[MATH-777] Added OrderedCrossover policy.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1369658 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
1a44ba4b61
commit
def7c9911a
|
@ -0,0 +1,128 @@
|
|||
package org.apache.commons.math3.genetics;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
|
||||
/**
|
||||
* Order 1 Crossover [OX1] builds offspring from <b>ordered</b> chromosomes by copying a
|
||||
* consecutive slice from one parent, and filling up the remaining genes from the other
|
||||
* parent as they appear.
|
||||
* <p>
|
||||
* This policy works by applying the following rules:
|
||||
* <ol>
|
||||
* <li>select a random slice of consecutive genes from parent 1</li>
|
||||
* <li>copy the slice to child 1 and mark out the genes in parent 2</li>
|
||||
* <li>starting from the right side of the slice, copy genes from parent 2 as they
|
||||
* appear to child 1 if they are not yet marked out.</li>
|
||||
* </ol>
|
||||
* </p>
|
||||
*
|
||||
* Example (random sublist from index 3 to 7, underlined):
|
||||
* <pre>
|
||||
* p1 = (8 4 7 3 6 2 5 1 9 0) X c1 = (0 4 7 3 6 2 5 1 8 9)
|
||||
* --------- ---------
|
||||
* p2 = (0 1 2 3 4 5 6 7 8 9) X c2 = (8 1 2 3 4 5 6 7 9 0)
|
||||
* </pre>
|
||||
*
|
||||
* This policy works only on {@link AbstractListChromosome}, and therefore it
|
||||
* is parameterized by T. Moreover, the chromosomes must have same lengths.
|
||||
*
|
||||
* @see <a href="http://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/Order1CrossoverOperator.aspx"
|
||||
* Order 1 Crossover Operator</a>
|
||||
*
|
||||
* @param <T> generic type of the {@link AbstractListChromosome}s for crossover
|
||||
* @since 3.1
|
||||
* @version $Id$
|
||||
*/
|
||||
public class OrderedCrossover<T> implements CrossoverPolicy {
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public ChromosomePair crossover(final Chromosome first, final Chromosome second) {
|
||||
if (!(first instanceof AbstractListChromosome<?> && second instanceof AbstractListChromosome<?>)) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME);
|
||||
}
|
||||
return mate((AbstractListChromosome<T>) first, (AbstractListChromosome<T>) second);
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover.
|
||||
*
|
||||
* @param first the first chromosome
|
||||
* @param second the second chromosome
|
||||
* @return the pair of new chromosomes that resulted from the crossover
|
||||
* @throws DimensionMismatchException if the length of the two chromosomes is different
|
||||
*/
|
||||
protected ChromosomePair mate(final AbstractListChromosome<T> first, final AbstractListChromosome<T> second) {
|
||||
final int length = first.getLength();
|
||||
if (length != second.getLength()) {
|
||||
throw new DimensionMismatchException(second.getLength(), length);
|
||||
}
|
||||
|
||||
// array representations of the parents
|
||||
final List<T> parent1Rep = first.getRepresentation();
|
||||
final List<T> parent2Rep = second.getRepresentation();
|
||||
// and of the children
|
||||
final List<T> child1 = new ArrayList<T>(length);
|
||||
final List<T> child2 = new ArrayList<T>(length);
|
||||
// sets of already inserted items for quick access
|
||||
final Set<T> child1Set = new HashSet<T>(length);
|
||||
final Set<T> child2Set = new HashSet<T>(length);
|
||||
|
||||
final RandomGenerator random = GeneticAlgorithm.getRandomGenerator();
|
||||
// choose random points, making sure that lb < ub.
|
||||
int a = random.nextInt(length);
|
||||
int b;
|
||||
do {
|
||||
b = random.nextInt(length);
|
||||
} while (a == b);
|
||||
// determine the lower and upper bounds
|
||||
final int lb = FastMath.min(a, b);
|
||||
final int ub = FastMath.max(a, b);
|
||||
|
||||
// add the subLists that are between lb and ub
|
||||
child1.addAll(parent1Rep.subList(lb, ub + 1));
|
||||
child1Set.addAll(child1);
|
||||
child2.addAll(parent2Rep.subList(lb, ub + 1));
|
||||
child2Set.addAll(child2);
|
||||
|
||||
// iterate over every item in the parents
|
||||
for (int i = 1; i <= length; i++) {
|
||||
final int idx = (ub + i) % length;
|
||||
|
||||
// retrieve the current item in each parent
|
||||
final T item1 = parent1Rep.get(idx);
|
||||
final T item2 = parent2Rep.get(idx);
|
||||
|
||||
// if the first child already contains the item in the second parent add it
|
||||
if (!child1Set.contains(item2)) {
|
||||
child1.add(item2);
|
||||
child1Set.add(item2);
|
||||
}
|
||||
|
||||
// if the second child already contains the item in the first parent add it
|
||||
if (!child2Set.contains(item1)) {
|
||||
child2.add(item1);
|
||||
child2Set.add(item1);
|
||||
}
|
||||
}
|
||||
|
||||
// rotate so that the original slice is in the same place as in the parents.
