PR: 29414
I changed the continued fraction used in regularizedBeta resulting in faster convergence. I added the test case provided by scott and ran all units tests with all of them passing. git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141289 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
15f4e86e93
commit
d83250a890
|
@ -24,7 +24,7 @@ import org.apache.commons.math.util.ContinuedFraction;
|
|||
* This is a utility class that provides computation methods related to the
|
||||
* Beta family of functions.
|
||||
*
|
||||
* @version $Revision: 1.19 $ $Date: 2004/04/27 04:37:59 $
|
||||
* @version $Revision: 1.20 $ $Date: 2004/06/10 18:27:47 $
|
||||
*/
|
||||
public class Beta implements Serializable {
|
||||
/** Maximum allowed numerical error. */
|
||||
|
@ -122,48 +122,32 @@ public class Beta implements Serializable {
|
|||
(x > 1) || (a <= 0.0) || (b <= 0.0))
|
||||
{
|
||||
ret = Double.NaN;
|
||||
} else if (x > (a + 1.0) / (a + b + 1.0)) {
|
||||
} else if (x > (a + 1.0) / (a + b + 2.0)) {
|
||||
ret = 1.0 - regularizedBeta(1.0 - x, b, a, epsilon, maxIterations);
|
||||
} else {
|
||||
ContinuedFraction fraction = new ContinuedFraction() {
|
||||
protected double getB(int n, double x) {
|
||||
double ret;
|
||||
double m;
|
||||
switch (n) {
|
||||
case 1 :
|
||||
ret = 1.0;
|
||||
break;
|
||||
default :
|
||||
if (n % 2 == 0) { // even
|
||||
m = (n - 2.0) / 2.0;
|
||||
ret = -((a + m) * (a + b + m) * x) /
|
||||
((a + (2 * m)) * (a + (2 * m) + 1.0));
|
||||
} else {
|
||||
m = (n - 1.0) / 2.0;
|
||||
m = n / 2.0;
|
||||
ret = (m * (b - m) * x) /
|
||||
((a + (2 * m) - 1) * (a + (2 * m)));
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
m = (n - 1.0) / 2.0;
|
||||
ret = -((a + m) * (a + b + m) * x) /
|
||||
((a + (2 * m)) * (a + (2 * m) + 1.0));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
protected double getA(int n, double x) {
|
||||
double ret;
|
||||
switch (n) {
|
||||
case 0 :
|
||||
ret = 0.0;
|
||||
break;
|
||||
default :
|
||||
ret = 1.0;
|
||||
break;
|
||||
}
|
||||
return ret;
|
||||
return 1.0;
|
||||
}
|
||||
};
|
||||
ret = Math.exp((a * Math.log(x)) + (b * Math.log(1.0 - x)) -
|
||||
Math.log(a) - logBeta(a, b, epsilon, maxIterations)) *
|
||||
fraction.evaluate(x, epsilon, maxIterations);
|
||||
1.0 / fraction.evaluate(x, epsilon, maxIterations);
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
|
|
@ -21,7 +21,7 @@ package org.apache.commons.math.distribution;
|
|||
* Extends ContinuousDistributionAbstractTest. See class javadoc for
|
||||
* ContinuousDistributionAbstractTest for details.
|
||||
*
|
||||
* @version $Revision: 1.14 $ $Date: 2004/05/30 01:39:33 $
|
||||
* @version $Revision: 1.15 $ $Date: 2004/06/10 18:27:47 $
|
||||
*/
|
||||
public class FDistributionTest extends ContinuousDistributionAbstractTest {
|
||||
|
||||
|
@ -97,4 +97,12 @@ public class FDistributionTest extends ContinuousDistributionAbstractTest {
|
|||
}
|
||||
}
|
||||
|
||||
public void testLargeDegreesOfFreedom() throws Exception {
|
||||
org.apache.commons.math.distribution.FDistributionImpl fd =
|
||||
new org.apache.commons.math.distribution.FDistributionImpl(
|
||||
100000., 100000.);
|
||||
double p = fd.cumulativeProbability(.999);
|
||||
double x = fd.inverseCumulativeProbability(p);
|
||||
assertEquals(.999, x, 1.0e-5);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue