Field-based version of midpoint method for solving ODE.

This commit is contained in:
Luc Maisonobe 2016-01-06 12:24:14 +01:00
parent f05e3793ed
commit defa2be2ea
2 changed files with 192 additions and 0 deletions

View File

@ -0,0 +1,73 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.RealFieldElement;
/**
* This class implements a second order Runge-Kutta integrator for
* Ordinary Differential Equations.
*
* <p>This method is an explicit Runge-Kutta method, its Butcher-array
* is the following one :
* <pre>
* 0 | 0 0
* 1/2 | 1/2 0
* |----------
* | 0 1
* </pre>
* </p>
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
* @see GillFieldIntegrator
* @see ThreeEighthesFieldIntegrator
* @see LutherFieldIntegrator
*
* @param <T> the type of the field elements
* @since 3.6
*/
public class MidpointFieldIntegrator<T extends RealFieldElement<T>> extends RungeKuttaFieldIntegrator<T> {
/** Time steps Butcher array. */
private static final double[] STATIC_C = {
1.0 / 2.0
};
/** Internal weights Butcher array. */
private static final double[][] STATIC_A = {
{ 1.0 / 2.0 }
};
/** Propagation weights Butcher array. */
private static final double[] STATIC_B = {
0.0, 1.0
};
/** Simple constructor.
* Build a midpoint integrator with the given step.
* @param field field to which the time and state vector elements belong
* @param step integration step
*/
public MidpointFieldIntegrator(final Field<T> field, final T step) {
super(field, "midpoint", STATIC_C, STATIC_A, STATIC_B, new MidpointFieldStepInterpolator<T>(), step);
}
}

View File

@ -0,0 +1,119 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.ode.FieldEquationsMapper;
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.util.MathArrays;
/**
* This class implements a step interpolator for second order
* Runge-Kutta integrator.
*
* <p>This interpolator computes dense output inside the last
* step computed. The interpolation equation is consistent with the
* integration scheme :
* <ul>
* <li>Using reference point at step start:<br>
* y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>) + &theta; h [(1 - &theta;) y'<sub>1</sub> + &theta; y'<sub>2</sub>]
* </li>
* <li>Using reference point at step end:<br>
* y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h) + (1-&theta;) h [&theta; y'<sub>1</sub> - (1+&theta;) y'<sub>2</sub>]
* </li>
* </ul>
* </p>
*
* where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> and y'<sub>2</sub> are the two
* evaluations of the derivatives already computed during the
* step.</p>
*
* @see MidpointFieldIntegrator
* @param <T> the type of the field elements
* @since 3.6
*/
class MidpointFieldStepInterpolator<T extends RealFieldElement<T>>
extends RungeKuttaFieldStepInterpolator<T> {
/** Simple constructor.
* This constructor builds an instance that is not usable yet, the
* {@link
* org.apache.commons.math4.ode.sampling.AbstractStepInterpolator#reinitialize}
* method should be called before using the instance in order to
* initialize the internal arrays. This constructor is used only
* in order to delay the initialization in some cases. The {@link
* RungeKuttaFieldIntegrator} class uses the prototyping design pattern
* to create the step interpolators by cloning an uninitialized model
* and later initializing the copy.
*/
MidpointFieldStepInterpolator() {
}
/** Copy constructor.
* @param interpolator interpolator to copy from. The copy is a deep
* copy: its arrays are separated from the original arrays of the
* instance
*/
MidpointFieldStepInterpolator(final MidpointFieldStepInterpolator<T> interpolator) {
super(interpolator);
}
/** {@inheritDoc} */
@Override
protected MidpointFieldStepInterpolator<T> doCopy() {
return new MidpointFieldStepInterpolator<T>(this);
}
/** {@inheritDoc} */
@Override
protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
final T time, final T theta,
final T oneMinusThetaH) {
final T coeffDot2 = theta.multiply(2);
final T coeffDot1 = time.getField().getOne().subtract(coeffDot2);
final T[] interpolatedState = MathArrays.buildArray(theta.getField(), previousState.length);
final T[] interpolatedDerivatives = MathArrays.buildArray(theta.getField(), previousState.length);
if ((previousState != null) && (theta.getReal() <= 0.5)) {
final T coeff1 = theta.multiply(oneMinusThetaH);
final T coeff2 = theta.multiply(theta).multiply(h);
for (int i = 0; i < previousState.length; ++i) {
final T yDot1 = yDotK[0][i];
final T yDot2 = yDotK[1][i];
interpolatedState[i] = previousState[i].add(coeff1.multiply(yDot1)).add(coeff2.multiply(yDot2));
interpolatedDerivatives[i] = coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2));
}
} else {
final T coeff1 = oneMinusThetaH.multiply(theta);
final T coeff2 = oneMinusThetaH.multiply(theta.add(1));
for (int i = 0; i < previousState.length; ++i) {
final T yDot1 = yDotK[0][i];
final T yDot2 = yDotK[1][i];
interpolatedState[i] = currentState[i].add(coeff1.multiply(yDot1)).subtract(coeff2.multiply(yDot2));
interpolatedDerivatives[i] = coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2));
}
}
return new FieldODEStateAndDerivative<T>(time, interpolatedState, yDotK[0]);
}
}