|
||||
Collections.rotate(child1, lb);
|
||||
Collections.rotate(child2, lb);
|
||||
|
||||
return new ChromosomePair(first.newFixedLengthChromosome(child1),
|
||||
second.newFixedLengthChromosome(child2));
|
||||
}
|
||||
}
|
|
@ -0,0 +1,86 @@
|
|||
package org.apache.commons.math3.genetics;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.HashSet;
|
||||
import java.util.Set;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
public class OrderedCrossoverTest {
|
||||
|
||||
@Test
|
||||
public void testCrossover() {
|
||||
final Integer[] p1 = new Integer[] { 8, 4, 7, 3, 6, 2, 5, 1, 9, 0 };
|
||||
final Integer[] p2 = new Integer[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
final DummyListChromosome p1c = new DummyListChromosome(p1);
|
||||
final DummyListChromosome p2c = new DummyListChromosome(p2);
|
||||
|
||||
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
|
||||
|
||||
for (int i = 0; i < 20; i++) {
|
||||
final Set<Integer> parentSet1 = new HashSet<Integer>(Arrays.asList(p1));
|
||||
final Set<Integer> parentSet2 = new HashSet<Integer>(Arrays.asList(p2));
|
||||
|
||||
final ChromosomePair pair = cp.crossover(p1c, p2c);
|
||||
|
||||
final Integer[] c1 = ((DummyListChromosome) pair.getFirst()).getRepresentation().toArray(new Integer[p1.length]);
|
||||
final Integer[] c2 = ((DummyListChromosome) pair.getSecond()).getRepresentation().toArray(new Integer[p2.length]);
|
||||
|
||||
Assert.assertNotSame(p1c, pair.getFirst());
|
||||
Assert.assertNotSame(p2c, pair.getSecond());
|
||||
|
||||
// make sure that the children have exactly the same elements as their parents
|
||||
for (int j = 0; j < c1.length; j++) {
|
||||
Assert.assertTrue(parentSet1.contains(c1[j]));
|
||||
parentSet1.remove(c1[j]);
|
||||
Assert.assertTrue(parentSet2.contains(c2[j]));
|
||||
parentSet2.remove(c2[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test(expected = DimensionMismatchException.class)
|
||||
public void testCrossoverDimensionMismatchException() {
|
||||
final Integer[] p1 = new Integer[] { 1, 0, 1, 0, 0, 1, 0, 1, 1 };
|
||||
final Integer[] p2 = new Integer[] { 0, 1, 1, 0, 1 };
|
||||
|
||||
final BinaryChromosome p1c = new DummyBinaryChromosome(p1);
|
||||
final BinaryChromosome p2c = new DummyBinaryChromosome(p2);
|
||||
|
||||
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
|
||||
cp.crossover(p1c, p2c);
|
||||
}
|
||||
|
||||
@Test(expected = MathIllegalArgumentException.class)
|
||||
public void testCrossoverInvalidFixedLengthChromosomeFirst() {
|
||||
final Integer[] p1 = new Integer[] { 1, 0, 1, 0, 0, 1, 0, 1, 1 };
|
||||
final BinaryChromosome p1c = new DummyBinaryChromosome(p1);
|
||||
final Chromosome p2c = new Chromosome() {
|
||||
public double fitness() {
|
||||
// Not important
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
|
||||
cp.crossover(p1c, p2c);
|
||||
}
|
||||
|
||||
@Test(expected = MathIllegalArgumentException.class)
|
||||
public void testCrossoverInvalidFixedLengthChromosomeSecond() {
|
||||
final Integer[] p1 = new Integer[] { 1, 0, 1, 0, 0, 1, 0, 1, 1 };
|
||||
final BinaryChromosome p2c = new DummyBinaryChromosome(p1);
|
||||
final Chromosome p1c = new Chromosome() {
|
||||
public double fitness() {
|
||||
// Not important
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
|
||||
cp.crossover(p1c, p2c);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue