||||
}
|
|
||||||
|
|
||||||
CigTab(double axisratio) {
|
|
||||||
factor = axisratio;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
int end = x.length - 1;
|
|
||||||
double f = x[0] * x[0] / factor + factor * x[end] * x[end];
|
|
||||||
for (int i = 1; i < end; ++i)
|
|
||||||
f += x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class TwoAxes implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
private double factor;
|
|
||||||
|
|
||||||
TwoAxes() {
|
|
||||||
this(1e6);
|
|
||||||
}
|
|
||||||
|
|
||||||
TwoAxes(double axisratio) {
|
|
||||||
factor = axisratio * axisratio;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
for (int i = 0; i < x.length; ++i)
|
|
||||||
f += (i < x.length / 2 ? factor : 1) * x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class ElliRotated implements MultivariateRealFunction {
|
|
||||||
private Basis B = new Basis();
|
|
||||||
private double factor;
|
|
||||||
|
|
||||||
ElliRotated() {
|
|
||||||
this(1e3);
|
|
||||||
}
|
|
||||||
|
|
||||||
ElliRotated(double axisratio) {
|
|
||||||
factor = axisratio * axisratio;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
x = B.Rotate(x);
|
|
||||||
for (int i = 0; i < x.length; ++i)
|
|
||||||
f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Elli implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
private double factor;
|
|
||||||
|
|
||||||
Elli() {
|
|
||||||
this(1e3);
|
|
||||||
}
|
|
||||||
|
|
||||||
Elli(double axisratio) {
|
|
||||||
factor = axisratio * axisratio;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
for (int i = 0; i < x.length; ++i)
|
|
||||||
f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i];
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class MinusElli implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
return 1.0-(new Elli().value(x));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class DiffPow implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
for (int i = 0; i < x.length; ++i)
|
|
||||||
f += Math.pow(Math.abs(x[i]), 2. + 10 * (double) i
|
|
||||||
/ (x.length - 1.));
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class SsDiffPow implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = Math.pow(new DiffPow().value(x), 0.25);
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Rosen implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
for (int i = 0; i < x.length - 1; ++i)
|
|
||||||
f += 1e2 * (x[i] * x[i] - x[i + 1]) * (x[i] * x[i] - x[i + 1])
|
|
||||||
+ (x[i] - 1.) * (x[i] - 1.);
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Ackley implements MultivariateRealFunction {
|
|
||||||
private double axisratio;
|
|
||||||
|
|
||||||
Ackley(double axra) {
|
|
||||||
axisratio = axra;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Ackley() {
|
|
||||||
this(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
double res2 = 0;
|
|
||||||
double fac = 0;
|
|
||||||
for (int i = 0; i < x.length; ++i) {
|
|
||||||
fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.));
|
|
||||||
f += fac * fac * x[i] * x[i];
|
|
||||||
res2 += Math.cos(2. * Math.PI * fac * x[i]);
|
|
||||||
}
|
|
||||||
f = (20. - 20. * Math.exp(-0.2 * Math.sqrt(f / x.length))
|
|
||||||
+ Math.exp(1.) - Math.exp(res2 / x.length));
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Rastrigin implements MultivariateRealFunction {
|
|
||||||
|
|
||||||
private double axisratio;
|
|
||||||
private double amplitude;
|
|
||||||
|
|
||||||
Rastrigin() {
|
|
||||||
this(1, 10);
|
|
||||||
}
|
|
||||||
|
|
||||||
Rastrigin(double axisratio, double amplitude) {
|
|
||||||
this.axisratio = axisratio;
|
|
||||||
this.amplitude = amplitude;
|
|
||||||
}
|
|
||||||
|
|
||||||
public double value(double[] x) {
|
|
||||||
double f = 0;
|
|
||||||
double fac;
|
|
||||||
for (int i = 0; i < x.length; ++i) {
|
|
||||||
fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.));
|
|
||||||
if (i == 0 && x[i] < 0)
|
|
||||||
fac *= 1.;
|
|
||||||
f += fac * fac * x[i] * x[i] + amplitude
|
|
||||||
* (1. - Math.cos(2. * Math.PI * fac * x[i]));
|
|
||||||
}
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static class Basis {
|
|
||||||
double[][] basis;
|
|
||||||
Random rand = new Random(2); // use not always the same basis
|
|
||||||
|
|
||||||
double[] Rotate(double[] x) {
|
|
||||||
GenBasis(x.length);
|
|
||||||
