Updated tests and documentation for Kalman filter.

Patch provided by Thomas Neidhart.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1208043 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2011-11-29 19:36:52 +00:00
parent d8e892a21f
commit d099c7c343
4 changed files with 382 additions and 4 deletions

View File

@ -65,6 +65,7 @@
<item name="Optimization" href="/userguide/optimization.html"/>
<item name="Ordinary Differential Equations" href="/userguide/ode.html"/>
<item name="Genetic Algorithms" href="/userguide/genetics.html"/>
<item name="Filters" href="/userguide/filter.html"/>
</menu>
</body>

View File

@ -0,0 +1,227 @@
<?xml version="1.0"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
<!-- $Revision: 937893 $ $Date: 2010-04-25 23:42:47 +0200 (Sun, 25 Apr 2010) $ -->
<document url="filter.html">
<properties>
<title>The Commons Math User Guide - Filters</title>
</properties>
<body>
<section name="15 Filters">
<subsection name="15.1 Overview" href="overview">
<p>
The filter package currently provides only an implementation of a Kalman filter.
</p>
</subsection>
<subsection name="15.2 Kalman Filter" href="kalman">
<p>
<a href="../apidocs/org/apache/commons/math/filter/KalmanFilter.html">
KalmanFilter</a> provides a discrete-time filter to estimate
a stochastic linear process.</p>
<p>A Kalman filter is initialized with a <a href="../apidocs/org/apache/commons/math/filter/ProcessModel.html">
ProcessModel</a> and a <a href="../apidocs/org/apache/commons/math/filter/MeasurementModel.html">
MeasurementModel</a>, which contain the corresponding transformation and noise covariance matrices.
The parameter names used in the respective models correspond to the following names commonly used
in the mathematical literature:
<ul>
<li>A - state transition matrix</li>
<li>B - control input matrix</li>
<li>H - measurement matrix</li>
<li>Q - process noise covariance matrix</li>
<li>R - measurement noise covariance matrix</li>
<li>P - error covariance matrix</li>
</ul>
</p>
<p>
<dl>
<dt>Initialization</dt>
<dd> The following code will create a Kalman filter using the provided
DefaultMeasurementModel and DefaultProcessModel classes. To support dynamically changing
process and measurement noises, simply implement your own models.
<source>
// A = [ 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// no control input
RealMatrix B = null;
// H = [ 1 ]
RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d });
// Q = [ 0 ]
RealMatrix Q = new Array2DRowRealMatrix(new double[] { 0 });
// R = [ 0 ]
RealMatrix R = new Array2DRowRealMatrix(new double[] { 0 });
ProcessModel pm
= new DefaultProcessModel(A, B, Q, new ArrayRealVector(new double[] { 0 }), null);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
KalmanFilter filter = new KalmanFilter(pm, mm);
</source>
</dd>
<dt>Iteration</dt>
<dd>The following code illustrates how to perform the predict/correct cycle:
<source>
for (;;) {
// predict the state estimate one time-step ahead
// optionally provide some control input
filter.predict();
// obtain measurement vector z
RealVector z = getMeasurement();
// correct the state estimate with the latest measurement
filter.correct(z);
double[] stateEstimate = filter.getStateEstimation();
// do something with it
}
</source>
</dd>
<dt>Constant Voltage Example</dt>
<dd>The following example creates a Kalman filter for a static process: a system with a
constant voltage as internal state. We observe this process with an artificially
imposed measurement noise of 0.1V and assume an internal process noise of 1e-5V.
<source>
double constantVoltage = 10d;
double measurementNoise = 0.1d;
double processNoise = 1e-5d;
// A = [ 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// B = null
RealMatrix B = null;
// H = [ 1 ]
RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d });
// x = [ 10 ]
RealVector x = new ArrayRealVector(new double[] { constantVoltage });
// Q = [ 1e-5 ]
RealMatrix Q = new Array2DRowRealMatrix(new double[] { processNoise });
// P = [ 1 ]
RealMatrix P0 = new Array2DRowRealMatrix(new double[] { 1d });
// R = [ 0.1 ]
RealMatrix R = new Array2DRowRealMatrix(new double[] { measurementNoise });
ProcessModel pm = new DefaultProcessModel(A, B, Q, x, P0);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
KalmanFilter filter = new KalmanFilter(pm, mm);
// process and measurement noise vectors
RealVector pNoise = new ArrayRealVector(1);
RealVector mNoise = new ArrayRealVector(1);
RandomGenerator rand = new JDKRandomGenerator();
// iterate 60 steps
for (int i = 0; i &lt; 60; i++) {
filter.predict();
// simulate the process
pNoise.setEntry(0, processNoise * rand.nextGaussian());
// x = A * x + p_noise
x = A.operate(x).add(pNoise);
// simulate the measurement
mNoise.setEntry(0, measurementNoise * rand.nextGaussian());
// z = H * x + m_noise
RealVector z = H.operate(x).add(mNoise);
filter.correct(z);
double voltage = filter.getStateEstimation()[0];
}
</source>
</dd>
<dt>Increasing Speed Vehicle Example</dt>
<dd>The following example creates a Kalman filter for a simple linear process: a
vehicle driving along a street with a velocity increasing at a constant rate. The process
state is modeled as (position, velocity) and we only observe the position. A measurement
noise of 10m is imposed on the simulated measurement.
<source>
// discrete time interval
double dt = 0.1d;
// position measurement noise (meter)
double measurementNoise = 10d;
// acceleration noise (meter/sec^2)
double accelNoise = 0.2d;
// A = [ 1 dt ]
// [ 0 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[][] { { 1, dt }, { 0, 1 } });
// B = [ dt^2/2 ]
// [ dt ]
RealMatrix B = new Array2DRowRealMatrix(new double[][] { { Math.pow(dt, 2d) / 2d }, { dt } });
// H = [ 1 0 ]
RealMatrix H = new Array2DRowRealMatrix(new double[][] { { 1d, 0d } });
// x = [ 0 0 ]
RealVector x = new ArrayRealVector(new double[] { 0, 0 });
RealMatrix tmp = new Array2DRowRealMatrix(new double[][] {
{ Math.pow(dt, 4d) / 4d, Math.pow(dt, 3d) / 2d },
{ Math.pow(dt, 3d) / 2d, Math.pow(dt, 2d) } });
// Q = [ dt^4/4 dt^3/2 ]
// [ dt^3/2 dt^2 ]
RealMatrix Q = tmp.scalarMultiply(Math.pow(accelNoise, 2));
// P0 = [ 1 1 ]
// [ 1 1 ]
RealMatrix P0 = new Array2DRowRealMatrix(new double[][] { { 1, 1 }, { 1, 1 } });
// R = [ measurementNoise^2 ]
RealMatrix R = new Array2DRowRealMatrix(new double[] { Math.pow(measurementNoise, 2) });
// constant control input, increase velocity by 0.1 m/s per cycle
RealVector u = new ArrayRealVector(new double[] { 0.1d });
ProcessModel pm = new DefaultProcessModel(A, B, Q, x, P0);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
KalmanFilter filter = new KalmanFilter(pm, mm);
RandomGenerator rand = new JDKRandomGenerator();
RealVector tmpPNoise = new ArrayRealVector(new double[] { Math.pow(dt, 2d) / 2d, dt });
RealVector mNoise = new ArrayRealVector(1);
// iterate 60 steps
for (int i = 0; i &lt; 60; i++) {
filter.predict(u);
// simulate the process
RealVector pNoise = tmpPNoise.mapMultiply(accelNoise * rand.nextGaussian());
// x = A * x + B * u + pNoise
x = A.operate(x).add(B.operate(u)).add(pNoise);
// simulate the measurement
mNoise.setEntry(0, measurementNoise * rand.nextGaussian());
// z = H * x + m_noise
RealVector z = H.operate(x).add(mNoise);
filter.correct(z);
double position = filter.getStateEstimation()[0];
double velocity = filter.getStateEstimation()[1];
}
</source>
</dd>
</dl>
</p>
</subsection>
</section>
</body>
</document>

View File

@ -142,6 +142,11 @@
<li><a href="genetics.html#a14.2_GA_Framework">14.2 GA Framework</a></li>
<li><a href="genetics.html#a14.3_Implementation">14.3 Implementation and Examples</a></li>
</ul></li>
<li><a href="filter.html">15. Filters</a>
<ul>
<li><a href="filter.html#a15.1_Overview">15.1 Overview</a></li>
<li><a href="filter.html#a15.2_Kalman_Filter">15.2 Kalman Filter</a></li>
</ul></li>
</ul>
</section>

View File

@ -16,6 +16,7 @@ package org.apache.commons.math.filter;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.ArrayRealVector;
import org.apache.commons.math.linear.MatrixDimensionMismatchException;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.RealVector;
import org.apache.commons.math.random.JDKRandomGenerator;
@ -25,13 +26,64 @@ import org.junit.Assert;
import org.junit.Test;
/**
* Test for {@link KalmanFilter}.
* Tests for {@link KalmanFilter}.
*
* @version $Id$
*/
public class KalmanFilterTest {
@Test(expected=MatrixDimensionMismatchException.class)
public void testTransitionMeasurementMatrixMismatch() {
// A and H matrix do not match in dimensions
// A = [ 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// no control input
RealMatrix B = null;
// H = [ 1 1 ]
RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d, 1d });
// Q = [ 0 ]
RealMatrix Q = new Array2DRowRealMatrix(new double[] { 0 });
// R = [ 0 ]
RealMatrix R = new Array2DRowRealMatrix(new double[] { 0 });
ProcessModel pm
= new DefaultProcessModel(A, B, Q,
new ArrayRealVector(new double[] { 0 }), null);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
new KalmanFilter(pm, mm);
Assert.fail("transition and measurement matrix should not be compatible");
}
@Test(expected=MatrixDimensionMismatchException.class)
public void testTransitionControlMatrixMismatch() {
// A and B matrix do not match in dimensions
// A = [ 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// B = [ 1 1 ]
RealMatrix B = new Array2DRowRealMatrix(new double[] { 1d, 1d });
// H = [ 1 ]
RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d });
// Q = [ 0 ]
RealMatrix Q = new Array2DRowRealMatrix(new double[] { 0 });
// R = [ 0 ]
RealMatrix R = new Array2DRowRealMatrix(new double[] { 0 });
ProcessModel pm
= new DefaultProcessModel(A, B, Q,
new ArrayRealVector(new double[] { 0 }), null);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
new KalmanFilter(pm, mm);
Assert.fail("transition and control matrix should not be compatible");
}
@Test
public void testConstant() {
// simulates a simple process with a constant state and no control input
double constantValue = 10d;
double measurementNoise = 0.1d;
double processNoise = 1e-5d;
@ -86,7 +138,7 @@ public class KalmanFilterTest {
filter.correct(z);
// state estimate should be larger than measurement noise
// state estimate shouldn't be larger than measurement noise
double diff = Math.abs(constantValue - filter.getStateEstimation()[0]);
// System.out.println(diff);
Assert.assertTrue(Precision.compareTo(diff, measurementNoise, 1e-6) < 0);
@ -97,12 +149,105 @@ public class KalmanFilterTest {
0.02d, 1e-6) < 0);
}
@Test
public void testConstantAcceleration() {
// simulates a vehicle, accelerating at a constant rate (0.1 m/s)
// discrete time interval
double dt = 0.1d;
// position measurement noise (meter)
double measurementNoise = 10d;
// acceleration noise (meter/sec^2)
double accelNoise = 0.2d;
// A = [ 1 dt ]
// [ 0 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[][] { { 1, dt }, { 0, 1 } });
// B = [ dt^2/2 ]
// [ dt ]
RealMatrix B = new Array2DRowRealMatrix(
new double[][] { { Math.pow(dt, 2d) / 2d }, { dt } });
// H = [ 1 0 ]
RealMatrix H = new Array2DRowRealMatrix(new double[][] { { 1d, 0d } });
// x = [ 0 0 ]
RealVector x = new ArrayRealVector(new double[] { 0, 0 });
RealMatrix tmp = new Array2DRowRealMatrix(
new double[][] { { Math.pow(dt, 4d) / 4d, Math.pow(dt, 3d) / 2d },
{ Math.pow(dt, 3d) / 2d, Math.pow(dt, 2d) } });
// Q = [ dt^4/4 dt^3/2 ]
// [ dt^3/2 dt^2 ]
RealMatrix Q = tmp.scalarMultiply(Math.pow(accelNoise, 2));
// P0 = [ 1 1 ]
// [ 1 1 ]
RealMatrix P0 = new Array2DRowRealMatrix(new double[][] { { 1, 1 }, { 1, 1 } });
// R = [ measurementNoise^2 ]
RealMatrix R = new Array2DRowRealMatrix(
new double[] { Math.pow(measurementNoise, 2) });
// constant control input, increase velocity by 0.1 m/s per cycle
RealVector u = new ArrayRealVector(new double[] { 0.1d });
ProcessModel pm = new DefaultProcessModel(A, B, Q, x, P0);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
KalmanFilter filter = new KalmanFilter(pm, mm);
Assert.assertEquals(1, filter.getMeasurementDimension());
Assert.assertEquals(2, filter.getStateDimension());
assertMatrixEquals(P0.getData(), filter.getErrorCovariance());
// check the initial state
double[] expectedInitialState = new double[] { 0.0, 0.0 };
assertVectorEquals(expectedInitialState, filter.getStateEstimation());
RandomGenerator rand = new JDKRandomGenerator();
RealVector tmpPNoise = new ArrayRealVector(
new double[] { Math.pow(dt, 2d) / 2d, dt });
RealVector mNoise = new ArrayRealVector(1);
// iterate 60 steps
for (int i = 0; i < 60; i++) {
filter.predict(u);
// Simulate the process
RealVector pNoise = tmpPNoise.mapMultiply(accelNoise * rand.nextGaussian());
// x = A * x + B * u + pNoise
x = A.operate(x).add(B.operate(u)).add(pNoise);
// Simulate the measurement
mNoise.setEntry(0, measurementNoise * rand.nextGaussian());
// z = H * x + m_noise
RealVector z = H.operate(x).add(mNoise);
filter.correct(z);
// state estimate shouldn't be larger than the measurement noise
double diff = Math.abs(x.getEntry(0) - filter.getStateEstimation()[0]);
Assert.assertTrue(Precision.compareTo(diff, measurementNoise, 1e-6) < 0);
}
// error covariance of the velocity should be already very low (< 0.1)
Assert.assertTrue(Precision.compareTo(filter.getErrorCovariance()[1][1],
0.1d, 1e-6) < 0);
}
private void assertVectorEquals(double[] expected, double[] result) {
Assert.assertEquals("Wrong number of rows.", expected.length,
result.length);
for (int i = 0; i < expected.length; i++) {
Assert.assertEquals("Wrong value at position [" + i + "]",
expected[i], result[i], 1.0e-15);
expected[i], result[i], 1.0e-6);
}
}
@ -114,7 +259,7 @@ public class KalmanFilterTest {
result[i].length);
for (int j = 0; j < expected[i].length; j++) {
Assert.assertEquals("Wrong value at position [" + i + "," + j
+ "]", expected[i][j], result[i][j], 1.0e-15);
+ "]", expected[i][j], result[i][j], 1.0e-6);
}
}
}