[MATH-777] Added OrderedCrossover policy.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1369658 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Thomas Neidhart 2012-08-05 20:03:28 +00:00
parent 1a44ba4b61
commit def7c9911a
2 changed files with 214 additions and 0 deletions

View File

@ -0,0 +1,128 @@
package org.apache.commons.math3.genetics;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.FastMath;
/**
* Order 1 Crossover [OX1] builds offspring from <b>ordered</b> chromosomes by copying a
* consecutive slice from one parent, and filling up the remaining genes from the other
* parent as they appear.
* <p>
* This policy works by applying the following rules:
* <ol>
* <li>select a random slice of consecutive genes from parent 1</li>
* <li>copy the slice to child 1 and mark out the genes in parent 2</li>
* <li>starting from the right side of the slice, copy genes from parent 2 as they
* appear to child 1 if they are not yet marked out.</li>
* </ol>
* </p>
*
* Example (random sublist from index 3 to 7, underlined):
* <pre>
* p1 = (8 4 7 3 6 2 5 1 9 0) X c1 = (0 4 7 3 6 2 5 1 8 9)
* --------- ---------
* p2 = (0 1 2 3 4 5 6 7 8 9) X c2 = (8 1 2 3 4 5 6 7 9 0)
* </pre>
*
* This policy works only on {@link AbstractListChromosome}, and therefore it
* is parameterized by T. Moreover, the chromosomes must have same lengths.
*
* @see <a href="http://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/Order1CrossoverOperator.aspx"
* Order 1 Crossover Operator</a>
*
* @param <T> generic type of the {@link AbstractListChromosome}s for crossover
* @since 3.1
* @version $Id$
*/
public class OrderedCrossover<T> implements CrossoverPolicy {
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
public ChromosomePair crossover(final Chromosome first, final Chromosome second) {
if (!(first instanceof AbstractListChromosome<?> && second instanceof AbstractListChromosome<?>)) {
throw new MathIllegalArgumentException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME);
}
return mate((AbstractListChromosome<T>) first, (AbstractListChromosome<T>) second);
}
/**
* Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover.
*
* @param first the first chromosome
* @param second the second chromosome
* @return the pair of new chromosomes that resulted from the crossover
* @throws DimensionMismatchException if the length of the two chromosomes is different
*/
protected ChromosomePair mate(final AbstractListChromosome<T> first, final AbstractListChromosome<T> second) {
final int length = first.getLength();
if (length != second.getLength()) {
throw new DimensionMismatchException(second.getLength(), length);
}
// array representations of the parents
final List<T> parent1Rep = first.getRepresentation();
final List<T> parent2Rep = second.getRepresentation();
// and of the children
final List<T> child1 = new ArrayList<T>(length);
final List<T> child2 = new ArrayList<T>(length);
// sets of already inserted items for quick access
final Set<T> child1Set = new HashSet<T>(length);
final Set<T> child2Set = new HashSet<T>(length);
final RandomGenerator random = GeneticAlgorithm.getRandomGenerator();
// choose random points, making sure that lb < ub.
int a = random.nextInt(length);
int b;
do {
b = random.nextInt(length);
} while (a == b);
// determine the lower and upper bounds
final int lb = FastMath.min(a, b);
final int ub = FastMath.max(a, b);
// add the subLists that are between lb and ub
child1.addAll(parent1Rep.subList(lb, ub + 1));
child1Set.addAll(child1);
child2.addAll(parent2Rep.subList(lb, ub + 1));
child2Set.addAll(child2);
// iterate over every item in the parents
for (int i = 1; i <= length; i++) {
final int idx = (ub + i) % length;
// retrieve the current item in each parent
final T item1 = parent1Rep.get(idx);
final T item2 = parent2Rep.get(idx);
// if the first child already contains the item in the second parent add it
if (!child1Set.contains(item2)) {
child1.add(item2);
child1Set.add(item2);
}
// if the second child already contains the item in the first parent add it
if (!child2Set.contains(item1)) {
child2.add(item1);
child2Set.add(item1);
}
}
// rotate so that the original slice is in the same place as in the parents.
Collections.rotate(child1, lb);
Collections.rotate(child2, lb);
return new ChromosomePair(first.newFixedLengthChromosome(child1),
second.newFixedLengthChromosome(child2));
}
}

View File

@ -0,0 +1,86 @@
package org.apache.commons.math3.genetics;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.junit.Assert;
import org.junit.Test;
public class OrderedCrossoverTest {
@Test
public void testCrossover() {
final Integer[] p1 = new Integer[] { 8, 4, 7, 3, 6, 2, 5, 1, 9, 0 };
final Integer[] p2 = new Integer[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
final DummyListChromosome p1c = new DummyListChromosome(p1);
final DummyListChromosome p2c = new DummyListChromosome(p2);
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
for (int i = 0; i < 20; i++) {
final Set<Integer> parentSet1 = new HashSet<Integer>(Arrays.asList(p1));
final Set<Integer> parentSet2 = new HashSet<Integer>(Arrays.asList(p2));
final ChromosomePair pair = cp.crossover(p1c, p2c);
final Integer[] c1 = ((DummyListChromosome) pair.getFirst()).getRepresentation().toArray(new Integer[p1.length]);
final Integer[] c2 = ((DummyListChromosome) pair.getSecond()).getRepresentation().toArray(new Integer[p2.length]);
Assert.assertNotSame(p1c, pair.getFirst());
Assert.assertNotSame(p2c, pair.getSecond());
// make sure that the children have exactly the same elements as their parents
for (int j = 0; j < c1.length; j++) {
Assert.assertTrue(parentSet1.contains(c1[j]));
parentSet1.remove(c1[j]);
Assert.assertTrue(parentSet2.contains(c2[j]));
parentSet2.remove(c2[j]);
}
}
}
@Test(expected = DimensionMismatchException.class)
public void testCrossoverDimensionMismatchException() {
final Integer[] p1 = new Integer[] { 1, 0, 1, 0, 0, 1, 0, 1, 1 };
final Integer[] p2 = new Integer[] { 0, 1, 1, 0, 1 };
final BinaryChromosome p1c = new DummyBinaryChromosome(p1);
final BinaryChromosome p2c = new DummyBinaryChromosome(p2);
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
cp.crossover(p1c, p2c);
}
@Test(expected = MathIllegalArgumentException.class)
public void testCrossoverInvalidFixedLengthChromosomeFirst() {
final Integer[] p1 = new Integer[] { 1, 0, 1, 0, 0, 1, 0, 1, 1 };
final BinaryChromosome p1c = new DummyBinaryChromosome(p1);
final Chromosome p2c = new Chromosome() {
public double fitness() {
// Not important
return 0;
}
};
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
cp.crossover(p1c, p2c);
}
@Test(expected = MathIllegalArgumentException.class)
public void testCrossoverInvalidFixedLengthChromosomeSecond() {
final Integer[] p1 = new Integer[] { 1, 0, 1, 0, 0, 1, 0, 1, 1 };
final BinaryChromosome p2c = new DummyBinaryChromosome(p1);
final Chromosome p1c = new Chromosome() {
public double fitness() {
// Not important
return 0;
}
};
final CrossoverPolicy cp = new OrderedCrossover<Integer>();
cp.crossover(p1c, p2c);
}
}