double[] y = new double[x.length];
|
|
||||||
for (int i = 0; i < x.length; ++i) {
|
|
||||||
y[i] = 0;
|
|
||||||
for (int j = 0; j < x.length; ++j)
|
|
||||||
y[i] += basis[i][j] * x[j];
|
|
||||||
}
|
|
||||||
return y;
|
|
||||||
}
|
|
||||||
|
|
||||||
void GenBasis(int DIM) {
|
|
||||||
if (basis != null ? basis.length == DIM : false)
|
|
||||||
return;
|
|
||||||
|
|
||||||
double sp;
|
|
||||||
int i, j, k;
|
|
||||||
|
|
||||||
/* generate orthogonal basis */
|
|
||||||
basis = new double[DIM][DIM];
|
|
||||||
for (i = 0; i < DIM; ++i) {
|
|
||||||
/* sample components gaussian */
|
|
||||||
for (j = 0; j < DIM; ++j)
|
|
||||||
basis[i][j] = rand.nextGaussian();
|
|
||||||
/* substract projection of previous vectors */
|
|
||||||
for (j = i - 1; j >= 0; --j) {
|
|
||||||
for (sp = 0., k = 0; k < DIM; ++k)
|
|
||||||
sp += basis[i][k] * basis[j][k]; /* scalar product */
|
|
||||||
for (k = 0; k < DIM; ++k)
|
|
||||||
basis[i][k] -= sp * basis[j][k]; /* substract */
|
|
||||||
}
|
|
||||||
/* normalize */
|
|
||||||
for (sp = 0., k = 0; k < DIM; ++k)
|
|
||||||
sp += basis[i][k] * basis[i][k]; /* squared norm */
|
|
||||||
for (k = 0; k < DIM; ++k)
|
|
||||||
basis[i][k] /= Math.sqrt(sp);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -1557,35 +1557,6 @@ public final class MathUtilsTest extends TestCase {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public void testCopyOfInt2() {
|
|
||||||
final int[] source = { Integer.MIN_VALUE,
|
|
||||||
-1, 0, 1, 3, 113, 4769,
|
|
||||||
Integer.MAX_VALUE };
|
|
||||||
final int offset = 3;
|
|
||||||
final int[] dest = MathUtils.copyOf(source, source.length - offset);
|
|
||||||
|
|
||||||
assertEquals(dest.length, source.length - offset);
|
|
||||||
for (int i = 0; i < source.length - offset; i++) {
|
|
||||||
assertEquals(source[i], dest[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public void testCopyOfInt3() {
|
|
||||||
final int[] source = { Integer.MIN_VALUE,
|
|
||||||
-1, 0, 1, 3, 113, 4769,
|
|
||||||
Integer.MAX_VALUE };
|
|
||||||
final int offset = 3;
|
|
||||||
final int[] dest = MathUtils.copyOf(source, source.length + offset);
|
|
||||||
|
|
||||||
assertEquals(dest.length, source.length + offset);
|
|
||||||
for (int i = 0; i < source.length; i++) {
|
|
||||||
assertEquals(source[i], dest[i]);
|
|
||||||
}
|
|
||||||
for (int i = source.length; i < source.length + offset; i++) {
|
|
||||||
assertEquals(0, dest[i], 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public void testCopyOfDouble() {
|
public void testCopyOfDouble() {
|
||||||
final double[] source = { Double.NEGATIVE_INFINITY,
|
final double[] source = { Double.NEGATIVE_INFINITY,
|
||||||
-Double.MAX_VALUE,
|
-Double.MAX_VALUE,
|
||||||
|
@ -1602,43 +1573,4 @@ public final class MathUtilsTest extends TestCase {
|
||||||
assertEquals(source[i], dest[i], 0);
|
assertEquals(source[i], dest[i], 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public void testCopyOfDouble2() {
|
|
||||||
final double[] source = { Double.NEGATIVE_INFINITY,
|
|
||||||
-Double.MAX_VALUE,
|
|
||||||
-1, 0,
|
|
||||||
Double.MIN_VALUE,
|
|
||||||
Math.ulp(1d),
|
|
||||||
1, 3, 113, 4769,
|
|
||||||
Double.MAX_VALUE,
|
|
||||||
Double.POSITIVE_INFINITY };
|
|
||||||
final int offset = 3;
|
|
||||||
final double[] dest = MathUtils.copyOf(source, source.length - offset);
|
|
||||||
|
|
||||||
assertEquals(dest.length, source.length - offset);
|
|
||||||
for (int i = 0; i < source.length - offset; i++) {
|
|
||||||
assertEquals(source[i], dest[i], 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public void testCopyOfDouble3() {
|
|
||||||
final double[] source = { Double.NEGATIVE_INFINITY,
|
|
||||||
-Double.MAX_VALUE,
|
|
||||||
-1, 0,
|
|
||||||
Double.MIN_VALUE,
|
|
||||||
Math.ulp(1d),
|
|
||||||
1, 3, 113, 4769,
|
|
||||||
Double.MAX_VALUE,
|
|
||||||
Double.POSITIVE_INFINITY };
|
|
||||||
final int offset = 3;
|
|
||||||
final double[] dest = MathUtils.copyOf(source, source.length + offset);
|
|
||||||
|
|
||||||
assertEquals(dest.length, source.length + offset);
|
|
||||||
for (int i = 0; i < source.length; i++) {
|
|
||||||
assertEquals(source[i], dest[i], 0);
|
|
||||||
}
|
|
||||||
for (int i = source.length; i < source.length + offset; i++) {
|
|
||||||
assertEquals(0, dest[i], 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue