Merge branch 'MATH_3_X' of https://git-wip-us.apache.org/repos/asf/commons-math into MATH_3_X
This commit is contained in:
commit
d270d387ce
|
@ -51,6 +51,13 @@ If the output is not quite correct, check for invisible trailing spaces!
|
|||
</properties>
|
||||
<body>
|
||||
<release version="3.6" date="XXXX-XX-XX" description="">
|
||||
<action dev="luc" type="add" >
|
||||
Reimplemented pow(double, double) in FastMath, for better accuracy in
|
||||
integral power cases and trying to fix erroneous JIT optimization again.
|
||||
</action>
|
||||
<action dev="luc" type="add" >
|
||||
Added a pow(double, long) method in FastMath.
|
||||
</action>
|
||||
<action dev="luc" type="fix" issue="MATH-1266">
|
||||
Fixed split/side inconsistencies in BSP trees.
|
||||
</action>
|
||||
|
|
|
@ -21,7 +21,7 @@ import java.util.Arrays;
|
|||
|
||||
/** Wrapper used to detect only increasing or decreasing events.
|
||||
*
|
||||
* <p>General {@link EventHandler events} are defined implicitely
|
||||
* <p>General {@link EventHandler events} are defined implicitly
|
||||
* by a {@link EventHandler#g(double, double[]) g function} crossing
|
||||
* zero. This function needs to be continuous in the event neighborhood,
|
||||
* and its sign must remain consistent between events. This implies that
|
||||
|
@ -115,12 +115,12 @@ public class EventFilter implements EventHandler {
|
|||
final Transformer previous = transformers[last];
|
||||
final Transformer next = filter.selectTransformer(previous, rawG, forward);
|
||||
if (next != previous) {
|
||||
// there is a root somewhere between extremeT end t
|
||||
// the new transformer, which is valid on both sides of the root,
|
||||
// so it is valid for t (this is how we have just computed it above),
|
||||
// but it was already valid before, so we store the switch at extremeT
|
||||
// for safety, to ensure the previous transformer is not applied too
|
||||
// close of the root
|
||||
// there is a root somewhere between extremeT and t.
|
||||
// the new transformer is valid for t (this is how we have just computed
|
||||
// it above), but it is in fact valid on both sides of the root, so
|
||||
// it was already valid before t and even up to previous time. We store
|
||||
// the switch at extremeT for safety, to ensure the previous transformer
|
||||
// is not applied too close of the root
|
||||
System.arraycopy(updates, 1, updates, 0, last);
|
||||
System.arraycopy(transformers, 1, transformers, 0, last);
|
||||
updates[last] = extremeT;
|
||||
|
@ -154,12 +154,12 @@ public class EventFilter implements EventHandler {
|
|||
final Transformer previous = transformers[0];
|
||||
final Transformer next = filter.selectTransformer(previous, rawG, forward);
|
||||
if (next != previous) {
|
||||
// there is a root somewhere between extremeT end t
|
||||
// the new transformer, which is valid on both sides of the root,
|
||||
// so it is valid for t (this is how we have just computed it above),
|
||||
// but it was already valid before, so we store the switch at extremeT
|
||||
// for safety, to ensure the previous transformer is not applied too
|
||||
// close of the root
|
||||
// there is a root somewhere between extremeT and t.
|
||||
// the new transformer is valid for t (this is how we have just computed
|
||||
// it above), but it is in fact valid on both sides of the root, so
|
||||
// it was already valid before t and even up to previous time. We store
|
||||
// the switch at extremeT for safety, to ensure the previous transformer
|
||||
// is not applied too close of the root
|
||||
System.arraycopy(updates, 0, updates, 1, updates.length - 1);
|
||||
System.arraycopy(transformers, 0, transformers, 1, transformers.length - 1);
|
||||
updates[0] = extremeT;
|
||||
|
|
|
@ -315,10 +315,17 @@ public class FastMath {
|
|||
/** Mask used to clear the non-sign part of a long. */
|
||||
private static final long MASK_NON_SIGN_LONG = 0x7fffffffffffffffl;
|
||||
|
||||
/** Mask used to extract exponent from double bits. */
|
||||
private static final long MASK_DOUBLE_EXPONENT = 0x7ff0000000000000L;
|
||||
|
||||
/** Mask used to extract mantissa from double bits. */
|
||||
private static final long MASK_DOUBLE_MANTISSA = 0x000fffffffffffffL;
|
||||
|
||||
/** Mask used to add implicit high order bit for normalized double. */
|
||||
private static final long IMPLICIT_HIGH_BIT = 0x0010000000000000L;
|
||||
|
||||
/** 2^52 - double numbers this large must be integral (no fraction) or NaN or Infinite */
|
||||
private static final double TWO_POWER_52 = 4503599627370496.0;
|
||||
/** 2^53 - double numbers this large must be even. */
|
||||
private static final double TWO_POWER_53 = 2 * TWO_POWER_52;
|
||||
|
||||
/** Constant: {@value}. */
|
||||
private static final double F_1_3 = 1d / 3d;
|
||||
|
@ -1457,145 +1464,142 @@ public class FastMath {
|
|||
* @param y a double
|
||||
* @return double
|
||||
*/
|
||||
public static double pow(double x, double y) {
|
||||
final double lns[] = new double[2];
|
||||
public static double pow(final double x, final double y) {
|
||||
|
||||
if (y == 0.0) {
|
||||
if (y == 0) {
|
||||
// y = -0 or y = +0
|
||||
return 1.0;
|
||||
} else if (x != x) { // X is NaN
|
||||
return x;
|
||||
} else if (y != y) { // y is NaN
|
||||
return y;
|
||||
} else if (x == 0) {
|
||||
long bits = Double.doubleToRawLongBits(x);
|
||||
if ((bits & 0x8000000000000000L) != 0) {
|
||||
// -zero
|
||||
long yi = (long) y;
|
||||
|
||||
if (y < 0 && y == yi && (yi & 1) == 1) {
|
||||
return Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
||||
if (y > 0 && y == yi && (yi & 1) == 1) {
|
||||
return -0.0;
|
||||
}
|
||||
}
|
||||
|
||||
if (y < 0) {
|
||||
return Double.POSITIVE_INFINITY;
|
||||
}
|
||||
if (y > 0) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
return Double.NaN;
|
||||
} else if (x == Double.POSITIVE_INFINITY) {
|
||||
if (y < 0.0) {
|
||||
return 0.0;
|
||||
} else {
|
||||
return Double.POSITIVE_INFINITY;
|
||||
}
|
||||
} else if (y == Double.POSITIVE_INFINITY) {
|
||||
if (x * x == 1.0) {
|
||||
return Double.NaN;
|
||||
}
|
||||
|
||||
if (x * x > 1.0) {
|
||||
return Double.POSITIVE_INFINITY;
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
} else if (x == Double.NEGATIVE_INFINITY) {
|
||||
if (y < 0) {
|
||||
long yi = (long) y;
|
||||
if (y == yi && (yi & 1) == 1) {
|
||||
return -0.0;
|
||||
}
|
||||
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
if (y > 0) {
|
||||
long yi = (long) y;
|
||||
if (y == yi && (yi & 1) == 1) {
|
||||
return Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
||||
return Double.POSITIVE_INFINITY;
|
||||
}
|
||||
} else if (y == Double.NEGATIVE_INFINITY) {
|
||||
if (x * x == 1.0) {
|
||||
return Double.NaN;
|
||||
}
|
||||
|
||||
if (x * x < 1.0) {
|
||||
return Double.POSITIVE_INFINITY;
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
} else if (x < 0) { // Handle special case x<0
|
||||
// y is an even integer in this case
|
||||
if (y >= TWO_POWER_53 || y <= -TWO_POWER_53) {
|
||||
return pow(-x, y);
|
||||
}
|
||||
|
||||
if (y == (long) y) {
|
||||
// If y is an integer
|
||||
return ((long)y & 1) == 0 ? pow(-x, y) : -pow(-x, y);
|
||||
} else {
|
||||
return Double.NaN;
|
||||
}
|
||||
}
|
||||
|
||||
/* Split y into ya and yb such that y = ya+yb */
|
||||
double ya;
|
||||
double yb;
|
||||
if (y < 8e298 && y > -8e298) {
|
||||
double tmp1 = y * HEX_40000000;
|
||||
ya = y + tmp1 - tmp1;
|
||||
yb = y - ya;
|
||||
} else {
|
||||
double tmp1 = y * 9.31322574615478515625E-10;
|
||||
double tmp2 = tmp1 * 9.31322574615478515625E-10;
|
||||
ya = (tmp1 + tmp2 - tmp1) * HEX_40000000 * HEX_40000000;
|
||||
yb = y - ya;
|
||||
|
||||
final long yBits = Double.doubleToRawLongBits(y);
|
||||
final int yRawExp = (int) ((yBits & MASK_DOUBLE_EXPONENT) >> 52);
|
||||
final long yRawMantissa = yBits & MASK_DOUBLE_MANTISSA;
|
||||
final long xBits = Double.doubleToRawLongBits(x);
|
||||
final int xRawExp = (int) ((xBits & MASK_DOUBLE_EXPONENT) >> 52);
|
||||
final long xRawMantissa = xBits & MASK_DOUBLE_MANTISSA;
|
||||
|
||||
if (yRawExp > 1085) {
|
||||
// y is either a very large integral value that does not fit in a long or it is a special number
|
||||
|
||||
if ((yRawExp == 2047 && yRawMantissa != 0) ||
|
||||
(xRawExp == 2047 && xRawMantissa != 0)) {
|
||||
// NaN
|
||||
return Double.NaN;
|
||||
} else if (xRawExp == 1023 && xRawMantissa == 0) {
|
||||
// x = -1.0 or x = +1.0
|
||||
if (yRawExp == 2047) {
|
||||
// y is infinite
|
||||
return Double.NaN;
|
||||
} else {
|
||||
// y is a large even integer
|
||||
return 1.0;
|
||||
}
|
||||
} else {
|
||||
// the absolute value of x is either greater or smaller than 1.0
|
||||
|
||||
// if yRawExp == 2047 and mantissa is 0, y = -infinity or y = +infinity
|
||||
// if 1085 < yRawExp < 2047, y is simply a large number, however, due to limited
|
||||
// accuracy, at this magnitude it behaves just like infinity with regards to x
|
||||
if ((y > 0) ^ (xRawExp < 1023)) {
|
||||
// either y = +infinity (or large engouh) and abs(x) > 1.0
|
||||
// or y = -infinity (or large engouh) and abs(x) < 1.0
|
||||
return Double.POSITIVE_INFINITY;
|
||||
} else {
|
||||
// either y = +infinity (or large engouh) and abs(x) < 1.0
|
||||
// or y = -infinity (or large engouh) and abs(x) > 1.0
|
||||
return +0.0;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// y is a regular non-zero number
|
||||
|
||||
if (yRawExp >= 1023) {
|
||||
// y may be an integral value, which should be handled specifically
|
||||
final long yFullMantissa = IMPLICIT_HIGH_BIT | yRawMantissa;
|
||||
if (yRawExp < 1075) {
|
||||
// normal number with negative shift that may have a fractional part
|
||||
final long integralMask = (-1L) << (1075 - yRawExp);
|
||||
if ((yFullMantissa & integralMask) == yFullMantissa) {
|
||||
// all fractional bits are 0, the number is really integral
|
||||
final long l = yFullMantissa >> (1075 - yRawExp);
|
||||
return FastMath.pow(x, (y < 0) ? -l : l);
|
||||
}
|
||||
} else {
|
||||
// normal number with positive shift, always an integral value
|
||||
// we know it fits in a primitive long because yRawExp > 1085 has been handled above
|
||||
final long l = yFullMantissa << (yRawExp - 1075);
|
||||
return FastMath.pow(x, (y < 0) ? -l : l);
|
||||
}
|
||||
}
|
||||
|
||||
// y is a non-integral value
|
||||
|
||||
if (x == 0) {
|
||||
// x = -0 or x = +0
|
||||
// the integer powers have already been handled above
|
||||
return y < 0 ? Double.POSITIVE_INFINITY : +0.0;
|
||||
} else if (xRawExp == 2047) {
|
||||
if (xRawMantissa == 0) {
|
||||
// x = -infinity or x = +infinity
|
||||
return (y < 0) ? +0.0 : Double.POSITIVE_INFINITY;
|
||||
} else {
|
||||
// NaN
|
||||
return Double.NaN;
|
||||
}
|
||||
} else if (x < 0) {
|
||||
// the integer powers have already been handled above
|
||||
return Double.NaN;
|
||||
} else {
|
||||
|
||||
// this is the general case, for regular fractional numbers x and y
|
||||
|
||||
// Split y into ya and yb such that y = ya+yb
|
||||
final double tmp = y * HEX_40000000;
|
||||
final double ya = (y + tmp) - tmp;
|
||||
final double yb = y - ya;
|
||||
|
||||
/* Compute ln(x) */
|
||||
final double lns[] = new double[2];
|
||||
final double lores = log(x, lns);
|
||||
if (Double.isInfinite(lores)) { // don't allow this to be converted to NaN
|
||||
return lores;
|
||||
}
|
||||
|
||||
double lna = lns[0];
|
||||
double lnb = lns[1];
|
||||
|
||||
/* resplit lns */
|
||||
final double tmp1 = lna * HEX_40000000;
|
||||
final double tmp2 = (lna + tmp1) - tmp1;
|
||||
lnb += lna - tmp2;
|
||||
lna = tmp2;
|
||||
|
||||
// y*ln(x) = (aa+ab)
|
||||
final double aa = lna * ya;
|
||||
final double ab = lna * yb + lnb * ya + lnb * yb;
|
||||
|
||||
lna = aa+ab;
|
||||
lnb = -(lna - aa - ab);
|
||||
|
||||
double z = 1.0 / 120.0;
|
||||
z = z * lnb + (1.0 / 24.0);
|
||||
z = z * lnb + (1.0 / 6.0);
|
||||
z = z * lnb + 0.5;
|
||||
z = z * lnb + 1.0;
|
||||
z *= lnb;
|
||||
|
||||
final double result = exp(lna, z, null);
|
||||
//result = result + result * z;
|
||||
return result;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Compute ln(x) */
|
||||
final double lores = log(x, lns);
|
||||
if (Double.isInfinite(lores)){ // don't allow this to be converted to NaN
|
||||
return lores;
|
||||
}
|
||||
|
||||
double lna = lns[0];
|
||||
double lnb = lns[1];
|
||||
|
||||
/* resplit lns */
|
||||
double tmp1 = lna * HEX_40000000;
|
||||
double tmp2 = lna + tmp1 - tmp1;
|
||||
lnb += lna - tmp2;
|
||||
lna = tmp2;
|
||||
|
||||
// y*ln(x) = (aa+ab)
|
||||
final double aa = lna * ya;
|
||||
final double ab = lna * yb + lnb * ya + lnb * yb;
|
||||
|
||||
lna = aa+ab;
|
||||
lnb = -(lna - aa - ab);
|
||||
|
||||
double z = 1.0 / 120.0;
|
||||
z = z * lnb + (1.0 / 24.0);
|
||||
z = z * lnb + (1.0 / 6.0);
|
||||
z = z * lnb + 0.5;
|
||||
z = z * lnb + 1.0;
|
||||
z *= lnb;
|
||||
|
||||
final double result = exp(lna, z, null);
|
||||
//result = result + result * z;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Raise a double to an int power.
|
||||
*
|
||||
|
@ -1605,68 +1609,149 @@ public class FastMath {
|
|||
* @since 3.1
|
||||
*/
|
||||
public static double pow(double d, int e) {
|
||||
return pow(d, (long) e);
|
||||
}
|
||||
|
||||
/**
|
||||
* Raise a double to a long power.
|
||||
*
|
||||
* @param d Number to raise.
|
||||
* @param e Exponent.
|
||||
* @return d<sup>e</sup>
|
||||
* @since 3.6
|
||||
*/
|
||||
public static double pow(double d, long e) {
|
||||
if (e == 0) {
|
||||
return 1.0;
|
||||
} else if (e < 0) {
|
||||
e = -e;
|
||||
d = 1.0 / d;
|
||||
}
|
||||
|
||||
// split d as one 26 bits number and one 27 bits number
|
||||
// beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
||||
final double d1High = Double.longBitsToDouble(Double.doubleToRawLongBits(d) & ((-1L) << 27));
|
||||
final double d1Low = d - d1High;
|
||||
|
||||
// prepare result
|
||||
double resultHigh = 1;
|
||||
double resultLow = 0;
|
||||
|
||||
// d^(2p)
|
||||
double d2p = d;
|
||||
double d2pHigh = d1High;
|
||||
double d2pLow = d1Low;
|
||||
|
||||
while (e != 0) {
|
||||
|
||||
if ((e & 0x1) != 0) {
|
||||
// accurate multiplication result = result * d^(2p) using Veltkamp TwoProduct algorithm
|
||||
// beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
||||
final double tmpHigh = resultHigh * d2p;
|
||||
final double rHH = Double.longBitsToDouble(Double.doubleToRawLongBits(resultHigh) & ((-1L) << 27));
|
||||
final double rHL = resultHigh - rHH;
|
||||
final double tmpLow = rHL * d2pLow - (((tmpHigh - rHH * d2pHigh) - rHL * d2pHigh) - rHH * d2pLow);
|
||||
resultHigh = tmpHigh;
|
||||
resultLow = resultLow * d2p + tmpLow;
|
||||
}
|
||||
|
||||
// accurate squaring d^(2(p+1)) = d^(2p) * d^(2p) using Veltkamp TwoProduct algorithm
|
||||
// beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
||||
final double tmpHigh = d2pHigh * d2p;
|
||||
final double cD2pH = Double.longBitsToDouble(Double.doubleToRawLongBits(d2pHigh) & ((-1L) << 27));
|
||||
final double d2pHH = cD2pH - (cD2pH - d2pHigh);
|
||||
final double d2pHL = d2pHigh - d2pHH;
|
||||
final double tmpLow = d2pHL * d2pLow - (((tmpHigh - d2pHH * d2pHigh) - d2pHL * d2pHigh) - d2pHH * d2pLow);
|
||||
d2pHigh = Double.longBitsToDouble(Double.doubleToRawLongBits(tmpHigh) & ((-1L) << 27));
|
||||
d2pLow = d2pLow * d2p + tmpLow + (tmpHigh - d2pHigh);
|
||||
d2p = d2pHigh + d2pLow;
|
||||
|
||||
e >>= 1;
|
||||
|
||||
}
|
||||
|
||||
final double result = resultHigh + resultLow;
|
||||
|
||||
if (Double.isNaN(result)) {
|
||||
if (Double.isNaN(d)) {
|
||||
return Double.NaN;
|
||||
} else {
|
||||
// some intermediate numbers exceeded capacity,
|
||||
// and the low order bits became NaN (because infinity - infinity = NaN)
|
||||
return (d < 0 && (e & 0x1) == 1) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
|
||||
}
|
||||
} else if (e > 0) {
|
||||
return new Split(d).pow(e).full;
|
||||
} else {
|
||||
return result;
|
||||
return new Split(d).reciprocal().pow(-e).full;
|
||||
}
|
||||
}
|
||||
|
||||
/** Class operator on double numbers split into one 26 bits number and one 27 bits number. */
|
||||
private static class Split {
|
||||
|
||||
/** Split version of NaN. */
|
||||
public static final Split NAN = new Split(Double.NaN, 0);
|
||||
|
||||
/** Split version of positive infinity. */
|
||||
public static final Split POSITIVE_INFINITY = new Split(Double.POSITIVE_INFINITY, 0);
|
||||
|
||||
/** Split version of negative infinity. */
|
||||
public static final Split NEGATIVE_INFINITY = new Split(Double.NEGATIVE_INFINITY, 0);
|
||||
|
||||
/** Full number. */
|
||||
private final double full;
|
||||
|
||||
/** High order bits. */
|
||||
private final double high;
|
||||
|
||||
/** Low order bits. */
|
||||
private final double low;
|
||||
|
||||
/** Simple constructor.
|
||||
* @param x number to split
|
||||
*/
|
||||
public Split(final double x) {
|
||||
full = x;
|
||||
high = Double.longBitsToDouble(Double.doubleToRawLongBits(x) & ((-1L) << 27));
|
||||
low = x - high;
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
* @param high high order bits
|
||||
* @param low low order bits
|
||||
*/
|
||||
public Split(final double high, final double low) {
|
||||
this(high + low, high, low);
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
* @param full full number
|
||||
* @param high high order bits
|
||||
* @param low low order bits
|
||||
*/
|
||||
public Split(final double full, final double high, final double low) {
|
||||
this.full = full;
|
||||
this.high = high;
|
||||
this.low = low;
|
||||
}
|
||||
|
||||
/** Multiply the instance by another one.
|
||||
* @param b other instance to multiply by
|
||||
* @return product
|
||||
*/
|
||||
public Split multiply(final Split b) {
|
||||
// beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
||||
final Split mulBasic = new Split(full * b.full);
|
||||
final double mulError = low * b.low - (((mulBasic.full - high * b.high) - low * b.high) - high * b.low);
|
||||
return new Split(mulBasic.high, mulBasic.low + mulError);
|
||||
}
|
||||
|
||||
/** Compute the reciprocal of the instance.
|
||||
* @return reciprocal of the instance
|
||||
*/
|
||||
public Split reciprocal() {
|
||||
|
||||
final double approximateInv = 1.0 / full;
|
||||
final Split splitInv = new Split(approximateInv);
|
||||
|
||||
// if 1.0/d were computed perfectly, remultiplying it by d should give 1.0
|
||||
// we want to estimate the error so we can fix the low order bits of approximateInvLow
|
||||
// beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
||||
final Split product = multiply(splitInv);
|
||||
final double error = (product.high - 1) + product.low;
|
||||
|
||||
// better accuracy estimate of reciprocal
|
||||
return Double.isNaN(error) ? splitInv : new Split(splitInv.high, splitInv.low - error / full);
|
||||
|
||||
}
|
||||
|
||||
/** Computes this^e.
|
||||
* @param e exponent (beware, here it MUST be > 0; the only exclusion is Long.MIN_VALUE)
|
||||
* @return d^e, split in high and low bits
|
||||
* @since 3.6
|
||||
*/
|
||||
private Split pow(final long e) {
|
||||
|
||||
// prepare result
|
||||
Split result = new Split(1);
|
||||
|
||||
// d^(2p)
|
||||
Split d2p = new Split(full, high, low);
|
||||
|
||||
for (long p = e; p != 0; p >>>= 1) {
|
||||
|
||||
if ((p & 0x1) != 0) {
|
||||
// accurate multiplication result = result * d^(2p) using Veltkamp TwoProduct algorithm
|
||||
result = result.multiply(d2p);
|
||||
}
|
||||
|
||||
// accurate squaring d^(2(p+1)) = d^(2p) * d^(2p) using Veltkamp TwoProduct algorithm
|
||||
d2p = d2p.multiply(d2p);
|
||||
|
||||
}
|
||||
|
||||
if (Double.isNaN(result.full)) {
|
||||
if (Double.isNaN(full)) {
|
||||
return Split.NAN;
|
||||
} else {
|
||||
// some intermediate numbers exceeded capacity,
|
||||
// and the low order bits became NaN (because infinity - infinity = NaN)
|
||||
if (FastMath.abs(full) < 1) {
|
||||
return new Split(FastMath.copySign(0.0, full), 0.0);
|
||||
} else if (full < 0 && (e & 0x1) == 1) {
|
||||
return Split.NEGATIVE_INFINITY;
|
||||
} else {
|
||||
return Split.POSITIVE_INFINITY;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -347,7 +347,7 @@ public class GammaDistributionTest extends RealDistributionAbstractTest {
|
|||
|
||||
@Test
|
||||
public void testMath753Shape142() throws IOException {
|
||||
doTestMath753(142.0, 0.5, 1.5, 40.0, 40.0, "gamma-distribution-shape-142.csv");
|
||||
doTestMath753(142.0, 3.3, 1.6, 40.0, 40.0, "gamma-distribution-shape-142.csv");
|
||||
}
|
||||
|
||||
@Test
|
||||
|
|
|
@ -188,7 +188,7 @@ public class BOBYQAOptimizerTest {
|
|||
new PointValuePair(point(DIM/2,0.0),0.0);
|
||||
doTest(new DiffPow(), startPoint, boundaries,
|
||||
GoalType.MINIMIZE,
|
||||
1e-8, 1e-1, 12000, expected);
|
||||
1e-8, 1e-1, 21000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
|
|
@ -187,7 +187,7 @@ public class BOBYQAOptimizerTest {
|
|||
new PointValuePair(point(DIM/2,0.0),0.0);
|
||||
doTest(new DiffPow(), startPoint, boundaries,
|
||||
GoalType.MINIMIZE,
|
||||
1e-8, 1e-1, 12000, expected);
|
||||
1e-8, 1e-1, 21000, expected);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
|
|
@ -319,9 +319,9 @@ public class FastMathTest {
|
|||
@Test
|
||||
public void testLogSpecialCases() {
|
||||
|
||||
Assert.assertTrue("Log of zero should be -Inf", Double.isInfinite(FastMath.log(0.0)));
|
||||
Assert.assertEquals("Log of zero should be -Inf", Double.NEGATIVE_INFINITY, FastMath.log(0.0), 1.0);
|
||||
|
||||
Assert.assertTrue("Log of -zero should be -Inf", Double.isInfinite(FastMath.log(-0.0)));
|
||||
Assert.assertEquals("Log of -zero should be -Inf", Double.NEGATIVE_INFINITY, FastMath.log(-0.0), 1.0);
|
||||
|
||||
Assert.assertTrue("Log of NaN should be NaN", Double.isNaN(FastMath.log(Double.NaN)));
|
||||
|
||||
|
@ -329,8 +329,9 @@ public class FastMathTest {
|
|||
|
||||
Assert.assertEquals("Log of Double.MIN_VALUE should be -744.4400719213812", -744.4400719213812, FastMath.log(Double.MIN_VALUE), Precision.EPSILON);
|
||||
|
||||
Assert.assertTrue("Log of infinity should be infinity", Double.isInfinite(FastMath.log(Double.POSITIVE_INFINITY)));
|
||||
Assert.assertEquals("Log of infinity should be infinity", Double.POSITIVE_INFINITY, FastMath.log(Double.POSITIVE_INFINITY), 1.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testExpSpecialCases() {
|
||||
|
||||
|
@ -341,7 +342,7 @@ public class FastMathTest {
|
|||
|
||||
Assert.assertTrue("exp of NaN should be NaN", Double.isNaN(FastMath.exp(Double.NaN)));
|
||||
|
||||
Assert.assertTrue("exp of infinity should be infinity", Double.isInfinite(FastMath.exp(Double.POSITIVE_INFINITY)));
|
||||
Assert.assertEquals("exp of infinity should be infinity", Double.POSITIVE_INFINITY, FastMath.exp(Double.POSITIVE_INFINITY), 1.0);
|
||||
|
||||
Assert.assertEquals("exp of -infinity should be 0.0", 0.0, FastMath.exp(Double.NEGATIVE_INFINITY), Precision.EPSILON);
|
||||
|
||||
|
@ -363,9 +364,9 @@ public class FastMathTest {
|
|||
|
||||
Assert.assertTrue("pow(NaN, PI) should be NaN", Double.isNaN(FastMath.pow(Double.NaN, Math.PI)));
|
||||
|
||||
Assert.assertTrue("pow(2.0, Infinity) should be Infinity", Double.isInfinite(FastMath.pow(2.0, Double.POSITIVE_INFINITY)));
|
||||
Assert.assertEquals("pow(2.0, Infinity) should be Infinity", Double.POSITIVE_INFINITY, FastMath.pow(2.0, Double.POSITIVE_INFINITY), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(0.5, -Infinity) should be Infinity", Double.isInfinite(FastMath.pow(0.5, Double.NEGATIVE_INFINITY)));
|
||||
Assert.assertEquals("pow(0.5, -Infinity) should be Infinity", Double.POSITIVE_INFINITY, FastMath.pow(0.5, Double.NEGATIVE_INFINITY), 1.0);
|
||||
|
||||
Assert.assertEquals("pow(0.5, Infinity) should be 0.0", 0.0, FastMath.pow(0.5, Double.POSITIVE_INFINITY), Precision.EPSILON);
|
||||
|
||||
|
@ -375,23 +376,25 @@ public class FastMathTest {
|
|||
|
||||
Assert.assertEquals("pow(Infinity, -0.5) should be 0.0", 0.0, FastMath.pow(Double.POSITIVE_INFINITY, -0.5), Precision.EPSILON);
|
||||
|
||||
Assert.assertTrue("pow(0.0, -0.5) should be Inf", Double.isInfinite(FastMath.pow(0.0, -0.5)));
|
||||
Assert.assertEquals("pow(0.0, -0.5) should be Inf", Double.POSITIVE_INFINITY, FastMath.pow(0.0, -0.5), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(Inf, 0.5) should be Inf", Double.isInfinite(FastMath.pow(Double.POSITIVE_INFINITY, 0.5)));
|
||||
Assert.assertEquals("pow(Inf, 0.5) should be Inf", Double.POSITIVE_INFINITY, FastMath.pow(Double.POSITIVE_INFINITY, 0.5), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(-0.0, -3.0) should be -Inf", Double.isInfinite(FastMath.pow(-0.0, -3.0)));
|
||||
Assert.assertEquals("pow(-0.0, -3.0) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(-0.0, -3.0), 1.0);
|
||||
|
||||
Assert.assertEquals("pow(-0.0, Infinity) should be 0.0", 0.0, FastMath.pow(-0.0, Double.POSITIVE_INFINITY), Precision.EPSILON);
|
||||
|
||||
Assert.assertTrue("pow(-0.0, NaN) should be NaN", Double.isNaN(FastMath.pow(-0.0, Double.NaN)));
|
||||
|
||||
Assert.assertTrue("pow(-0.0, -tiny) should be Infinity", Double.isInfinite(FastMath.pow(-0.0, -Double.MIN_VALUE)));
|
||||
Assert.assertEquals("pow(-0.0, -tiny) should be Infinity", Double.POSITIVE_INFINITY, FastMath.pow(-0.0, -Double.MIN_VALUE), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(-Inf, -3.0) should be -Inf", Double.isInfinite(FastMath.pow(Double.NEGATIVE_INFINITY, 3.0)));
|
||||
Assert.assertEquals("pow(-0.0, -huge) should be Infinity", Double.POSITIVE_INFINITY, FastMath.pow(-0.0, -Double.MAX_VALUE), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(-0.0, -3.5) should be Inf", Double.isInfinite(FastMath.pow(-0.0, -3.5)));
|
||||
Assert.assertEquals("pow(-Inf, -3.0) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, 3.0), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(Inf, 3.5) should be Inf", Double.isInfinite(FastMath.pow(Double.POSITIVE_INFINITY, 3.5)));
|
||||
Assert.assertEquals("pow(-0.0, -3.5) should be Inf", Double.POSITIVE_INFINITY, FastMath.pow(-0.0, -3.5), 1.0);
|
||||
|
||||
Assert.assertEquals("pow(Inf, 3.5) should be Inf", Double.POSITIVE_INFINITY, FastMath.pow(Double.POSITIVE_INFINITY, 3.5), 1.0);
|
||||
|
||||
Assert.assertEquals("pow(-2.0, 3.0) should be -8.0", -8.0, FastMath.pow(-2.0, 3.0), Precision.EPSILON);
|
||||
|
||||
|
@ -407,6 +410,16 @@ public class FastMathTest {
|
|||
|
||||
Assert.assertTrue("pow(-huge, huge) should be +Inf", Double.isInfinite(FastMath.pow(-Double.MAX_VALUE, Double.MAX_VALUE)));
|
||||
|
||||
Assert.assertTrue("pow(NaN, -Infinity) should be NaN", Double.isNaN(FastMath.pow(Double.NaN, Double.NEGATIVE_INFINITY)));
|
||||
|
||||
Assert.assertEquals("pow(NaN, 0.0) should be 1.0", 1.0, FastMath.pow(Double.NaN, 0.0), Precision.EPSILON);
|
||||
|
||||
Assert.assertEquals("pow(-Infinity, -Infinity) should be 0.0", 0.0, FastMath.pow(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY), Precision.EPSILON);
|
||||
|
||||
Assert.assertEquals("pow(-huge, -huge) should be 0.0", 0.0, FastMath.pow(-Double.MAX_VALUE, -Double.MAX_VALUE), Precision.EPSILON);
|
||||
|
||||
Assert.assertEquals("pow(-huge, huge) should be +Inf", Double.POSITIVE_INFINITY, FastMath.pow(-Double.MAX_VALUE, Double.MAX_VALUE), 1.0);
|
||||
|
||||
// Added tests for a 100% coverage
|
||||
|
||||
Assert.assertTrue("pow(+Inf, NaN) should be NaN", Double.isNaN(FastMath.pow(Double.POSITIVE_INFINITY, Double.NaN)));
|
||||
|
@ -419,14 +432,25 @@ public class FastMathTest {
|
|||
|
||||
Assert.assertEquals("pow(-Inf, -2.0) should be 0.0", 0.0, FastMath.pow(Double.NEGATIVE_INFINITY, -2.0), Precision.EPSILON);
|
||||
|
||||
Assert.assertTrue("pow(-Inf, 1.0) should be -Inf", Double.isInfinite(FastMath.pow(Double.NEGATIVE_INFINITY, 1.0)));
|
||||
Assert.assertEquals("pow(-Inf, 1.0) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, 1.0), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(-Inf, 2.0) should be +Inf", Double.isInfinite(FastMath.pow(Double.NEGATIVE_INFINITY, 2.0)));
|
||||
Assert.assertEquals("pow(-Inf, 2.0) should be +Inf", Double.POSITIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, 2.0), 1.0);
|
||||
|
||||
Assert.assertTrue("pow(1.0, -Inf) should be NaN", Double.isNaN(FastMath.pow(1.0, Double.NEGATIVE_INFINITY)));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testPowLargeIntegralDouble() {
|
||||
double y = FastMath.scalb(1.0, 65);
|
||||
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(FastMath.nextUp(1.0), y), 1.0);
|
||||
Assert.assertEquals(1.0, FastMath.pow(1.0, y), 1.0);
|
||||
Assert.assertEquals(0.0, FastMath.pow(FastMath.nextDown(1.0), y), 1.0);
|
||||
Assert.assertEquals(0.0, FastMath.pow(FastMath.nextUp(-1.0), y), 1.0);
|
||||
Assert.assertEquals(1.0, FastMath.pow(-1.0, y), 1.0);
|
||||
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(FastMath.nextDown(-1.0), y), 1.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAtan2SpecialCases() {
|
||||
|
||||
|
@ -1206,6 +1230,11 @@ public class FastMathTest {
|
|||
Assert.assertTrue(Double.isInfinite(FastMath.pow(FastMath.scalb(1.0, 500), 4)));
|
||||
}
|
||||
|
||||
@Test(timeout=5000L) // This test must finish in finite time.
|
||||
public void testIntPowLongMinValue() {
|
||||
Assert.assertEquals(1.0, FastMath.pow(1.0, Long.MIN_VALUE), -1.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIncrementExactInt() {
|
||||
int[] specialValues = new int[] {
|
||||
|
|
Loading…
Reference in New Issue