In o.a.c.m3.optimization.general.AbstractLeastSquaresOptimizer, improved the javadoc of guessParametersErrors() (MATH-784).

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1332076 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2012-04-30 06:38:00 +00:00
parent 55824972ea
commit d3561ffecb
1 changed files with 19 additions and 4 deletions

View File

@ -224,12 +224,27 @@ public abstract class AbstractLeastSquaresOptimizer
}
/**
* Guess the errors in optimized parameters.
* Guessing is covariance-based: It only gives a rough order of magnitude.
* <p>
* Returns an estimate of the standard deviation of each parameter. The
* returned values are the so-called (asymptotic) standard errors on the
* parameters, defined as {@code sd(a[i]) = sqrt(S / (n - m) * C[i][i])},
* where {@code a[i]} is the optimized value of the {@code i}-th parameter,
* {@code S} is the minimized value of the sum of squares objective function
* (as returned by {@link #getChiSquare()}), {@code n} is the number of
* observations, {@code m} is the number of parameters and {@code C} is the
* covariance matrix.
* </p>
* <p>
* See also
* <a href="http://en.wikipedia.org/wiki/Least_squares">Wikipedia</a>,
* or
* <a href="http://mathworld.wolfram.com/LeastSquaresFitting.html">MathWorld</a>,
* equations (34) and (35) for a particular case.
* </p>
*
* @return errors in optimized parameters
* @return an estimate of the standard deviation of the optimized parameters
* @throws org.apache.commons.math3.linear.SingularMatrixException
* if the covariances matrix cannot be computed.
* if the covariance matrix cannot be computed.
* @throws NumberIsTooSmallException if the number of degrees of freedom is not
* positive, i.e. the number of measurements is less or equal to the number of
* parameters.