Added first batch of weighted statistics

* mean
  * sum
  * product
  * variance
JIRA: MATH-287
Thanks to Matthew Rowles

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@809448 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-08-31 01:56:09 +00:00
parent b91ed85747
commit dd63599d2a
13 changed files with 624 additions and 114 deletions

View File

@ -178,6 +178,9 @@
<contributor>
<name>Andreas Rieger</name>
</contributor>
<contributor>
<name>Matthew Rowles</name>
</contributor>
<contributor>
<name>Gilles Sadowski</name>
</contributor>

View File

@ -46,7 +46,7 @@ public abstract class AbstractUnivariateStatistic
* {@inheritDoc}
*/
public abstract double evaluate(final double[] values, final int begin, final int length);
/**
* {@inheritDoc}
*/
@ -57,11 +57,11 @@ public abstract class AbstractUnivariateStatistic
* to verify that the input parameters designate a subarray of positive length.
* <p>
* <ul>
* <li>returns <code>true</code> iff the parameters designate a subarray of
* <li>returns <code>true</code> iff the parameters designate a subarray of
* positive length</li>
* <li>throws <code>IllegalArgumentException</code> if the array is null or
* or the indices are invalid</li>
* <li>returns <code>false</li> if the array is non-null, but
* <li>returns <code>false</li> if the array is non-null, but
* <code>length</code> is 0.
* </ul></p>
*
@ -79,17 +79,17 @@ public abstract class AbstractUnivariateStatistic
if (values == null) {
throw MathRuntimeException.createIllegalArgumentException("input values array is null");
}
if (begin < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"start position cannot be negative ({0})", begin);
}
if (length < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"length cannot be negative ({0})", length);
}
if (begin + length > values.length) {
throw MathRuntimeException.createIllegalArgumentException(
"subarray ends after array end");
@ -102,4 +102,75 @@ public abstract class AbstractUnivariateStatistic
return true;
}
}
/**
* This method is used by <code>evaluate(double[], double[], int, int)</code> methods
* to verify that the begin and length parameters designate a subarray of positive length
* and the weights are all non-negative, non-NaN, finite, and not all zero.
* <p>
* <ul>
* <li>returns <code>true</code> iff the parameters designate a subarray of
* positive length and the weights array contains legitimate values.</li>
* <li>throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li></ul>
* </li>
* <li>returns <code>false</li> if the array is non-null, but
* <code>length</code> is 0.
* </ul></p>
*
* @param values the input array
* @param weights the weights array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return true if the parameters are valid and designate a subarray of positive length
* @throws IllegalArgumentException if the indices are invalid or the array is null
*/
protected boolean test(
final double[] values,
final double[] weights,
final int begin,
final int length) {
if (weights == null) {
throw MathRuntimeException.createIllegalArgumentException("input weights array is null");
}
if (weights.length != values.length) {
throw MathRuntimeException.createIllegalArgumentException(
"Different number of weights and values");
}
boolean containsPositiveWeight = false;
for (int i = begin; i < begin + length; i++) {
if (Double.isNaN(weights[i])) {
throw MathRuntimeException.createIllegalArgumentException(
"NaN weight at index {0}", i);
}
if (Double.isInfinite(weights[i])) {
throw MathRuntimeException.createIllegalArgumentException(
"Infinite weight at index {0}", i);
}
if (weights[i] < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"negative weight {0} at index {1} ", weights[i], i);
}
if (!containsPositiveWeight && weights[i] > 0.0) {
containsPositiveWeight = true;
}
}
if (!containsPositiveWeight) {
throw MathRuntimeException.createIllegalArgumentException(
"weight array must contain at least one non-zero value");
}
return test(values, begin, length);
}
}

View File

@ -22,7 +22,7 @@ import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStati
import org.apache.commons.math.stat.descriptive.summary.Sum;
/**
* <p>Computes the arithmetic mean of a set of values. Uses the definitional
* <p>Computes the arithmetic mean of a set of values. Uses the definitional
* formula:</p>
* <p>
* mean = sum(x_i) / n
@ -30,7 +30,7 @@ import org.apache.commons.math.stat.descriptive.summary.Sum;
* <p>where <code>n</code> is the number of observations.
* </p>
* <p>When {@link #increment(double)} is used to add data incrementally from a
* stream of (unstored) values, the value of the statistic that
* stream of (unstored) values, the value of the statistic that
* {@link #getResult()} returns is computed using the following recursive
* updating algorithm: </p>
* <ol>
@ -80,18 +80,18 @@ public class Mean extends AbstractStorelessUnivariateStatistic
/**
* Constructs a Mean with an External Moment.
*
*
* @param m1 the moment
*/
public Mean(final FirstMoment m1) {
this.moment = m1;
incMoment = false;
}
/**
* Copy constructor, creates a new {@code Mean} identical
* to the {@code original}
*
*
* @param original the {@code Mean} instance to copy
*/
public Mean(Mean original) {
@ -141,7 +141,7 @@ public class Mean extends AbstractStorelessUnivariateStatistic
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
* <p>
* See {@link Mean} for details on the computing algorithm.</p>
*
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
@ -154,10 +154,10 @@ public class Mean extends AbstractStorelessUnivariateStatistic
if (test(values, begin, length)) {
Sum sum = new Sum();
double sampleSize = length;
// Compute initial estimate using definitional formula
double xbar = sum.evaluate(values, begin, length) / sampleSize;
// Compute correction factor in second pass
double correction = 0;
for (int i = begin; i < begin + length; i++) {
@ -167,7 +167,54 @@ public class Mean extends AbstractStorelessUnivariateStatistic
}
return Double.NaN;
}
/**
* Returns the weighted arithmetic mean of the entries in the specified portion of
* the input array, or <code>Double.NaN</code> if the designated subarray
* is empty.
* <p>
* Throws <code>IllegalArgumentException</code> if either array is null.</p>
* <p>
* See {@link Mean} for details on the computing algorithm. The two-pass algorithm
* described above is used here, with weights applied in computing both the original
* estimate and the correction factor.</p>
* <p>
* Throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li>
* </ul></p>
*
* @param values the input array
* @param weights the weights array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return the mean of the values or Double.NaN if length = 0
* @throws IllegalArgumentException if the parameters are not valid
*/
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) {
if (test(values, weights, begin, length)) {
Sum sum = new Sum();
// Compute initial estimate using definitional formula
double sumw = sum.evaluate(weights,begin,length);
double xbarw = sum.evaluate(values, weights, begin, length) / sumw;
// Compute correction factor in second pass
double correction = 0;
for (int i = begin; i < begin + length; i++) {
correction += weights[i] * (values[i] - xbarw);
}
return xbarw + (correction/sumw);
}
return Double.NaN;
}
/**
* {@inheritDoc}
*/
@ -177,12 +224,12 @@ public class Mean extends AbstractStorelessUnivariateStatistic
copy(this, result);
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
*
*
* @param source Mean to copy
* @param dest Mean to copy to
* @throws NullPointerException if either source or dest is null

View File

@ -20,10 +20,11 @@ import java.io.Serializable;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math.stat.descriptive.summary.Sum;
/**
* Computes the variance of the available values. By default, the unbiased
* "sample variance" definitional formula is used:
* "sample variance" definitional formula is used:
* <p>
* variance = sum((x_i - mean)^2) / (n - 1) </p>
* <p>
@ -33,19 +34,19 @@ import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStati
* The definitional formula does not have good numerical properties, so
* this implementation does not compute the statistic using the definitional
* formula. <ul>
* <li> The <code>getResult</code> method computes the variance using
* <li> The <code>getResult</code> method computes the variance using
* updating formulas based on West's algorithm, as described in
* <a href="http://doi.acm.org/10.1145/359146.359152"> Chan, T. F. and
* J. G. Lewis 1979, <i>Communications of the ACM</i>,
* vol. 22 no. 9, pp. 526-531.</a></li>
* <li> The <code>evaluate</code> methods leverage the fact that they have the
* full array of values in memory to execute a two-pass algorithm.
* full array of values in memory to execute a two-pass algorithm.
* Specifically, these methods use the "corrected two-pass algorithm" from
* Chan, Golub, Levesque, <i>Algorithms for Computing the Sample Variance</i>,
* American Statistician, August 1983.</li></ul>
* Note that adding values using <code>increment</code> or
* American Statistician, vol. 37, no. 3 (1983) pp. 242-247.</li></ul>
* Note that adding values using <code>increment</code> or
* <code>incrementAll</code> and then executing <code>getResult</code> will
* sometimes give a different, less accurate, result than executing
* sometimes give a different, less accurate, result than executing
* <code>evaluate</code> with the full array of values. The former approach
* should only be used when the full array of values is not available.</p>
* <p>
@ -77,10 +78,10 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* constructed with an external SecondMoment as a parameter.
*/
protected boolean incMoment = true;
/**
* Determines whether or not bias correction is applied when computing the
* value of the statisic. True means that bias is corrected. See
* value of the statisic. True means that bias is corrected. See
* {@link Variance} for details on the formula.
*/
private boolean isBiasCorrected = true;
@ -95,7 +96,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
/**
* Constructs a Variance based on an external second moment.
*
*
* @param m2 the SecondMoment (Third or Fourth moments work
* here as well.)
*/
@ -103,11 +104,11 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
incMoment = false;
this.moment = m2;
}
/**
* Constructs a Variance with the specified <code>isBiasCorrected</code>
* property
*
*
* @param isBiasCorrected setting for bias correction - true means
* bias will be corrected and is equivalent to using the argumentless
* constructor
@ -116,11 +117,11 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
moment = new SecondMoment();
this.isBiasCorrected = isBiasCorrected;
}
/**
* Constructs a Variance with the specified <code>isBiasCorrected</code>
* property and the supplied external second moment.
*
*
* @param isBiasCorrected setting for bias correction - true means
* bias will be corrected
* @param m2 the SecondMoment (Third or Fourth moments work
@ -129,26 +130,26 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
public Variance(boolean isBiasCorrected, SecondMoment m2) {
incMoment = false;
this.moment = m2;
this.isBiasCorrected = isBiasCorrected;
this.isBiasCorrected = isBiasCorrected;
}
/**
* Copy constructor, creates a new {@code Variance} identical
* to the {@code original}
*
*
* @param original the {@code Variance} instance to copy
*/
public Variance(Variance original) {
copy(original, this);
}
}
/**
* {@inheritDoc}
* <p>If all values are available, it is more accurate to use
* {@inheritDoc}
* <p>If all values are available, it is more accurate to use
* {@link #evaluate(double[])} rather than adding values one at a time
* using this method and then executing {@link #getResult}, since
* <code>evaluate</code> leverages the fact that is has the full
* list of values together to execute a two-pass algorithm.
* <code>evaluate</code> leverages the fact that is has the full
* list of values together to execute a two-pass algorithm.
* See {@link Variance}.</p>
*/
@Override
@ -182,7 +183,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
public long getN() {
return moment.getN();
}
/**
* {@inheritDoc}
*/
@ -192,9 +193,9 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
moment.clear();
}
}
/**
* Returns the variance of the entries in the input array, or
* Returns the variance of the entries in the input array, or
* <code>Double.NaN</code> if the array is empty.
* <p>
* See {@link Variance} for details on the computing algorithm.</p>
@ -204,7 +205,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
* <p>
* Does not change the internal state of the statistic.</p>
*
*
* @param values the input array
* @return the variance of the values or Double.NaN if length = 0
* @throws IllegalArgumentException if the array is null
@ -229,7 +230,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* Does not change the internal state of the statistic.</p>
* <p>
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
*
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
@ -254,10 +255,69 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
}
return var;
}
/**
* <p>Returns the weighted variance of the entries in the specified portion of
* the input array, or <code>Double.NaN</code> if the designated subarray
* is empty.</p>
* <p>
* Uses the formula <pre>
* &Sigma;(weights[i]*(values[i] - weightedMean)<sup>2</sup>)/(&Sigma;(weights[i]) - 1)
* </pre>
* where weightedMean is the weighted mean</p>
* <p>
* This formula will not return the same result as the unweighted variance when all
* weights are equal, unless all weights are equal to 1. The formula assumes that
* weights are to be treated as "expansion values," as will be the case if for example
* the weights represent frequency counts. To normalize weights so that the denominator
* in the variance computation equals the length of the input vector minus one, use <pre>
* <code>evaluate(values, MathUtils.normalizeArray(weights, values.length)); </code>
* </pre>
* <p>
* Returns 0 for a single-value (i.e. length = 1) sample.</p>
* <p>
* Throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li>
* </ul></p>
* <p>
* Does not change the internal state of the statistic.</p>
* <p>
* Throws <code>IllegalArgumentException</code> if either array is null.</p>
*
* @param values the input array
* @param weights the weights array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return the variance of the values or Double.NaN if length = 0
* @throws IllegalArgumentException if the parameters are not valid
*/
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) {
double var = Double.NaN;
if (test(values, weights,begin, length)) {
clear();
if (length == 1) {
var = 0.0;
} else if (length > 1) {
Mean mean = new Mean();
double m = mean.evaluate(values, weights, begin, length);
var = evaluate(values, weights, m, begin, length);
}
}
return var;
}
/**
* Returns the variance of the entries in the specified portion of
* the input array, using the precomputed mean value. Returns
* the input array, using the precomputed mean value. Returns
* <code>Double.NaN</code> if the designated subarray is empty.
* <p>
* See {@link Variance} for details on the computing algorithm.</p>
@ -272,7 +332,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
* <p>
* Does not change the internal state of the statistic.</p>
*
*
* @param values the input array
* @param mean the precomputed mean value
* @param begin index of the first array element to include
@ -281,9 +341,9 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* @throws IllegalArgumentException if the array is null or the array index
* parameters are not valid
*/
public double evaluate(final double[] values, final double mean,
public double evaluate(final double[] values, final double mean,
final int begin, final int length) {
double var = Double.NaN;
if (test(values, begin, length)) {
@ -298,7 +358,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
accum += dev * dev;
accum2 += dev;
}
double len = length;
double len = length;
if (isBiasCorrected) {
var = (accum - (accum2 * accum2 / len)) / (len - 1.0);
} else {
@ -308,7 +368,82 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
}
return var;
}
/**
* Returns the weighted variance of the entries in the specified portion of
* the input array, using the precomputed weighted mean value. Returns
* <code>Double.NaN</code> if the designated subarray is empty.
* <p>
* Uses the formula <pre>
* &Sigma;(weights[i]*(values[i] - mean)<sup>2</sup>)/(&Sigma;(weights[i]) - 1)
* </pre></p>
* <p>
* The formula used assumes that the supplied mean value is the weighted arithmetic
* mean of the sample data, not a known population parameter. This method
* is supplied only to save computation when the mean has already been
* computed.</p>
* <p>
* This formula will not return the same result as the unweighted variance when all
* weights are equal, unless all weights are equal to 1. The formula assumes that
* weights are to be treated as "expansion values," as will be the case if for example
* the weights represent frequency counts. To normalize weights so that the denominator
* in the variance computation equals the length of the input vector minus one, use <pre>
* <code>evaluate(values, MathUtils.normalizeArray(weights, values.length)); </code>
* </pre>
* <p>
* Returns 0 for a single-value (i.e. length = 1) sample.</p>
* <p>
* Throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li>
* </ul></p>
* <p>
* Does not change the internal state of the statistic.</p>
*
* @param values the input array
* @param weights the weights array
* @param mean the precomputed weighted mean value
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return the variance of the values or Double.NaN if length = 0
* @throws IllegalArgumentException if the parameters are not valid
*/
public double evaluate(final double[] values, final double[] weights,
final double mean, final int begin, final int length) {
double var = Double.NaN;
if (test(values, weights, begin, length)) {
if (length == 1) {
var = 0.0;
} else if (length > 1) {
double accum = 0.0;
double dev = 0.0;
for (int i = begin; i < begin + length; i++) {
dev = values[i] - mean;
accum += weights[i] * (dev * dev);
}
double sumWts = 0;
for (int i = 0; i < weights.length; i++) {
sumWts += weights[i];
}
if (isBiasCorrected) {
var = accum / (sumWts - 1);
} else {
var = accum / sumWts;
}
}
}
return var;
}
/**
* Returns the variance of the entries in the input array, using the
* precomputed mean value. Returns <code>Double.NaN</code> if the array
@ -328,7 +463,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
* <p>
* Does not change the internal state of the statistic.</p>
*
*
* @param values the input array
* @param mean the precomputed mean value
* @return the variance of the values or Double.NaN if the array is empty
@ -351,7 +486,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
public void setBiasCorrected(boolean isBiasCorrected) {
this.isBiasCorrected = isBiasCorrected;
}
/**
* {@inheritDoc}
*/
@ -361,12 +496,12 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
copy(this, result);
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
*
*
* @param source Variance to copy
* @param dest Variance to copy to
* @throws NullPointerException if either source or dest is null

View File

@ -19,6 +19,7 @@ package org.apache.commons.math.stat.descriptive.summary;
import java.io.Serializable;
import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic;
/**
* Returns the product of the available values.
@ -53,17 +54,17 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
n = 0;
value = Double.NaN;
}
/**
* Copy constructor, creates a new {@code Product} identical
* to the {@code original}
*
*
* @param original the {@code Product} instance to copy
*/
public Product(Product original) {
copy(original, this);
}
/**
* {@inheritDoc}
*/
@ -91,7 +92,7 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
public long getN() {
return n;
}
/**
* {@inheritDoc}
*/
@ -107,7 +108,7 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
* is empty.
* <p>
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
*
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
@ -126,7 +127,46 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
}
return product;
}
/**
* <p>Returns the weighted product of the entries in the specified portion of
* the input array, or <code>Double.NaN</code> if the designated subarray
* is empty.</p>
*
* <p>Throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li>
* </ul></p>
*
* <p>Uses the formula, <pre>
* weighted product = &prod;values[i]<sup>weights[i]</sup>
* </pre>
* that is, the weights are applied as exponents when computing the weighted product.</p>
*
* @param values the input array
* @param weights the weights array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return the product of the values or Double.NaN if length = 0
* @throws IllegalArgumentException if the parameters are not valid
*/
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) {
double product = Double.NaN;
if (test(values, weights, begin, length)) {
product = 1.0;
for (int i = begin; i < begin + length; i++) {
product *= Math.pow(values[i], weights[i]);
}
}
return product;
}
/**
* {@inheritDoc}
*/
@ -136,11 +176,11 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
copy(this, result);
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
*
*
* @param source Product to copy
* @param dest Product to copy to
* @throws NullPointerException if either source or dest is null

View File

@ -53,17 +53,17 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
n = 0;
value = Double.NaN;
}
/**
* Copy constructor, creates a new {@code Sum} identical
* to the {@code original}
*
*
* @param original the {@code Sum} instance to copy
*/
public Sum(Sum original) {
copy(original, this);
}
/**
* {@inheritDoc}
*/
@ -91,7 +91,7 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
public long getN() {
return n;
}
/**
* {@inheritDoc}
*/
@ -107,7 +107,7 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
* is empty.
* <p>
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
*
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
@ -126,7 +126,45 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
}
return sum;
}
/**
* The weighted sum of the entries in the specified portion of
* the input array, or <code>Double.NaN</code> if the designated subarray
* is empty.
* <p>
* Throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li>
* </ul></p>
* <p>
* Uses the formula, <pre>
* weighted sum = &Sigma;(values[i] * weights[i])
* </pre></p>
*
* @param values the input array
* @param weights the weights array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return the sum of the values or Double.NaN if length = 0
* @throws IllegalArgumentException if the parameters are not valid
*/
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) {
double sum = Double.NaN;
if (test(values, weights, begin, length)) {
sum = 0.0;
for (int i = begin; i < begin + length; i++) {
sum += (values[i] * weights[i]);
}
}
return sum;
}
/**
* {@inheritDoc}
*/
@ -136,11 +174,11 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
copy(this, result);
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
*
*
* @param source Sum to copy
* @param dest Sum to copy to
* @throws NullPointerException if either source or dest is null

View File

@ -39,6 +39,9 @@ The <action> type attribute can be add,update,fix,remove.
</properties>
<body>
<release version="2.1" date="TBD" description="TBD">
<action dev="psteitz" tyoe="add" issue="MATH-287" due-to="Matthew Rowles">
Added support for weighted descriptive statistics.
</action>
<action dev="psteitz" type="add">
Added normalizeArray method to MathUtils.
</action>

View File

@ -40,6 +40,8 @@ public class AbstractUnivariateStatisticTest extends TestCase {
}
protected double[] testArray = {0, 1, 2, 3, 4, 5};
protected double[] testWeightsArray = {0.3, 0.2, 1.3, 1.1, 1.0, 1.8};
protected double[] testNegativeWeightsArray = {-0.3, 0.2, -1.3, 1.1, 1.0, 1.8};
protected double[] nullArray = null;
protected double[] singletonArray = {0};
protected Mean testStatistic = new Mean();
@ -85,6 +87,24 @@ public class AbstractUnivariateStatisticTest extends TestCase {
fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// expected
}
}
}
try {
testStatistic.test(testArray, nullArray, 0, 1); // null weights array
fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(singletonArray, testWeightsArray, 0, 1); // weights.length != value.length
fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(testArray, testNegativeWeightsArray, 0, 6); // can't have negative weights
fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// expected
}
}
}

View File

@ -5,10 +5,10 @@
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
*
s * Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
@ -16,8 +16,16 @@
*/
package org.apache.commons.math.stat.descriptive;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.List;
import junit.framework.TestCase;
import org.apache.commons.math.TestUtils;
import org.apache.commons.math.random.RandomData;
import org.apache.commons.math.random.RandomDataImpl;
/**
* Test cases for the {@link UnivariateStatistic} class.
* @version $Revision$ $Date$
@ -46,12 +54,35 @@ public abstract class UnivariateStatisticAbstractTest extends TestCase {
protected double thirdMoment = 868.0906859504136;
protected double fourthMoment = 9244.080993773481;
protected double weightedMean = 12.366995073891626d;
protected double weightedVar = 9.974760968886391d;
protected double weightedStd = Math.sqrt(weightedVar);
protected double weightedProduct = 8517647448765288000000d;
protected double weightedSum = 251.05d;
protected double tolerance = 10E-12;
protected double[] testArray =
{12.5, 12, 11.8, 14.2, 14.9, 14.5, 21, 8.2, 10.3, 11.3,
14.1, 9.9, 12.2, 12, 12.1, 11, 19.8, 11, 10, 8.8,
9, 12.3 };
{ 12.5, 12.0, 11.8, 14.2, 14.9, 14.5, 21.0, 8.2, 10.3, 11.3,
14.1, 9.9, 12.2, 12.0, 12.1, 11.0, 19.8, 11.0, 10.0, 8.8,
9.0, 12.3 };
protected double[] testWeightsArray =
{ 1.5, 0.8, 1.2, 0.4, 0.8, 1.8, 1.2, 1.1, 1.0, 0.7,
1.3, 0.6, 0.7, 1.3, 0.7, 1.0, 0.4, 0.1, 1.4, 0.9,
1.1, 0.3 };
protected double[] identicalWeightsArray =
{ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5 };
protected double[] unitWeightsArray =
{ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0 };
public UnivariateStatisticAbstractTest(String name) {
super(name);
@ -65,13 +96,13 @@ public abstract class UnivariateStatisticAbstractTest extends TestCase {
return tolerance;
}
public void testEvaluation() throws Exception {
public void testEvaluation() throws Exception {
assertEquals(
expectedValue(),
getUnivariateStatistic().evaluate(testArray),
getTolerance());
}
public void testCopy() throws Exception {
UnivariateStatistic original = getUnivariateStatistic();
UnivariateStatistic copy = original.copy();
@ -81,4 +112,70 @@ public abstract class UnivariateStatisticAbstractTest extends TestCase {
getTolerance());
}
/**
* Tests consistency of weighted statistic computation.
* For statistics that support weighted evaluation, this test case compares
* the result of direct computation on an array with repeated values with
* a weighted computation on the corresponding (shorter) array with each
* value appearing only once but with a weight value equal to its multiplicity
* in the repeating array.
*/
public void testWeightedConsistency() throws Exception {
// See if this statistic computes weighted statistics
// If not, skip this test
UnivariateStatistic statistic = getUnivariateStatistic();
Method evaluateMethod = null;
try {
evaluateMethod = statistic.getClass().getDeclaredMethod("evaluate",
double[].class, double[].class, int.class, int.class);
} catch (NoSuchMethodException ex) {
return; // skip test
}
// Create arrays of values and corresponding integral weights
// and longer array with values repeated according to the weights
final int len = 10; // length of values array
final double mu = 0; // mean of test data
final double sigma = 5; // std dev of test data
double[] values = new double[len];
double[] weights = new double[len];
RandomData randomData = new RandomDataImpl();
// Fill weights array with random int values between 1 and 5
int[] intWeights = new int[len];
for (int i = 0; i < len; i++) {
intWeights[i] = randomData.nextInt(1, 5);
weights[i] = intWeights[i];
}
// Fill values array with random data from N(mu, sigma)
// and fill valuesList with values from values array with
// values[i] repeated weights[i] times, each i
List<Double> valuesList = new ArrayList<Double>();
for (int i = 0; i < len; i++) {
double value = randomData.nextGaussian(mu, sigma);
values[i] = value;
for (int j = 0; j < intWeights[i]; j++) {
valuesList.add(new Double(value));
}
}
// Dump valuesList into repeatedValues array
int sumWeights = valuesList.size();
double[] repeatedValues = new double[sumWeights];
for (int i = 0; i < sumWeights; i++) {
repeatedValues[i] = valuesList.get(i);
}
// Compare result of weighted statistic computation with direct computation
// on array of repeated values
double weightedResult = (Double) evaluateMethod.invoke(
statistic, values, weights, 0, values.length);
TestUtils.assertRelativelyEquals(
statistic.evaluate(repeatedValues), weightedResult, 10E-14);
}
}

View File

@ -5,9 +5,9 @@
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -29,7 +29,7 @@ import org.apache.commons.math.stat.descriptive.UnivariateStatistic;
public class MeanTest extends StorelessUnivariateStatisticAbstractTest{
protected Mean stat;
/**
* @param name
*/
@ -42,7 +42,7 @@ public class MeanTest extends StorelessUnivariateStatisticAbstractTest{
suite.setName("Mean Tests");
return suite;
}
/**
* {@inheritDoc}
*/
@ -58,7 +58,12 @@ public class MeanTest extends StorelessUnivariateStatisticAbstractTest{
public double expectedValue() {
return this.mean;
}
/**Expected value for the testArray defined in UnivariateStatisticAbstractTest */
public double expectedWeightedValue() {
return this.weightedMean;
}
public void testSmallSamples() {
Mean mean = new Mean();
assertTrue(Double.isNaN(mean.getResult()));
@ -66,4 +71,10 @@ public class MeanTest extends StorelessUnivariateStatisticAbstractTest{
assertEquals(1d, mean.getResult(), 0);
}
public void testWeightedMean() {
Mean mean = new Mean();
assertEquals(expectedWeightedValue(), mean.evaluate(testArray, testWeightsArray, 0, testArray.length), getTolerance());
assertEquals(expectedValue(), mean.evaluate(testArray, identicalWeightsArray, 0, testArray.length), getTolerance());
}
}

View File

@ -5,9 +5,9 @@
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -21,6 +21,7 @@ import junit.framework.TestSuite;
import org.apache.commons.math.stat.descriptive.StorelessUnivariateStatisticAbstractTest;
import org.apache.commons.math.stat.descriptive.UnivariateStatistic;
import org.apache.commons.math.util.MathUtils;
/**
* Test cases for the {@link UnivariateStatistic} class.
@ -51,7 +52,7 @@ public class VarianceTest extends StorelessUnivariateStatisticAbstractTest{
suite.setName("Variance Tests");
return suite;
}
/**
* {@inheritDoc}
*/
@ -59,7 +60,12 @@ public class VarianceTest extends StorelessUnivariateStatisticAbstractTest{
public double expectedValue() {
return this.var;
}
/**Expected value for the testArray defined in UnivariateStatisticAbstractTest */
public double expectedWeightedValue() {
return this.weightedVar;
}
/**
* Make sure Double.NaN is returned iff n = 0
*
@ -70,10 +76,10 @@ public class VarianceTest extends StorelessUnivariateStatisticAbstractTest{
std.increment(1d);
assertEquals(0d, std.getResult(), 0);
}
/**
* Test population version of variance
*/
*/
public void testPopulation() {
double[] values = {-1.0d, 3.1d, 4.0d, -2.1d, 22d, 11.7d, 3d, 14d};
SecondMoment m = new SecondMoment();
@ -84,13 +90,13 @@ public class VarianceTest extends StorelessUnivariateStatisticAbstractTest{
v1.incrementAll(values);
assertEquals(populationVariance(values), v1.getResult(), 1E-14);
v1 = new Variance(false, m);
assertEquals(populationVariance(values), v1.getResult(), 1E-14);
assertEquals(populationVariance(values), v1.getResult(), 1E-14);
v1 = new Variance(false);
assertEquals(populationVariance(values), v1.evaluate(values), 1E-14);
v1.incrementAll(values);
assertEquals(populationVariance(values), v1.getResult(), 1E-14);
assertEquals(populationVariance(values), v1.getResult(), 1E-14);
}
/**
* Definitional formula for population variance
*/
@ -98,9 +104,26 @@ public class VarianceTest extends StorelessUnivariateStatisticAbstractTest{
double mean = new Mean().evaluate(v);
double sum = 0;
for (int i = 0; i < v.length; i++) {
sum += (v[i] - mean) * (v[i] - mean);
sum += (v[i] - mean) * (v[i] - mean);
}
return sum / v.length;
}
public void testWeightedVariance() {
Variance variance = new Variance();
assertEquals(expectedWeightedValue(),
variance.evaluate(testArray, testWeightsArray, 0, testArray.length), getTolerance());
// All weights = 1 -> weighted variance = unweighted variance
assertEquals(expectedValue(),
variance.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
// All weights the same -> when weights are normalized to sum to the length of the values array,
// weighted variance = unweighted value
assertEquals(expectedValue(),
variance.evaluate(testArray, MathUtils.normalizeArray(identicalWeightsArray, testArray.length),
0, testArray.length), getTolerance());
}
}

View File

@ -5,9 +5,9 @@
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -29,7 +29,7 @@ import org.apache.commons.math.stat.descriptive.UnivariateStatistic;
public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
protected Product stat;
/**
* @param name
*/
@ -42,7 +42,7 @@ public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
suite.setName("Product Tests");
return suite;
}
/**
* {@inheritDoc}
*/
@ -58,7 +58,7 @@ public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
public double getTolerance() {
return 10E8; //sic -- big absolute error due to only 15 digits of accuracy in double
}
/**
* {@inheritDoc}
*/
@ -66,7 +66,12 @@ public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
public double expectedValue() {
return this.product;
}
/**Expected value for the testArray defined in UnivariateStatisticAbstractTest */
public double expectedWeightedValue() {
return this.weightedProduct;
}
public void testSpecialValues() {
Product product = new Product();
assertTrue(Double.isNaN(product.getResult()));
@ -77,9 +82,15 @@ public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
product.increment(Double.NEGATIVE_INFINITY);
assertEquals(Double.NEGATIVE_INFINITY, product.getResult(), 0);
product.increment(Double.NaN);
assertTrue(Double.isNaN(product.getResult()));
assertTrue(Double.isNaN(product.getResult()));
product.increment(1);
assertTrue(Double.isNaN(product.getResult()));
assertTrue(Double.isNaN(product.getResult()));
}
public void testWeightedProduct() {
Product product = new Product();
assertEquals(expectedWeightedValue(), product.evaluate(testArray, testWeightsArray, 0, testArray.length),getTolerance());
assertEquals(expectedValue(), product.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
}
}

View File

@ -5,9 +5,9 @@
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -29,7 +29,7 @@ import org.apache.commons.math.stat.descriptive.UnivariateStatistic;
public class SumTest extends StorelessUnivariateStatisticAbstractTest{
protected Sum stat;
/**
* @param name
*/
@ -42,13 +42,13 @@ public class SumTest extends StorelessUnivariateStatisticAbstractTest{
suite.setName("Sum Tests");
return suite;
}
/**
* {@inheritDoc}
*/
@Override
public UnivariateStatistic getUnivariateStatistic() {
return new Sum();
return new Sum();
}
/**
@ -58,7 +58,12 @@ public class SumTest extends StorelessUnivariateStatisticAbstractTest{
public double expectedValue() {
return this.sum;
}
/**Expected value for the testArray defined in UnivariateStatisticAbstractTest */
public double expectedWeightedValue() {
return this.weightedSum;
}
public void testSpecialValues() {
Sum sum = new Sum();
assertTrue(Double.isNaN(sum.getResult()));
@ -69,7 +74,13 @@ public class SumTest extends StorelessUnivariateStatisticAbstractTest{
sum.increment(Double.NEGATIVE_INFINITY);
assertTrue(Double.isNaN(sum.getResult()));
sum.increment(1);
assertTrue(Double.isNaN(sum.getResult()));
assertTrue(Double.isNaN(sum.getResult()));
}
public void testWeightedSum() {
Sum sum = new Sum();
assertEquals(expectedWeightedValue(), sum.evaluate(testArray, testWeightsArray, 0, testArray.length), getTolerance());
assertEquals(expectedValue(), sum.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
}
}