Delete unused test data files.
The same data is still available in directory commons-math-legacy/src/test/resources/org/apache/commons/math4/legacy/fitting/leastsquares
This commit is contained in:
parent
b167967767
commit
d26470b139
|
@ -1,296 +0,0 @@
|
|||
NIST/ITL StRD
|
||||
Dataset Name: Hahn1 (Hahn1.dat)
|
||||
|
||||
File Format: ASCII
|
||||
Starting Values (lines 41 to 47)
|
||||
Certified Values (lines 41 to 52)
|
||||
Data (lines 61 to 296)
|
||||
|
||||
Procedure: Nonlinear Least Squares Regression
|
||||
|
||||
Description: These data are the result of a NIST study involving
|
||||
the thermal expansion of copper. The response
|
||||
variable is the coefficient of thermal expansion, and
|
||||
the predictor variable is temperature in degrees
|
||||
kelvin.
|
||||
|
||||
|
||||
Reference: Hahn, T., NIST (197?).
|
||||
Copper Thermal Expansion Study.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Data: 1 Response (y = coefficient of thermal expansion)
|
||||
1 Predictor (x = temperature, degrees kelvin)
|
||||
236 Observations
|
||||
Average Level of Difficulty
|
||||
Observed Data
|
||||
|
||||
Model: Rational Class (cubic/cubic)
|
||||
7 Parameters (b1 to b7)
|
||||
|
||||
y = (b1+b2*x+b3*x**2+b4*x**3) /
|
||||
(1+b5*x+b6*x**2+b7*x**3) + e
|
||||
|
||||
|
||||
Starting values Certified Values
|
||||
|
||||
Start 1 Start 2 Parameter Standard Deviation
|
||||
b1 = 10 1 1.0776351733E+00 1.7070154742E-01
|
||||
b2 = -1 -0.1 -1.2269296921E-01 1.2000289189E-02
|
||||
b3 = 0.05 0.005 4.0863750610E-03 2.2508314937E-04
|
||||
b4 = -0.00001 -0.000001 -1.4262662514E-06 2.7578037666E-07
|
||||
b5 = -0.05 -0.005 -5.7609940901E-03 2.4712888219E-04
|
||||
b6 = 0.001 0.0001 2.4053735503E-04 1.0449373768E-05
|
||||
b7 = -0.000001 -0.0000001 -1.2314450199E-07 1.3027335327E-08
|
||||
|
||||
Residual Sum of Squares: 1.5324382854E+00
|
||||
Residual Standard Deviation: 8.1803852243E-02
|
||||
Degrees of Freedom: 229
|
||||
Number of Observations: 236
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Data: y x
|
||||
.591E0 24.41E0
|
||||
1.547E0 34.82E0
|
||||
2.902E0 44.09E0
|
||||
2.894E0 45.07E0
|
||||
4.703E0 54.98E0
|
||||
6.307E0 65.51E0
|
||||
7.03E0 70.53E0
|
||||
7.898E0 75.70E0
|
||||
9.470E0 89.57E0
|
||||
9.484E0 91.14E0
|
||||
10.072E0 96.40E0
|
||||
10.163E0 97.19E0
|
||||
11.615E0 114.26E0
|
||||
12.005E0 120.25E0
|
||||
12.478E0 127.08E0
|
||||
12.982E0 133.55E0
|
||||
12.970E0 133.61E0
|
||||
13.926E0 158.67E0
|
||||
14.452E0 172.74E0
|
||||
14.404E0 171.31E0
|
||||
15.190E0 202.14E0
|
||||
15.550E0 220.55E0
|
||||
15.528E0 221.05E0
|
||||
15.499E0 221.39E0
|
||||
16.131E0 250.99E0
|
||||
16.438E0 268.99E0
|
||||
16.387E0 271.80E0
|
||||
16.549E0 271.97E0
|
||||
16.872E0 321.31E0
|
||||
16.830E0 321.69E0
|
||||
16.926E0 330.14E0
|
||||
16.907E0 333.03E0
|
||||
16.966E0 333.47E0
|
||||
17.060E0 340.77E0
|
||||
17.122E0 345.65E0
|
||||
17.311E0 373.11E0
|
||||
17.355E0 373.79E0
|
||||
17.668E0 411.82E0
|
||||
17.767E0 419.51E0
|
||||
17.803E0 421.59E0
|
||||
17.765E0 422.02E0
|
||||
17.768E0 422.47E0
|
||||
17.736E0 422.61E0
|
||||
17.858E0 441.75E0
|
||||
17.877E0 447.41E0
|
||||
17.912E0 448.7E0
|
||||
18.046E0 472.89E0
|
||||
18.085E0 476.69E0
|
||||
18.291E0 522.47E0
|
||||
18.357E0 522.62E0
|
||||
18.426E0 524.43E0
|
||||
18.584E0 546.75E0
|
||||
18.610E0 549.53E0
|
||||
18.870E0 575.29E0
|
||||
18.795E0 576.00E0
|
||||
19.111E0 625.55E0
|
||||
.367E0 20.15E0
|
||||
.796E0 28.78E0
|
||||
0.892E0 29.57E0
|
||||
1.903E0 37.41E0
|
||||
2.150E0 39.12E0
|
||||
3.697E0 50.24E0
|
||||
5.870E0 61.38E0
|
||||
6.421E0 66.25E0
|
||||
7.422E0 73.42E0
|
||||
9.944E0 95.52E0
|
||||
11.023E0 107.32E0
|
||||
11.87E0 122.04E0
|
||||
12.786E0 134.03E0
|
||||
14.067E0 163.19E0
|
||||
13.974E0 163.48E0
|
||||
14.462E0 175.70E0
|
||||
14.464E0 179.86E0
|
||||
15.381E0 211.27E0
|
||||
15.483E0 217.78E0
|
||||
15.59E0 219.14E0
|
||||
16.075E0 262.52E0
|
||||
16.347E0 268.01E0
|
||||
16.181E0 268.62E0
|
||||
16.915E0 336.25E0
|
||||
17.003E0 337.23E0
|
||||
16.978E0 339.33E0
|
||||
17.756E0 427.38E0
|
||||
17.808E0 428.58E0
|
||||
17.868E0 432.68E0
|
||||
18.481E0 528.99E0
|
||||
18.486E0 531.08E0
|
||||
19.090E0 628.34E0
|
||||
16.062E0 253.24E0
|
||||
16.337E0 273.13E0
|
||||
16.345E0 273.66E0
|
||||
16.388E0 282.10E0
|
||||
17.159E0 346.62E0
|
||||
17.116E0 347.19E0
|
||||
17.164E0 348.78E0
|
||||
17.123E0 351.18E0
|
||||
17.979E0 450.10E0
|
||||
17.974E0 450.35E0
|
||||
18.007E0 451.92E0
|
||||
17.993E0 455.56E0
|
||||
18.523E0 552.22E0
|
||||
18.669E0 553.56E0
|
||||
18.617E0 555.74E0
|
||||
19.371E0 652.59E0
|
||||
19.330E0 656.20E0
|
||||
0.080E0 14.13E0
|
||||
0.248E0 20.41E0
|
||||
1.089E0 31.30E0
|
||||
1.418E0 33.84E0
|
||||
2.278E0 39.70E0
|
||||
3.624E0 48.83E0
|
||||
4.574E0 54.50E0
|
||||
5.556E0 60.41E0
|
||||
7.267E0 72.77E0
|
||||
7.695E0 75.25E0
|
||||
9.136E0 86.84E0
|
||||
9.959E0 94.88E0
|
||||
9.957E0 96.40E0
|
||||
11.600E0 117.37E0
|
||||
13.138E0 139.08E0
|
||||
13.564E0 147.73E0
|
||||
13.871E0 158.63E0
|
||||
13.994E0 161.84E0
|
||||
14.947E0 192.11E0
|
||||
15.473E0 206.76E0
|
||||
15.379E0 209.07E0
|
||||
15.455E0 213.32E0
|
||||
15.908E0 226.44E0
|
||||
16.114E0 237.12E0
|
||||
17.071E0 330.90E0
|
||||
17.135E0 358.72E0
|
||||
17.282E0 370.77E0
|
||||
17.368E0 372.72E0
|
||||
17.483E0 396.24E0
|
||||
17.764E0 416.59E0
|
||||
18.185E0 484.02E0
|
||||
18.271E0 495.47E0
|
||||
18.236E0 514.78E0
|
||||
18.237E0 515.65E0
|
||||
18.523E0 519.47E0
|
||||
18.627E0 544.47E0
|
||||
18.665E0 560.11E0
|
||||
19.086E0 620.77E0
|
||||
0.214E0 18.97E0
|
||||
0.943E0 28.93E0
|
||||
1.429E0 33.91E0
|
||||
2.241E0 40.03E0
|
||||
2.951E0 44.66E0
|
||||
3.782E0 49.87E0
|
||||
4.757E0 55.16E0
|
||||
5.602E0 60.90E0
|
||||
7.169E0 72.08E0
|
||||
8.920E0 85.15E0
|
||||
10.055E0 97.06E0
|
||||
12.035E0 119.63E0
|
||||
12.861E0 133.27E0
|
||||
13.436E0 143.84E0
|
||||
14.167E0 161.91E0
|
||||
14.755E0 180.67E0
|
||||
15.168E0 198.44E0
|
||||
15.651E0 226.86E0
|
||||
15.746E0 229.65E0
|
||||
16.216E0 258.27E0
|
||||
16.445E0 273.77E0
|
||||
16.965E0 339.15E0
|
||||
17.121E0 350.13E0
|
||||
17.206E0 362.75E0
|
||||
17.250E0 371.03E0
|
||||
17.339E0 393.32E0
|
||||
17.793E0 448.53E0
|
||||
18.123E0 473.78E0
|
||||
18.49E0 511.12E0
|
||||
18.566E0 524.70E0
|
||||
18.645E0 548.75E0
|
||||
18.706E0 551.64E0
|
||||
18.924E0 574.02E0
|
||||
19.1E0 623.86E0
|
||||
0.375E0 21.46E0
|
||||
0.471E0 24.33E0
|
||||
1.504E0 33.43E0
|
||||
2.204E0 39.22E0
|
||||
2.813E0 44.18E0
|
||||
4.765E0 55.02E0
|
||||
9.835E0 94.33E0
|
||||
10.040E0 96.44E0
|
||||
11.946E0 118.82E0
|
||||
12.596E0 128.48E0
|
||||
13.303E0 141.94E0
|
||||
13.922E0 156.92E0
|
||||
14.440E0 171.65E0
|
||||
14.951E0 190.00E0
|
||||
15.627E0 223.26E0
|
||||
15.639E0 223.88E0
|
||||
15.814E0 231.50E0
|
||||
16.315E0 265.05E0
|
||||
16.334E0 269.44E0
|
||||
16.430E0 271.78E0
|
||||
16.423E0 273.46E0
|
||||
17.024E0 334.61E0
|
||||
17.009E0 339.79E0
|
||||
17.165E0 349.52E0
|
||||
17.134E0 358.18E0
|
||||
17.349E0 377.98E0
|
||||
17.576E0 394.77E0
|
||||
17.848E0 429.66E0
|
||||
18.090E0 468.22E0
|
||||
18.276E0 487.27E0
|
||||
18.404E0 519.54E0
|
||||
18.519E0 523.03E0
|
||||
19.133E0 612.99E0
|
||||
19.074E0 638.59E0
|
||||
19.239E0 641.36E0
|
||||
19.280E0 622.05E0
|
||||
19.101E0 631.50E0
|
||||
19.398E0 663.97E0
|
||||
19.252E0 646.9E0
|
||||
19.89E0 748.29E0
|
||||
20.007E0 749.21E0
|
||||
19.929E0 750.14E0
|
||||
19.268E0 647.04E0
|
||||
19.324E0 646.89E0
|
||||
20.049E0 746.9E0
|
||||
20.107E0 748.43E0
|
||||
20.062E0 747.35E0
|
||||
20.065E0 749.27E0
|
||||
19.286E0 647.61E0
|
||||
19.972E0 747.78E0
|
||||
20.088E0 750.51E0
|
||||
20.743E0 851.37E0
|
||||
20.83E0 845.97E0
|
||||
20.935E0 847.54E0
|
||||
21.035E0 849.93E0
|
||||
20.93E0 851.61E0
|
||||
21.074E0 849.75E0
|
||||
21.085E0 850.98E0
|
||||
20.935E0 848.23E0
|
|
@ -1,211 +0,0 @@
|
|||
NIST/ITL StRD
|
||||
Dataset Name: Kirby2 (Kirby2.dat)
|
||||
|
||||
File Format: ASCII
|
||||
Starting Values (lines 41 to 45)
|
||||
Certified Values (lines 41 to 50)
|
||||
Data (lines 61 to 211)
|
||||
|
||||
Procedure: Nonlinear Least Squares Regression
|
||||
|
||||
Description: These data are the result of a NIST study involving
|
||||
scanning electron microscope line with standards.
|
||||
|
||||
|
||||
Reference: Kirby, R., NIST (197?).
|
||||
Scanning electron microscope line width standards.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Data: 1 Response (y)
|
||||
1 Predictor (x)
|
||||
151 Observations
|
||||
Average Level of Difficulty
|
||||
Observed Data
|
||||
|
||||
Model: Rational Class (quadratic/quadratic)
|
||||
5 Parameters (b1 to b5)
|
||||
|
||||
y = (b1 + b2*x + b3*x**2) /
|
||||
(1 + b4*x + b5*x**2) + e
|
||||
|
||||
|
||||
Starting values Certified Values
|
||||
|
||||
Start 1 Start 2 Parameter Standard Deviation
|
||||
b1 = 2 1.5 1.6745063063E+00 8.7989634338E-02
|
||||
b2 = -0.1 -0.15 -1.3927397867E-01 4.1182041386E-03
|
||||
b3 = 0.003 0.0025 2.5961181191E-03 4.1856520458E-05
|
||||
b4 = -0.001 -0.0015 -1.7241811870E-03 5.8931897355E-05
|
||||
b5 = 0.00001 0.00002 2.1664802578E-05 2.0129761919E-07
|
||||
|
||||
Residual Sum of Squares: 3.9050739624E+00
|
||||
Residual Standard Deviation: 1.6354535131E-01
|
||||
Degrees of Freedom: 146
|
||||
Number of Observations: 151
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Data: y x
|
||||
0.0082E0 9.65E0
|
||||
0.0112E0 10.74E0
|
||||
0.0149E0 11.81E0
|
||||
0.0198E0 12.88E0
|
||||
0.0248E0 14.06E0
|
||||
0.0324E0 15.28E0
|
||||
0.0420E0 16.63E0
|
||||
0.0549E0 18.19E0
|
||||
0.0719E0 19.88E0
|
||||
0.0963E0 21.84E0
|
||||
0.1291E0 24.00E0
|
||||
0.1710E0 26.25E0
|
||||
0.2314E0 28.86E0
|
||||
0.3227E0 31.85E0
|
||||
0.4809E0 35.79E0
|
||||
0.7084E0 40.18E0
|
||||
1.0220E0 44.74E0
|
||||
1.4580E0 49.53E0
|
||||
1.9520E0 53.94E0
|
||||
2.5410E0 58.29E0
|
||||
3.2230E0 62.63E0
|
||||
3.9990E0 67.03E0
|
||||
4.8520E0 71.25E0
|
||||
5.7320E0 75.22E0
|
||||
6.7270E0 79.33E0
|
||||
7.8350E0 83.56E0
|
||||
9.0250E0 87.75E0
|
||||
10.2670E0 91.93E0
|
||||
11.5780E0 96.10E0
|
||||
12.9440E0 100.28E0
|
||||
14.3770E0 104.46E0
|
||||
15.8560E0 108.66E0
|
||||
17.3310E0 112.71E0
|
||||
18.8850E0 116.88E0
|
||||
20.5750E0 121.33E0
|
||||
22.3200E0 125.79E0
|
||||
22.3030E0 125.79E0
|
||||
23.4600E0 128.74E0
|
||||
24.0600E0 130.27E0
|
||||
25.2720E0 133.33E0
|
||||
25.8530E0 134.79E0
|
||||
27.1100E0 137.93E0
|
||||
27.6580E0 139.33E0
|
||||
28.9240E0 142.46E0
|
||||
29.5110E0 143.90E0
|
||||
30.7100E0 146.91E0
|
||||
31.3500E0 148.51E0
|
||||
32.5200E0 151.41E0
|
||||
33.2300E0 153.17E0
|
||||
34.3300E0 155.97E0
|
||||
35.0600E0 157.76E0
|
||||
36.1700E0 160.56E0
|
||||
36.8400E0 162.30E0
|
||||
38.0100E0 165.21E0
|
||||
38.6700E0 166.90E0
|
||||
39.8700E0 169.92E0
|
||||
40.0300E0 170.32E0
|
||||
40.5000E0 171.54E0
|
||||
41.3700E0 173.79E0
|
||||
41.6700E0 174.57E0
|
||||
42.3100E0 176.25E0
|
||||
42.7300E0 177.34E0
|
||||
43.4600E0 179.19E0
|
||||
44.1400E0 181.02E0
|
||||
44.5500E0 182.08E0
|
||||
45.2200E0 183.88E0
|
||||
45.9200E0 185.75E0
|
||||
46.3000E0 186.80E0
|
||||
47.0000E0 188.63E0
|
||||
47.6800E0 190.45E0
|
||||
48.0600E0 191.48E0
|
||||
48.7400E0 193.35E0
|
||||
49.4100E0 195.22E0
|
||||
49.7600E0 196.23E0
|
||||
50.4300E0 198.05E0
|
||||
51.1100E0 199.97E0
|
||||
51.5000E0 201.06E0
|
||||
52.1200E0 202.83E0
|
||||
52.7600E0 204.69E0
|
||||
53.1800E0 205.86E0
|
||||
53.7800E0 207.58E0
|
||||
54.4600E0 209.50E0
|
||||
54.8300E0 210.65E0
|
||||
55.4000E0 212.33E0
|
||||
56.4300E0 215.43E0
|
||||
57.0300E0 217.16E0
|
||||
58.0000E0 220.21E0
|
||||
58.6100E0 221.98E0
|
||||
59.5800E0 225.06E0
|
||||
60.1100E0 226.79E0
|
||||
61.1000E0 229.92E0
|
||||
61.6500E0 231.69E0
|
||||
62.5900E0 234.77E0
|
||||
63.1200E0 236.60E0
|
||||
64.0300E0 239.63E0
|
||||
64.6200E0 241.50E0
|
||||
65.4900E0 244.48E0
|
||||
66.0300E0 246.40E0
|
||||
66.8900E0 249.35E0
|
||||
67.4200E0 251.32E0
|
||||
68.2300E0 254.22E0
|
||||
68.7700E0 256.24E0
|
||||
69.5900E0 259.11E0
|
||||
70.1100E0 261.18E0
|
||||
70.8600E0 264.02E0
|
||||
71.4300E0 266.13E0
|
||||
72.1600E0 268.94E0
|
||||
72.7000E0 271.09E0
|
||||
73.4000E0 273.87E0
|
||||
73.9300E0 276.08E0
|
||||
74.6000E0 278.83E0
|
||||
75.1600E0 281.08E0
|
||||
75.8200E0 283.81E0
|
||||
76.3400E0 286.11E0
|
||||
76.9800E0 288.81E0
|
||||
77.4800E0 291.08E0
|
||||
78.0800E0 293.75E0
|
||||
78.6000E0 295.99E0
|
||||
79.1700E0 298.64E0
|
||||
79.6200E0 300.84E0
|
||||
79.8800E0 302.02E0
|
||||
80.1900E0 303.48E0
|
||||
80.6600E0 305.65E0
|
||||
81.2200E0 308.27E0
|
||||
81.6600E0 310.41E0
|
||||
82.1600E0 313.01E0
|
||||
82.5900E0 315.12E0
|
||||
83.1400E0 317.71E0
|
||||
83.5000E0 319.79E0
|
||||
84.0000E0 322.36E0
|
||||
84.4000E0 324.42E0
|
||||
84.8900E0 326.98E0
|
||||
85.2600E0 329.01E0
|
||||
85.7400E0 331.56E0
|
||||
86.0700E0 333.56E0
|
||||
86.5400E0 336.10E0
|
||||
86.8900E0 338.08E0
|
||||
87.3200E0 340.60E0
|
||||
87.6500E0 342.57E0
|
||||
88.1000E0 345.08E0
|
||||
88.4300E0 347.02E0
|
||||
88.8300E0 349.52E0
|
||||
89.1200E0 351.44E0
|
||||
89.5400E0 353.93E0
|
||||
89.8500E0 355.83E0
|
||||
90.2500E0 358.32E0
|
||||
90.5500E0 360.20E0
|
||||
90.9300E0 362.67E0
|
||||
91.2000E0 364.53E0
|
||||
91.5500E0 367.00E0
|
||||
92.2000E0 371.30E0
|
|
@ -1,84 +0,0 @@
|
|||
NIST/ITL StRD
|
||||
Dataset Name: Lanczos1 (Lanczos1.dat)
|
||||
|
||||
File Format: ASCII
|
||||
Starting Values (lines 41 to 46)
|
||||
Certified Values (lines 41 to 51)
|
||||
Data (lines 61 to 84)
|
||||
|
||||
Procedure: Nonlinear Least Squares Regression
|
||||
|
||||
Description: These data are taken from an example discussed in
|
||||
Lanczos (1956). The data were generated to 14-digits
|
||||
of accuracy using
|
||||
f(x) = 0.0951*exp(-x) + 0.8607*exp(-3*x)
|
||||
+ 1.5576*exp(-5*x).
|
||||
|
||||
|
||||
Reference: Lanczos, C. (1956).
|
||||
Applied Analysis.
|
||||
Englewood Cliffs, NJ: Prentice Hall, pp. 272-280.
|
||||
|
||||
|
||||
|
||||
|
||||
Data: 1 Response (y)
|
||||
1 Predictor (x)
|
||||
24 Observations
|
||||
Average Level of Difficulty
|
||||
Generated Data
|
||||
|
||||
Model: Exponential Class
|
||||
6 Parameters (b1 to b6)
|
||||
|
||||
y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x) + e
|
||||
|
||||
|
||||
|
||||
Starting values Certified Values
|
||||
|
||||
Start 1 Start 2 Parameter Standard Deviation
|
||||
b1 = 1.2 0.5 9.5100000027E-02 5.3347304234E-11
|
||||
b2 = 0.3 0.7 1.0000000001E+00 2.7473038179E-10
|
||||
b3 = 5.6 3.6 8.6070000013E-01 1.3576062225E-10
|
||||
b4 = 5.5 4.2 3.0000000002E+00 3.3308253069E-10
|
||||
b5 = 6.5 4 1.5575999998E+00 1.8815731448E-10
|
||||
b6 = 7.6 6.3 5.0000000001E+00 1.1057500538E-10
|
||||
|
||||
Residual Sum of Squares: 1.4307867721E-25
|
||||
Residual Standard Deviation: 8.9156129349E-14
|
||||
Degrees of Freedom: 18
|
||||
Number of Observations: 24
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Data: y x
|
||||
2.513400000000E+00 0.000000000000E+00
|
||||
2.044333373291E+00 5.000000000000E-02
|
||||
1.668404436564E+00 1.000000000000E-01
|
||||
1.366418021208E+00 1.500000000000E-01
|
||||
1.123232487372E+00 2.000000000000E-01
|
||||
9.268897180037E-01 2.500000000000E-01
|
||||
7.679338563728E-01 3.000000000000E-01
|
||||
6.388775523106E-01 3.500000000000E-01
|
||||
5.337835317402E-01 4.000000000000E-01
|
||||
4.479363617347E-01 4.500000000000E-01
|
||||
3.775847884350E-01 5.000000000000E-01
|
||||
3.197393199326E-01 5.500000000000E-01
|
||||
2.720130773746E-01 6.000000000000E-01
|
||||
2.324965529032E-01 6.500000000000E-01
|
||||
1.996589546065E-01 7.000000000000E-01
|
||||
1.722704126914E-01 7.500000000000E-01
|
||||
1.493405660168E-01 8.000000000000E-01
|
||||
1.300700206922E-01 8.500000000000E-01
|
||||
1.138119324644E-01 9.000000000000E-01
|
||||
1.000415587559E-01 9.500000000000E-01
|
||||
8.833209084540E-02 1.000000000000E+00
|
||||
7.833544019350E-02 1.050000000000E+00
|
||||
6.976693743449E-02 1.100000000000E+00
|
||||
6.239312536719E-02 1.150000000000E+00
|
|
@ -1,93 +0,0 @@
|
|||
NIST/ITL StRD
|
||||
Dataset Name: MGH17 (MGH17.dat)
|
||||
|
||||
File Format: ASCII
|
||||
Starting Values (lines 41 to 45)
|
||||
Certified Values (lines 41 to 50)
|
||||
Data (lines 61 to 93)
|
||||
|
||||
Procedure: Nonlinear Least Squares Regression
|
||||
|
||||
Description: This problem was found to be difficult for some very
|
||||
good algorithms.
|
||||
|
||||
See More, J. J., Garbow, B. S., and Hillstrom, K. E.
|
||||
(1981). Testing unconstrained optimization software.
|
||||
ACM Transactions on Mathematical Software. 7(1):
|
||||
pp. 17-41.
|
||||
|
||||
Reference: Osborne, M. R. (1972).
|
||||
Some aspects of nonlinear least squares
|
||||
calculations. In Numerical Methods for Nonlinear
|
||||
Optimization, Lootsma (Ed).
|
||||
New York, NY: Academic Press, pp. 171-189.
|
||||
|
||||
Data: 1 Response (y)
|
||||
1 Predictor (x)
|
||||
33 Observations
|
||||
Average Level of Difficulty
|
||||
Generated Data
|
||||
|
||||
Model: Exponential Class
|
||||
5 Parameters (b1 to b5)
|
||||
|
||||
y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5] + e
|
||||
|
||||
|
||||
|
||||
Starting values Certified Values
|
||||
|
||||
Start 1 Start 2 Parameter Standard Deviation
|
||||
b1 = 50 0.5 3.7541005211E-01 2.0723153551E-03
|
||||
b2 = 150 1.5 1.9358469127E+00 2.2031669222E-01
|
||||
b3 = -100 -1 -1.4646871366E+00 2.2175707739E-01
|
||||
b4 = 1 0.01 1.2867534640E-02 4.4861358114E-04
|
||||
b5 = 2 0.02 2.2122699662E-02 8.9471996575E-04
|
||||
|
||||
Residual Sum of Squares: 5.4648946975E-05
|
||||
Residual Standard Deviation: 1.3970497866E-03
|
||||
Degrees of Freedom: 28
|
||||
Number of Observations: 33
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Data: y x
|
||||
8.440000E-01 0.000000E+00
|
||||
9.080000E-01 1.000000E+01
|
||||
9.320000E-01 2.000000E+01
|
||||
9.360000E-01 3.000000E+01
|
||||
9.250000E-01 4.000000E+01
|
||||
9.080000E-01 5.000000E+01
|
||||
8.810000E-01 6.000000E+01
|
||||
8.500000E-01 7.000000E+01
|
||||
8.180000E-01 8.000000E+01
|
||||
7.840000E-01 9.000000E+01
|
||||
7.510000E-01 1.000000E+02
|
||||
7.180000E-01 1.100000E+02
|
||||
6.850000E-01 1.200000E+02
|
||||
6.580000E-01 1.300000E+02
|
||||
6.280000E-01 1.400000E+02
|
||||
6.030000E-01 1.500000E+02
|
||||
5.800000E-01 1.600000E+02
|
||||
5.580000E-01 1.700000E+02
|
||||
5.380000E-01 1.800000E+02
|
||||
5.220000E-01 1.900000E+02
|
||||
5.060000E-01 2.000000E+02
|
||||
4.900000E-01 2.100000E+02
|
||||
4.780000E-01 2.200000E+02
|
||||
4.670000E-01 2.300000E+02
|
||||
4.570000E-01 2.400000E+02
|
||||
4.480000E-01 2.500000E+02
|
||||
4.380000E-01 2.600000E+02
|
||||
4.310000E-01 2.700000E+02
|
||||
4.240000E-01 2.800000E+02
|
||||
4.200000E-01 2.900000E+02
|
||||
4.140000E-01 3.000000E+02
|
||||
4.110000E-01 3.100000E+02
|
||||
4.060000E-01 3.200000E+02
|
Loading…
Reference in New Issue