added a no-args constructor for GaussNewtonEstimator

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@745188 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2009-02-17 18:38:32 +00:00
parent 4cc86649f4
commit da9117b726
2 changed files with 65 additions and 17 deletions

View File

@ -34,10 +34,16 @@ import org.apache.commons.math.linear.decomposition.LUDecompositionImpl;
*/ */
public abstract class AbstractEstimator implements Estimator { public abstract class AbstractEstimator implements Estimator {
/** Default maximal number of cost evaluations allowed. */
public static final int DEFAULT_MAX_COST_EVALUATIONS = 100;
/** /**
* Build an abstract estimator for least squares problems. * Build an abstract estimator for least squares problems.
* <p>The maximal number of cost evaluations allowed is set
* to its default value {@link #DEFAULT_MAX_COST_EVALUATIONS}.</p>
*/ */
protected AbstractEstimator() { protected AbstractEstimator() {
setMaxCostEval(DEFAULT_MAX_COST_EVALUATIONS);
} }
/** /**

View File

@ -40,6 +40,34 @@ import org.apache.commons.math.linear.decomposition.LUDecompositionImpl;
public class GaussNewtonEstimator extends AbstractEstimator implements Serializable { public class GaussNewtonEstimator extends AbstractEstimator implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 5485001826076289109L;
/** Default threshold for cost steady state detection. */
private static final double DEFAULT_STEADY_STATE_THRESHOLD = 1.0e-6;
/** Default threshold for cost convergence. */
private static final double DEFAULT_CONVERGENCE = 1.0e-6;
/** Threshold for cost steady state detection. */
private double steadyStateThreshold;
/** Threshold for cost convergence. */
private double convergence;
/** Simple constructor with default settings.
* <p>
* The estimator is built with default values for all settings.
* </p>
* @see #DEFAULT_STEADY_STATE_THRESHOLD
* @see #DEFAULT_CONVERGENCE
* @see AbstractEstimator#DEFAULT_MAX_COST_EVALUATIONS
*/
public GaussNewtonEstimator() {
this.steadyStateThreshold = DEFAULT_STEADY_STATE_THRESHOLD;
this.convergence = DEFAULT_CONVERGENCE;
}
/** /**
* Simple constructor. * Simple constructor.
* *
@ -66,19 +94,42 @@ public class GaussNewtonEstimator extends AbstractEstimator implements Serializa
* to improve the criterion anymore * to improve the criterion anymore
* @param steadyStateThreshold steady state detection threshold, the * @param steadyStateThreshold steady state detection threshold, the
* problem has converged has reached a steady state if * problem has converged has reached a steady state if
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where * <code>Math.abs(J<sub>n</sub> - J<sub>n-1</sub>) &lt;
* <code>Jn</code> and <code>Jn-1</code> are the current and * J<sub>n</sub> &times convergence</code>, where <code>J<sub>n</sub></code>
* preceding criterion value (square sum of the weighted residuals * and <code>J<sub>n-1</sub></code> are the current and preceding criterion
* of considered measurements). * values (square sum of the weighted residuals of considered measurements).
*/ */
public GaussNewtonEstimator(int maxCostEval, public GaussNewtonEstimator(final int maxCostEval, final double convergence,
double convergence, final double steadyStateThreshold) {
double steadyStateThreshold) {
setMaxCostEval(maxCostEval); setMaxCostEval(maxCostEval);
this.steadyStateThreshold = steadyStateThreshold; this.steadyStateThreshold = steadyStateThreshold;
this.convergence = convergence; this.convergence = convergence;
} }
/**
* Set the convergence criterion threshold.
* @param convergence criterion threshold below which we do not need
* to improve the criterion anymore
*/
public void setConvergence(final double convergence) {
this.convergence = convergence;
}
/**
* Set the steady state detection threshold.
* <p>
* The problem has converged has reached a steady state if
* <code>Math.abs(J<sub>n</sub> - J<sub>n-1</sub>) &lt;
* J<sub>n</sub> &times convergence</code>, where <code>J<sub>n</sub></code>
* and <code>J<sub>n-1</sub></code> are the current and preceding criterion
* values (square sum of the weighted residuals of considered measurements).
* </p>
* @param steadyStateThreshold steady state detection threshold
*/
public void setSteadyStateThreshold(final double steadyStateThreshold) {
this.steadyStateThreshold = steadyStateThreshold;
}
/** /**
* Solve an estimation problem using a least squares criterion. * Solve an estimation problem using a least squares criterion.
* *
@ -92,7 +143,7 @@ public class GaussNewtonEstimator extends AbstractEstimator implements Serializa
* below a physical threshold under which improvement are considered * below a physical threshold under which improvement are considered
* useless or when the algorithm is unable to improve it (even if it * useless or when the algorithm is unable to improve it (even if it
* is still high). The first condition that is met stops the * is still high). The first condition that is met stops the
* iterations. If the convergence it nos reached before the maximum * iterations. If the convergence it not reached before the maximum
* number of iterations, an {@link EstimationException} is * number of iterations, an {@link EstimationException} is
* thrown.</p> * thrown.</p>
* *
@ -172,13 +223,4 @@ public class GaussNewtonEstimator extends AbstractEstimator implements Serializa
} }
/** Threshold for cost steady state detection. */
private double steadyStateThreshold;
/** Threshold for cost convergence. */
private double convergence;
/** Serializable version identifier */
private static final long serialVersionUID = 5485001826076289109L;
} }