Change private least square problem implementation to internal class.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1571014 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2014-02-23 14:00:20 +00:00
parent f299ecf330
commit dcdfd7ed9e
2 changed files with 126 additions and 150 deletions

View File

@ -25,6 +25,7 @@ import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.optim.AbstractOptimizationProblem;
import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.util.FastMath;
@ -61,7 +62,7 @@ public class LeastSquaresFactory {
final ConvergenceChecker<Evaluation> checker,
final int maxEvaluations,
final int maxIterations) {
return new LeastSquaresProblemImpl(
return new LocalLeastSquaresProblem(
model,
observed,
start,
@ -269,5 +270,129 @@ public class LeastSquaresFactory {
}
};
}
/**
* A private, "field" immutable (not "real" immutable) implementation of {@link
* LeastSquaresProblem}.
* @since 3.3
*/
private static class LocalLeastSquaresProblem
extends AbstractOptimizationProblem<Evaluation>
implements LeastSquaresProblem {
/** Target values for the model function at optimum. */
private RealVector target;
/** Model function. */
private MultivariateJacobianFunction model;
/** Initial guess. */
private RealVector start;
/**
* Create a {@link LeastSquaresProblem} from the given data.
*
* @param model the model function
* @param target the observed data
* @param start the initial guess
* @param checker the convergence checker
* @param maxEvaluations the allowed evaluations
* @param maxIterations the allowed iterations
*/
LocalLeastSquaresProblem(final MultivariateJacobianFunction model,
final RealVector target,
final RealVector start,
final ConvergenceChecker<Evaluation> checker,
final int maxEvaluations,
final int maxIterations) {
super(maxEvaluations, maxIterations, checker);
this.target = target;
this.model = model;
this.start = start;
}
/** {@inheritDoc} */
public int getObservationSize() {
return target.getDimension();
}
/** {@inheritDoc} */
public int getParameterSize() {
return start.getDimension();
}
/** {@inheritDoc} */
public RealVector getStart() {
return start == null ? null : start.copy();
}
/** {@inheritDoc} */
public Evaluation evaluate(final RealVector point) {
//evaluate value and jacobian in one function call
final Pair<RealVector, RealMatrix> value = this.model.value(point);
return new UnweightedEvaluation(
value.getFirst(),
value.getSecond(),
this.target,
point);
}
/**
* Container with the model evaluation at a particular point.
* <p/>
* TODO revisit lazy evaluation
*/
private static class UnweightedEvaluation extends AbstractEvaluation {
/** the point of evaluation */
private final RealVector point;
/** value at point */
private final RealVector values;
/** deriviative at point */
private final RealMatrix jacobian;
/** reference to the observed values */
private final RealVector target;
/**
* Create an {@link Evaluation} with no weights.
*
* @param values the computed function values
* @param jacobian the computed function Jacobian
* @param target the observed values
* @param point the abscissa
*/
private UnweightedEvaluation(final RealVector values,
final RealMatrix jacobian,
final RealVector target,
final RealVector point) {
super(target.getDimension());
this.values = values;
this.jacobian = jacobian;
this.target = target;
this.point = point;
}
/** {@inheritDoc} */
public RealVector getValue() {
return this.values;
}
/** {@inheritDoc} */
public RealMatrix getJacobian() {
return this.jacobian;
}
/** {@inheritDoc} */
public RealVector getPoint() {
return this.point;
}
/** {@inheritDoc} */
public RealVector getResiduals() {
return target.subtract(this.getValue());
}
}
}
}

View File

@ -1,149 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.fitting.leastsquares;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.optim.AbstractOptimizationProblem;
import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.util.Pair;
/**
* A private, "field" immutable (not "real" immutable) implementation of {@link
* LeastSquaresProblem}.
*
* @version $Id$
* @since 3.3
*/
class LeastSquaresProblemImpl
extends AbstractOptimizationProblem<Evaluation>
implements LeastSquaresProblem {
/** Target values for the model function at optimum. */
private RealVector target;
/** Model function. */
private MultivariateJacobianFunction model;
/** Initial guess. */
private RealVector start;
/**
* Create a {@link LeastSquaresProblem} from the given data.
*
* @param model the model function
* @param target the observed data
* @param start the initial guess
* @param checker the convergence checker
* @param maxEvaluations the allowed evaluations
* @param maxIterations the allowed iterations
*/
LeastSquaresProblemImpl(final MultivariateJacobianFunction model,
final RealVector target,
final RealVector start,
final ConvergenceChecker<Evaluation> checker,
final int maxEvaluations,
final int maxIterations) {
super(maxEvaluations, maxIterations, checker);
this.target = target;
this.model = model;
this.start = start;
}
/** {@inheritDoc} */
public int getObservationSize() {
return target.getDimension();
}
/** {@inheritDoc} */
public int getParameterSize() {
return start.getDimension();
}
/** {@inheritDoc} */
public RealVector getStart() {
return start == null ? null : start.copy();
}
/** {@inheritDoc} */
public Evaluation evaluate(final RealVector point) {
//evaluate value and jacobian in one function call
final Pair<RealVector, RealMatrix> value = this.model.value(point);
return new UnweightedEvaluation(
value.getFirst(),
value.getSecond(),
this.target,
point);
}
/**
* Container with the model evaluation at a particular point.
* <p/>
* TODO revisit lazy evaluation
*/
private static class UnweightedEvaluation extends AbstractEvaluation {
/** the point of evaluation */
private final RealVector point;
/** value at point */
private final RealVector values;
/** deriviative at point */
private final RealMatrix jacobian;
/** reference to the observed values */
private final RealVector target;
/**
* Create an {@link Evaluation} with no weights.
*
* @param values the computed function values
* @param jacobian the computed function Jacobian
* @param target the observed values
* @param point the abscissa
*/
private UnweightedEvaluation(final RealVector values,
final RealMatrix jacobian,
final RealVector target,
final RealVector point) {
super(target.getDimension());
this.values = values;
this.jacobian = jacobian;
this.target = target;
this.point = point;
}
/** {@inheritDoc} */
public RealVector getValue() {
return this.values;
}
/** {@inheritDoc} */
public RealMatrix getJacobian() {
return this.jacobian;
}
/** {@inheritDoc} */
public RealVector getPoint() {
return this.point;
}
/** {@inheritDoc} */
public RealVector getResiduals() {
return target.subtract(this.getValue());
}
}
}