MATH-1416: Replaced usage of combinatorics code with equivalent calls to "Commons Numbers".
This commit is contained in:
parent
05107594d2
commit
d442a770f2
|
@ -26,7 +26,7 @@ import org.apache.commons.math4.exception.MathArithmeticException;
|
||||||
import org.apache.commons.math4.exception.MathInternalError;
|
import org.apache.commons.math4.exception.MathInternalError;
|
||||||
import org.apache.commons.math4.exception.NotPositiveException;
|
import org.apache.commons.math4.exception.NotPositiveException;
|
||||||
import org.apache.commons.math4.exception.NumberIsTooLargeException;
|
import org.apache.commons.math4.exception.NumberIsTooLargeException;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.FactorialDouble;
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
import org.apache.commons.math4.util.MathArrays;
|
import org.apache.commons.math4.util.MathArrays;
|
||||||
|
|
||||||
|
@ -123,6 +123,8 @@ import org.apache.commons.math4.util.MathArrays;
|
||||||
* @since 3.1
|
* @since 3.1
|
||||||
*/
|
*/
|
||||||
public class DSCompiler {
|
public class DSCompiler {
|
||||||
|
/** Cache for factorials. */
|
||||||
|
private static FactorialDouble FACTORIAL = FactorialDouble.create().withCache(30);
|
||||||
|
|
||||||
/** Array of all compilers created so far. */
|
/** Array of all compilers created so far. */
|
||||||
private static AtomicReference<DSCompiler[][]> compilers =
|
private static AtomicReference<DSCompiler[][]> compilers =
|
||||||
|
@ -1803,8 +1805,7 @@ public class DSCompiler {
|
||||||
for (int k = 0; k < orders.length; ++k) {
|
for (int k = 0; k < orders.length; ++k) {
|
||||||
if (orders[k] > 0) {
|
if (orders[k] > 0) {
|
||||||
try {
|
try {
|
||||||
term *= FastMath.pow(delta[k], orders[k]) /
|
term *= FastMath.pow(delta[k], orders[k]) / FACTORIAL.value(orders[k]);
|
||||||
CombinatoricsUtils.factorial(orders[k]);
|
|
||||||
} catch (NotPositiveException e) {
|
} catch (NotPositiveException e) {
|
||||||
// this cannot happen
|
// this cannot happen
|
||||||
throw new MathInternalError(e);
|
throw new MathInternalError(e);
|
||||||
|
|
|
@ -27,7 +27,7 @@ import org.apache.commons.math4.exception.MathArithmeticException;
|
||||||
import org.apache.commons.math4.exception.NoDataException;
|
import org.apache.commons.math4.exception.NoDataException;
|
||||||
import org.apache.commons.math4.exception.ZeroException;
|
import org.apache.commons.math4.exception.ZeroException;
|
||||||
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.Factorial;
|
||||||
|
|
||||||
/** Polynomial interpolator using both sample values and sample derivatives.
|
/** Polynomial interpolator using both sample values and sample derivatives.
|
||||||
* <p>
|
* <p>
|
||||||
|
@ -86,11 +86,13 @@ public class HermiteInterpolator implements UnivariateDifferentiableVectorFuncti
|
||||||
public void addSamplePoint(final double x, final double[] ... value)
|
public void addSamplePoint(final double x, final double[] ... value)
|
||||||
throws ZeroException, MathArithmeticException {
|
throws ZeroException, MathArithmeticException {
|
||||||
|
|
||||||
|
if (value.length > 20) {
|
||||||
|
throw new MathArithmeticException(LocalizedFormats.NUMBER_TOO_LARGE, value.length, 20);
|
||||||
|
}
|
||||||
for (int i = 0; i < value.length; ++i) {
|
for (int i = 0; i < value.length; ++i) {
|
||||||
|
|
||||||
final double[] y = value[i].clone();
|
final double[] y = value[i].clone();
|
||||||
if (i > 1) {
|
if (i > 1) {
|
||||||
double inv = 1.0 / CombinatoricsUtils.factorial(i);
|
double inv = 1.0 / Factorial.value(i);
|
||||||
for (int j = 0; j < y.length; ++j) {
|
for (int j = 0; j < y.length; ++j) {
|
||||||
y[j] *= inv;
|
y[j] *= inv;
|
||||||
}
|
}
|
||||||
|
|
|
@ -22,7 +22,7 @@ import java.util.List;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
|
|
||||||
import org.apache.commons.math4.fraction.BigFraction;
|
import org.apache.commons.math4.fraction.BigFraction;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficient;
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -331,7 +331,7 @@ public class PolynomialsUtils {
|
||||||
final int[][] coeff = new int[dp1][dp1];
|
final int[][] coeff = new int[dp1][dp1];
|
||||||
for (int i = 0; i < dp1; i++){
|
for (int i = 0; i < dp1; i++){
|
||||||
for(int j = 0; j <= i; j++){
|
for(int j = 0; j <= i; j++){
|
||||||
coeff[i][j] = (int) CombinatoricsUtils.binomialCoefficient(i, j);
|
coeff[i][j] = (int) BinomialCoefficient.value(i, j);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -19,8 +19,9 @@ package org.apache.commons.math4.distribution;
|
||||||
import org.apache.commons.math4.exception.NotStrictlyPositiveException;
|
import org.apache.commons.math4.exception.NotStrictlyPositiveException;
|
||||||
import org.apache.commons.math4.exception.OutOfRangeException;
|
import org.apache.commons.math4.exception.OutOfRangeException;
|
||||||
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
||||||
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
|
||||||
|
import org.apache.commons.numbers.combinatorics.LogBinomialCoefficient;
|
||||||
import org.apache.commons.numbers.gamma.RegularizedBeta;
|
import org.apache.commons.numbers.gamma.RegularizedBeta;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -125,7 +126,7 @@ public class PascalDistribution extends AbstractIntegerDistribution {
|
||||||
if (x < 0) {
|
if (x < 0) {
|
||||||
ret = 0.0;
|
ret = 0.0;
|
||||||
} else {
|
} else {
|
||||||
ret = CombinatoricsUtils.binomialCoefficientDouble(x +
|
ret = BinomialCoefficientDouble.value(x +
|
||||||
numberOfSuccesses - 1, numberOfSuccesses - 1) *
|
numberOfSuccesses - 1, numberOfSuccesses - 1) *
|
||||||
FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
|
FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
|
||||||
FastMath.pow(1.0 - probabilityOfSuccess, x);
|
FastMath.pow(1.0 - probabilityOfSuccess, x);
|
||||||
|
@ -140,7 +141,7 @@ public class PascalDistribution extends AbstractIntegerDistribution {
|
||||||
if (x < 0) {
|
if (x < 0) {
|
||||||
ret = Double.NEGATIVE_INFINITY;
|
ret = Double.NEGATIVE_INFINITY;
|
||||||
} else {
|
} else {
|
||||||
ret = CombinatoricsUtils.binomialCoefficientLog(x +
|
ret = LogBinomialCoefficient.value(x +
|
||||||
numberOfSuccesses - 1, numberOfSuccesses - 1) +
|
numberOfSuccesses - 1, numberOfSuccesses - 1) +
|
||||||
logProbabilityOfSuccess * numberOfSuccesses +
|
logProbabilityOfSuccess * numberOfSuccesses +
|
||||||
log1mProbabilityOfSuccess * x;
|
log1mProbabilityOfSuccess * x;
|
||||||
|
|
|
@ -22,6 +22,7 @@ import java.util.Arrays;
|
||||||
|
|
||||||
import org.apache.commons.rng.simple.RandomSource;
|
import org.apache.commons.rng.simple.RandomSource;
|
||||||
import org.apache.commons.rng.UniformRandomProvider;
|
import org.apache.commons.rng.UniformRandomProvider;
|
||||||
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
|
||||||
import org.apache.commons.math4.distribution.EnumeratedRealDistribution;
|
import org.apache.commons.math4.distribution.EnumeratedRealDistribution;
|
||||||
import org.apache.commons.math4.distribution.RealDistribution;
|
import org.apache.commons.math4.distribution.RealDistribution;
|
||||||
import org.apache.commons.math4.distribution.AbstractRealDistribution;
|
import org.apache.commons.math4.distribution.AbstractRealDistribution;
|
||||||
|
@ -41,7 +42,6 @@ import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
|
||||||
import org.apache.commons.math4.linear.FieldMatrix;
|
import org.apache.commons.math4.linear.FieldMatrix;
|
||||||
import org.apache.commons.math4.linear.MatrixUtils;
|
import org.apache.commons.math4.linear.MatrixUtils;
|
||||||
import org.apache.commons.math4.linear.RealMatrix;
|
import org.apache.commons.math4.linear.RealMatrix;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
import org.apache.commons.math4.util.MathArrays;
|
import org.apache.commons.math4.util.MathArrays;
|
||||||
import org.apache.commons.math4.util.MathUtils;
|
import org.apache.commons.math4.util.MathUtils;
|
||||||
|
@ -959,7 +959,7 @@ public class KolmogorovSmirnovTest {
|
||||||
*/
|
*/
|
||||||
public double exactP(double d, int n, int m, boolean strict) {
|
public double exactP(double d, int n, int m, boolean strict) {
|
||||||
return 1 - n(m, n, m, n, calculateIntegralD(d, m, n, strict), strict) /
|
return 1 - n(m, n, m, n, calculateIntegralD(d, m, n, strict), strict) /
|
||||||
CombinatoricsUtils.binomialCoefficientDouble(n + m, m);
|
BinomialCoefficientDouble.value(n + m, m);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -23,7 +23,7 @@ import java.util.Map;
|
||||||
|
|
||||||
import org.apache.commons.math4.analysis.differentiation.DSCompiler;
|
import org.apache.commons.math4.analysis.differentiation.DSCompiler;
|
||||||
import org.apache.commons.math4.exception.DimensionMismatchException;
|
import org.apache.commons.math4.exception.DimensionMismatchException;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficient;
|
||||||
import org.junit.Assert;
|
import org.junit.Assert;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
|
|
||||||
|
@ -37,7 +37,7 @@ public class DSCompilerTest {
|
||||||
public void testSize() {
|
public void testSize() {
|
||||||
for (int i = 0; i < 6; ++i) {
|
for (int i = 0; i < 6; ++i) {
|
||||||
for (int j = 0; j < 6; ++j) {
|
for (int j = 0; j < 6; ++j) {
|
||||||
long expected = CombinatoricsUtils.binomialCoefficient(i + j, i);
|
long expected = BinomialCoefficient.value(i + j, i);
|
||||||
Assert.assertEquals(expected, DSCompiler.getCompiler(i, j).getSize());
|
Assert.assertEquals(expected, DSCompiler.getCompiler(i, j).getSize());
|
||||||
Assert.assertEquals(expected, DSCompiler.getCompiler(j, i).getSize());
|
Assert.assertEquals(expected, DSCompiler.getCompiler(j, i).getSize());
|
||||||
}
|
}
|
||||||
|
|
|
@ -29,7 +29,7 @@ import org.apache.commons.math4.exception.NumberIsTooLargeException;
|
||||||
import org.apache.commons.rng.UniformRandomProvider;
|
import org.apache.commons.rng.UniformRandomProvider;
|
||||||
import org.apache.commons.rng.simple.RandomSource;
|
import org.apache.commons.rng.simple.RandomSource;
|
||||||
import org.apache.commons.numbers.core.ArithmeticUtils;
|
import org.apache.commons.numbers.core.ArithmeticUtils;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.Factorial;
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
import org.apache.commons.numbers.core.Precision;
|
import org.apache.commons.numbers.core.Precision;
|
||||||
import org.junit.Assert;
|
import org.junit.Assert;
|
||||||
|
@ -188,7 +188,7 @@ public class DerivativeStructureTest extends ExtendedFieldElementAbstractTest<De
|
||||||
DerivativeStructure r = new DerivativeStructure(1, 6, 0, x).reciprocal();
|
DerivativeStructure r = new DerivativeStructure(1, 6, 0, x).reciprocal();
|
||||||
Assert.assertEquals(1 / x, r.getValue(), 1.0e-15);
|
Assert.assertEquals(1 / x, r.getValue(), 1.0e-15);
|
||||||
for (int i = 1; i < r.getOrder(); ++i) {
|
for (int i = 1; i < r.getOrder(); ++i) {
|
||||||
double expected = ArithmeticUtils.pow(-1, i) * CombinatoricsUtils.factorial(i) /
|
double expected = ArithmeticUtils.pow(-1, i) * Factorial.value(i) /
|
||||||
FastMath.pow(x, i + 1);
|
FastMath.pow(x, i + 1);
|
||||||
Assert.assertEquals(expected, r.getPartialDerivative(i), 1.0e-15 * FastMath.abs(expected));
|
Assert.assertEquals(expected, r.getPartialDerivative(i), 1.0e-15 * FastMath.abs(expected));
|
||||||
}
|
}
|
||||||
|
@ -797,7 +797,7 @@ public class DerivativeStructureTest extends ExtendedFieldElementAbstractTest<De
|
||||||
DerivativeStructure log = new DerivativeStructure(1, maxOrder, 0, x).log();
|
DerivativeStructure log = new DerivativeStructure(1, maxOrder, 0, x).log();
|
||||||
Assert.assertEquals(FastMath.log(x), log.getValue(), epsilon[0]);
|
Assert.assertEquals(FastMath.log(x), log.getValue(), epsilon[0]);
|
||||||
for (int n = 1; n <= maxOrder; ++n) {
|
for (int n = 1; n <= maxOrder; ++n) {
|
||||||
double refDer = -CombinatoricsUtils.factorial(n - 1) / FastMath.pow(-x, n);
|
double refDer = -Factorial.value(n - 1) / FastMath.pow(-x, n);
|
||||||
Assert.assertEquals(refDer, log.getPartialDerivative(n), epsilon[n]);
|
Assert.assertEquals(refDer, log.getPartialDerivative(n), epsilon[n]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -18,7 +18,7 @@ package org.apache.commons.math4.analysis.polynomials;
|
||||||
|
|
||||||
import org.apache.commons.math4.analysis.UnivariateFunction;
|
import org.apache.commons.math4.analysis.UnivariateFunction;
|
||||||
import org.apache.commons.math4.analysis.integration.IterativeLegendreGaussIntegrator;
|
import org.apache.commons.math4.analysis.integration.IterativeLegendreGaussIntegrator;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficient;
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
import org.apache.commons.numbers.core.Precision;
|
import org.apache.commons.numbers.core.Precision;
|
||||||
import org.junit.Assert;
|
import org.junit.Assert;
|
||||||
|
@ -292,7 +292,7 @@ public class PolynomialsUtilsTest {
|
||||||
for (int w = 0; w < 10; ++w) {
|
for (int w = 0; w < 10; ++w) {
|
||||||
for (int i = 0; i < 10; ++i) {
|
for (int i = 0; i < 10; ++i) {
|
||||||
PolynomialFunction jacobi = PolynomialsUtils.createJacobiPolynomial(i, v, w);
|
PolynomialFunction jacobi = PolynomialsUtils.createJacobiPolynomial(i, v, w);
|
||||||
double binomial = CombinatoricsUtils.binomialCoefficient(v + i, i);
|
double binomial = BinomialCoefficient.value(v + i, i);
|
||||||
Assert.assertTrue(Precision.equals(binomial, jacobi.value(1.0), 1));
|
Assert.assertTrue(Precision.equals(binomial, jacobi.value(1.0), 1));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -21,7 +21,7 @@ import org.apache.commons.math4.linear.ArrayRealVector;
|
||||||
import org.apache.commons.math4.linear.RealLinearOperator;
|
import org.apache.commons.math4.linear.RealLinearOperator;
|
||||||
import org.apache.commons.math4.linear.RealVector;
|
import org.apache.commons.math4.linear.RealVector;
|
||||||
import org.apache.commons.numbers.core.ArithmeticUtils;
|
import org.apache.commons.numbers.core.ArithmeticUtils;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficient;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This class implements inverses of Hilbert Matrices as
|
* This class implements inverses of Hilbert Matrices as
|
||||||
|
@ -58,11 +58,11 @@ public class InverseHilbertMatrix
|
||||||
*/
|
*/
|
||||||
public long getEntry(final int i, final int j) {
|
public long getEntry(final int i, final int j) {
|
||||||
long val = i + j + 1;
|
long val = i + j + 1;
|
||||||
long aux = CombinatoricsUtils.binomialCoefficient(n + i, n - j - 1);
|
long aux = BinomialCoefficient.value(n + i, n - j - 1);
|
||||||
val = ArithmeticUtils.mulAndCheck(val, aux);
|
val = ArithmeticUtils.mulAndCheck(val, aux);
|
||||||
aux = CombinatoricsUtils.binomialCoefficient(n + j, n - i - 1);
|
aux = BinomialCoefficient.value(n + j, n - i - 1);
|
||||||
val = ArithmeticUtils.mulAndCheck(val, aux);
|
val = ArithmeticUtils.mulAndCheck(val, aux);
|
||||||
aux = CombinatoricsUtils.binomialCoefficient(i + j, i);
|
aux = BinomialCoefficient.value(i + j, i);
|
||||||
val = ArithmeticUtils.mulAndCheck(val, aux);
|
val = ArithmeticUtils.mulAndCheck(val, aux);
|
||||||
val = ArithmeticUtils.mulAndCheck(val, aux);
|
val = ArithmeticUtils.mulAndCheck(val, aux);
|
||||||
return ((i + j) & 1) == 0 ? val : -val;
|
return ((i + j) & 1) == 0 ? val : -val;
|
||||||
|
|
|
@ -25,7 +25,7 @@ import org.apache.commons.math4.distribution.NormalDistribution;
|
||||||
import org.apache.commons.math4.distribution.UniformRealDistribution;
|
import org.apache.commons.math4.distribution.UniformRealDistribution;
|
||||||
import org.apache.commons.rng.simple.RandomSource;
|
import org.apache.commons.rng.simple.RandomSource;
|
||||||
import org.apache.commons.rng.UniformRandomProvider;
|
import org.apache.commons.rng.UniformRandomProvider;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.numbers.combinatorics.BinomialCoefficient;
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
import org.apache.commons.math4.util.MathArrays;
|
import org.apache.commons.math4.util.MathArrays;
|
||||||
import org.apache.commons.math4.exception.NotANumberException;
|
import org.apache.commons.math4.exception.NotANumberException;
|
||||||
|
@ -644,7 +644,7 @@ public class KolmogorovSmirnovTestTest {
|
||||||
counts[x] += 1;
|
counts[x] += 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
final int numCombinations = (int) CombinatoricsUtils.binomialCoefficient(arraySize, numberOfTrueValues);
|
final int numCombinations = (int) BinomialCoefficient.value(arraySize, numberOfTrueValues);
|
||||||
|
|
||||||
final long[] observed = new long[numCombinations];
|
final long[] observed = new long[numCombinations];
|
||||||
final double[] expected = new double[numCombinations];
|
final double[] expected = new double[numCombinations];
|
||||||
|
|
Loading…
Reference in New Issue