Merged ZipfDistribution and ZipfDistributionImpl (MATH-711).

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1206451 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2011-11-26 14:58:07 +00:00
parent d161d473bb
commit dbcf7dd622
5 changed files with 177 additions and 245 deletions

View File

@ -17,30 +17,184 @@
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
/**
* The Zipf (or zeta) Distribution.
* <p>
* References:
* <ul>
* <li><a href="http://mathworld.wolfram.com/ZipfDistribution.html">Zipf
* Distribution</a></li>
* </ul>
* </p>
* Implementation of the Zipf distribution.
*
* @see <a href="http://mathworld.wolfram.com/ZipfDistribution.html">Zipf distribution (MathWorld)</a>
* @version $Id$
*/
public interface ZipfDistribution extends IntegerDistribution {
public class ZipfDistribution extends AbstractIntegerDistribution
implements Serializable {
/** Serializable version identifier. */
private static final long serialVersionUID = -140627372283420404L;
/** Number of elements. */
private final int numberOfElements;
/** Exponent parameter of the distribution. */
private final double exponent;
/**
* Create a new Zipf distribution with the given number of elements and
* exponent.
*
* @param numberOfElements Number of elements.
* @param exponent Exponent.
* @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
* or {@code exponent <= 0}.
*/
public ZipfDistribution(final int numberOfElements, final double exponent)
throws NotStrictlyPositiveException {
if (numberOfElements <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.DIMENSION,
numberOfElements);
}
if (exponent <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.EXPONENT,
exponent);
}
this.numberOfElements = numberOfElements;
this.exponent = exponent;
}
/**
* Get the number of elements (e.g. corpus size) for the distribution.
*
* @return the number of elements
*/
int getNumberOfElements();
public int getNumberOfElements() {
return numberOfElements;
}
/**
* Get the exponent characterising the distribution.
* Get the exponent characterizing the distribution.
*
* @return the exponent
*/
double getExponent();
public double getExponent() {
return exponent;
}
/** {@inheritDoc} */
public double probability(final int x) {
if (x <= 0 || x > numberOfElements) {
return 0.0;
}
return (1.0 / FastMath.pow(x, exponent)) / generalizedHarmonic(numberOfElements, exponent);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(final int x) {
if (x <= 0) {
return 0.0;
} else if (x >= numberOfElements) {
return 1.0;
}
return generalizedHarmonic(x, exponent) / generalizedHarmonic(numberOfElements, exponent);
}
/** {@inheritDoc} */
@Override
protected int getDomainLowerBound(final double p) {
return 0;
}
/** {@inheritDoc} */
@Override
protected int getDomainUpperBound(final double p) {
return numberOfElements;
}
/**
* Calculates the Nth generalized harmonic number. See
* <a href="http://mathworld.wolfram.com/HarmonicSeries.html">Harmonic
* Series</a>.
*
* @param n Term in the series to calculate (must be larger than 1)
* @param m Exponent (special case {@code m = 1} is the harmonic series).
* @return the n<sup>th</sup> generalized harmonic number.
*/
private double generalizedHarmonic(final int n, final double m) {
double value = 0;
for (int k = n; k > 0; --k) {
value += 1.0 / FastMath.pow(k, m);
}
return value;
}
/**
* {@inheritDoc}
*
* The lower bound of the support is always 1 no matter the parameters.
*
* @return lower bound of the support (always 1)
*/
@Override
public int getSupportLowerBound() {
return 1;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is the number of elements.
*
* @return upper bound of the support
*/
@Override
public int getSupportUpperBound() {
return getNumberOfElements();
}
/**
* {@inheritDoc}
*
* For number of elements {@code N} and exponent {@code s}, the mean is
* {@code Hs1 / Hs}, where
* <ul>
* <li>{@code Hs1 = generalizedHarmonic(N, s - 1)},</li>
* <li>{@code Hs = generalizedHarmonic(N, s)}.</li>
* </ul>
*/
@Override
protected double calculateNumericalMean() {
final int N = getNumberOfElements();
final double s = getExponent();
final double Hs1 = generalizedHarmonic(N, s - 1);
final double Hs = generalizedHarmonic(N, s);
return Hs1 / Hs;
}
/**
* {@inheritDoc}
*
* For number of elements {@code N} and exponent {@code s}, the mean is
* {@code (Hs2 / Hs) - (Hs1^2 / Hs^2)}, where
* <ul>
* <li>{@code Hs2 = generalizedHarmonic(N, s - 2)},</li>
* <li>{@code Hs1 = generalizedHarmonic(N, s - 1)},</li>
* <li>{@code Hs = generalizedHarmonic(N, s)}.</li>
* </ul>
*/
@Override
protected double calculateNumericalVariance() {
final int N = getNumberOfElements();
final double s = getExponent();
final double Hs2 = generalizedHarmonic(N, s - 2);
final double Hs1 = generalizedHarmonic(N, s - 1);
final double Hs = generalizedHarmonic(N, s);
return (Hs2 / Hs) - ((Hs1 * Hs1) / (Hs * Hs));
}
}

View File

@ -1,222 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
/**
* Implementation for the {@link ZipfDistribution}.
*
* @version $Id$
*/
public class ZipfDistributionImpl extends AbstractIntegerDistribution
implements ZipfDistribution, Serializable {
/** Serializable version identifier. */
private static final long serialVersionUID = -140627372283420404L;
/** Number of elements. */
private final int numberOfElements;
/** Exponent parameter of the distribution. */
private final double exponent;
/**
* Create a new Zipf distribution with the given number of elements and
* exponent.
*
* @param numberOfElements Number of elements.
* @param exponent Exponent.
* @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
* or {@code exponent <= 0}.
*/
public ZipfDistributionImpl(final int numberOfElements,
final double exponent) {
if (numberOfElements <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.DIMENSION,
numberOfElements);
}
if (exponent <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.EXPONENT,
exponent);
}
this.numberOfElements = numberOfElements;
this.exponent = exponent;
}
/**
* {@inheritDoc}
*/
public int getNumberOfElements() {
return numberOfElements;
}
/**
* {@inheritDoc}
*/
public double getExponent() {
return exponent;
}
/**
* The probability mass function {@code P(X = x)} for a Zipf distribution.
*
* @param x Value at which the probability density function is evaluated.
* @return the value of the probability mass function at {@code x}.
*/
public double probability(final int x) {
if (x <= 0 || x > numberOfElements) {
return 0.0;
}
return (1.0 / FastMath.pow(x, exponent)) / generalizedHarmonic(numberOfElements, exponent);
}
/**
* The probability distribution function {@code P(X <= x)} for a
* Zipf distribution.
*
* @param x Value at which the PDF is evaluated.
* @return Zipf distribution function evaluated at {@code x}.
*/
@Override
public double cumulativeProbability(final int x) {
if (x <= 0) {
return 0.0;
} else if (x >= numberOfElements) {
return 1.0;
}
return generalizedHarmonic(x, exponent) / generalizedHarmonic(numberOfElements, exponent);
}
/**
* Access the domain value lower bound, based on {@code p}, used to
* bracket a PDF root.
*
* @param p Desired probability for the critical value.
* @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}.
*/
@Override
protected int getDomainLowerBound(final double p) {
return 0;
}
/**
* Access the domain value upper bound, based on {@code p}, used to
* bracket a PDF root.
*
* @param p Desired probability for the critical value
* @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}.
*/
@Override
protected int getDomainUpperBound(final double p) {
return numberOfElements;
}
/**
* Calculates the Nth generalized harmonic number. See
* <a href="http://mathworld.wolfram.com/HarmonicSeries.html">Harmonic
* Series</a>.
*
* @param n Term in the series to calculate (must be larger than 1)
* @param m Exponent (special case {@code m = 1} is the harmonic series).
* @return the n<sup>th</sup> generalized harmonic number.
*/
private double generalizedHarmonic(final int n, final double m) {
double value = 0;
for (int k = n; k > 0; --k) {
value += 1.0 / FastMath.pow(k, m);
}
return value;
}
/**
* {@inheritDoc}
*
* The lower bound of the support is always 1 no matter the parameters.
*
* @return lower bound of the support (always 1)
*/
@Override
public int getSupportLowerBound() {
return 1;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is the number of elements
*
* @return upper bound of the support
*/
@Override
public int getSupportUpperBound() {
return getNumberOfElements();
}
/**
* {@inheritDoc}
*
* For number of elements N and exponent s, the mean is
* <code>Hs1 / Hs</code> where
* <ul>
* <li><code>Hs1 = generalizedHarmonic(N, s - 1)</code></li>
* <li><code>Hs = generalizedHarmonic(N, s)</code></li>
* </ul>
*
* @return {@inheritDoc}
*/
@Override
protected double calculateNumericalMean() {
final int N = getNumberOfElements();
final double s = getExponent();
final double Hs1 = generalizedHarmonic(N, s - 1);
final double Hs = generalizedHarmonic(N, s);
return Hs1 / Hs;
}
/**
* {@inheritDoc}
*
* For number of elements N and exponent s, the mean is
* <code>(Hs2 / Hs) - (Hs1^2 / Hs^2)</code> where
* <ul>
* <li><code>Hs2 = generalizedHarmonic(N, s - 2)</code></li>
* <li><code>Hs1 = generalizedHarmonic(N, s - 1)</code></li>
* <li><code>Hs = generalizedHarmonic(N, s)</code></li>
* </ul>
*
* @return {@inheritDoc}
*/
@Override
protected double calculateNumericalVariance() {
final int N = getNumberOfElements();
final double s = getExponent();
final double Hs2 = generalizedHarmonic(N, s - 2);
final double Hs1 = generalizedHarmonic(N, s - 1);
final double Hs = generalizedHarmonic(N, s);
return (Hs2 / Hs) - ((Hs1 * Hs1) / (Hs * Hs));
}
}

View File

@ -35,7 +35,7 @@ import org.apache.commons.math.distribution.IntegerDistribution;
import org.apache.commons.math.distribution.PascalDistribution;
import org.apache.commons.math.distribution.TDistribution;
import org.apache.commons.math.distribution.WeibullDistribution;
import org.apache.commons.math.distribution.ZipfDistributionImpl;
import org.apache.commons.math.distribution.ZipfDistribution;
import org.apache.commons.math.exception.MathInternalError;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.exception.NumberIsTooLargeException;
@ -811,7 +811,7 @@ public class RandomDataImpl implements RandomData, Serializable {
}
/**
* Generates a random value from the {@link ZipfDistributionImpl Zipf Distribution}.
* Generates a random value from the {@link ZipfDistribution Zipf Distribution}.
* This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
* to generate random values.
*
@ -821,7 +821,7 @@ public class RandomDataImpl implements RandomData, Serializable {
* @since 2.2
*/
public int nextZipf(int numberOfElements, double exponent) {
return nextInversionDeviate(new ZipfDistributionImpl(numberOfElements, exponent));
return nextInversionDeviate(new ZipfDistribution(numberOfElements, exponent));
}
/**

View File

@ -34,12 +34,12 @@ public class ZipfDistributionTest extends IntegerDistributionAbstractTest {
@Test(expected=NotStrictlyPositiveException.class)
public void testPreconditions1() {
new ZipfDistributionImpl(0, 1);
new ZipfDistribution(0, 1);
}
@Test(expected=NotStrictlyPositiveException.class)
public void testPreconditions2() {
new ZipfDistributionImpl(1, 0);
new ZipfDistribution(1, 0);
}
//-------------- Implementations for abstract methods -----------------------
@ -47,7 +47,7 @@ public class ZipfDistributionTest extends IntegerDistributionAbstractTest {
/** Creates the default discrete distribution instance to use in tests. */
@Override
public IntegerDistribution makeDistribution() {
return new ZipfDistributionImpl(10, 1);
return new ZipfDistribution(10, 1);
}
/** Creates the default probability density test input values */
@ -93,9 +93,9 @@ public class ZipfDistributionTest extends IntegerDistributionAbstractTest {
public void testMoments() {
final double tol = 1e-9;
ZipfDistribution dist;
dist = new ZipfDistributionImpl(2, 0.5);
dist = new ZipfDistribution(2, 0.5);
Assert.assertEquals(dist.getNumericalMean(), FastMath.sqrt(2), tol);
Assert.assertEquals(dist.getNumericalVariance(), 0.24264068711928521, tol);
Assert.assertEquals(dist.getNumericalVariance(), 0.24264068711928521, tol);
}
}

View File

@ -41,7 +41,7 @@ import org.apache.commons.math.distribution.PoissonDistribution;
import org.apache.commons.math.distribution.PoissonDistribution;
import org.apache.commons.math.distribution.TDistribution;
import org.apache.commons.math.distribution.WeibullDistribution;
import org.apache.commons.math.distribution.ZipfDistributionImpl;
import org.apache.commons.math.distribution.ZipfDistribution;
import org.apache.commons.math.distribution.ZipfDistributionTest;
import org.apache.commons.math.stat.Frequency;
import org.apache.commons.math.stat.descriptive.SummaryStatistics;
@ -1040,7 +1040,7 @@ public class RandomDataTest {
double[] densityValues = testInstance.makeDensityTestValues();
int sampleSize = 1000;
int length = TestUtils.eliminateZeroMassPoints(densityPoints, densityValues);
ZipfDistributionImpl distribution = (ZipfDistributionImpl) testInstance.makeDistribution();
ZipfDistribution distribution = (ZipfDistribution) testInstance.makeDistribution();
double[] expectedCounts = new double[length];
long[] observedCounts = new long[length];
for (int i = 0; i < length; i++) {