MATH-1416: Depend on "Commons Numbers".

Replaced class "Precision" by its equivalent in module "commons-numbers-core".
This commit is contained in:
Gilles 2017-05-04 01:19:44 +02:00
parent ef2507a816
commit e082e0c48e
89 changed files with 90 additions and 1247 deletions

View File

@ -28,7 +28,7 @@ import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* First derivative computation with large number of variables.

View File

@ -26,7 +26,7 @@ import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* <a href="http://en.wikipedia.org/wiki/Gaussian_function">

View File

@ -80,7 +80,7 @@ public abstract class BaseAbstractUnivariateIntegrator implements UnivariateInte
* achieved due to large values or short mantissa length. If this
* should be the primary criterion for convergence rather then a
* safety measure, set the absolute accuracy to a ridiculously small value,
* like {@link org.apache.commons.math4.util.Precision#SAFE_MIN Precision.SAFE_MIN}.</li>
* like {@link org.apache.commons.numbers.core.Precision#SAFE_MIN Precision.SAFE_MIN}.</li>
* <li>absolute accuracy:
* The default is usually chosen so that results in the interval
* -10..-0.1 and +0.1..+10 can be found with a reasonable accuracy. If the

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Computes a cubic spline interpolation for the data set using the Akima

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.exception.TooManyEvaluationsException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class implements a modification of the <a

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.exception.NoBracketingException;
import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.exception.TooManyEvaluationsException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">

View File

@ -27,7 +27,7 @@ import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.util.IntegerSequence;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class implements a modification of the <a

View File

@ -27,7 +27,7 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Representation of a Complex number, i.e. a number which has both a
@ -46,8 +46,8 @@ import org.apache.commons.math4.util.Precision;
* Note that this contradicts the IEEE-754 standard for floating
* point numbers (according to which the test {@code x == x} must fail if
* {@code x} is {@code NaN}). The method
* {@link org.apache.commons.math4.util.Precision#equals(double,double,int)
* equals for primitive double} in {@link org.apache.commons.math4.util.Precision}
* {@link org.apache.commons.numbers.core.Precision#equals(double,double,int)
* equals for primitive double} in {@link org.apache.commons.numbers.core.Precision}
* conforms with IEEE-754 while this class conforms with the standard behavior
* for Java object types.</p>
*

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.exception.ZeroException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class implements <a href="http://mathworld.wolfram.com/Quaternion.html">

View File

@ -18,7 +18,7 @@ package org.apache.commons.math4.fitting.leastsquares;
import org.apache.commons.math4.fitting.leastsquares.LeastSquaresProblem.Evaluation;
import org.apache.commons.math4.optim.ConvergenceChecker;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Check if an optimization has converged based on the change in computed RMS.

View File

@ -26,7 +26,7 @@ import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.optim.ConvergenceChecker;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Incrementor;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**

View File

@ -27,7 +27,7 @@ import org.apache.commons.math4.geometry.partitioning.AbstractRegion;
import org.apache.commons.math4.geometry.partitioning.BSPTree;
import org.apache.commons.math4.geometry.partitioning.BoundaryProjection;
import org.apache.commons.math4.geometry.partitioning.SubHyperplane;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** This class represents a 1D region: a set of intervals.
* @since 3.0

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.geometry.euclidean.oned.IntervalsSet;
import org.apache.commons.math4.geometry.euclidean.oned.Vector1D;
import org.apache.commons.math4.geometry.partitioning.Embedding;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** The class represent lines in a three dimensional space.

View File

@ -34,7 +34,7 @@ import org.apache.commons.math4.geometry.partitioning.Hyperplane;
import org.apache.commons.math4.geometry.partitioning.Side;
import org.apache.commons.math4.geometry.partitioning.SubHyperplane;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** This class represents a 2D region: a set of polygons.
* @since 3.0

View File

@ -29,7 +29,7 @@ import org.apache.commons.math4.geometry.hull.ConvexHull;
import org.apache.commons.math4.geometry.partitioning.Region;
import org.apache.commons.math4.geometry.partitioning.RegionFactory;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class represents a convex hull in an two-dimensional euclidean space.

View File

@ -25,7 +25,7 @@ import java.util.List;
import org.apache.commons.math4.geometry.euclidean.twod.Line;
import org.apache.commons.math4.geometry.euclidean.twod.Vector2D;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Implements Andrew's monotone chain method to generate the convex hull of a finite set of

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.geometry.partitioning.Region.Location;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** This class represents an arc on a circle.

View File

@ -34,7 +34,7 @@ import org.apache.commons.math4.geometry.partitioning.Side;
import org.apache.commons.math4.geometry.partitioning.SubHyperplane;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** This class represents a region of a circle: a set of arcs.
* <p>

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.exception.OutOfRangeException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Implementation of a diagonal matrix.

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.exception.MathUnsupportedOperationException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Calculates the eigen decomposition of a real matrix.

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.linear;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Class transforming a general real matrix to Hessenberg form.

View File

@ -37,7 +37,7 @@ import org.apache.commons.math4.fraction.Fraction;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* A collection of static methods that operate on or return matrices.

View File

@ -20,7 +20,7 @@ package org.apache.commons.math4.linear;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Class transforming a general real matrix to Schur form.

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.linear;
import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Calculates the compact Singular Value Decomposition of a matrix.

View File

@ -23,7 +23,7 @@ import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicLong;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**

View File

@ -39,7 +39,7 @@ import org.apache.commons.math4.ode.sampling.AbstractStepInterpolator;
import org.apache.commons.math4.ode.sampling.StepHandler;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.IntegerSequence;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Base class managing common boilerplate for all integrators.

View File

@ -83,7 +83,7 @@ public enum FilterType {
* <li>h = min(-s,-g,+g)</li>
* <li>h = -g</li>
* </ul>
* where s is a tiny positive value: {@link org.apache.commons.math4.util.Precision#SAFE_MIN}.
* where s is a tiny positive value: {@link org.apache.commons.numbers.core.Precision#SAFE_MIN}.
* </p>
*/
@Override
@ -261,7 +261,7 @@ public enum FilterType {
* <li>h = min(-s,-g,+g)</li>
* <li>h = -g</li>
* </ul>
* where s is a tiny positive value: {@link org.apache.commons.math4.util.Precision#SAFE_MIN}.
* where s is a tiny positive value: {@link org.apache.commons.numbers.core.Precision#SAFE_MIN}.
* </p>
*/
@Override

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.ode.events;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** Transformer for {@link EventHandler#g(double, double[]) g functions}.

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class wraps an object implementing {@link FieldFixedStepHandler}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.ode.sampling;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class wraps an object implementing {@link FixedStepHandler}

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.exception.TooManyIterationsException;
import org.apache.commons.math4.optim.OptimizationData;
import org.apache.commons.math4.optim.PointValuePair;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Solves a linear problem using the "Two-Phase Simplex" method.

View File

@ -34,7 +34,7 @@ import org.apache.commons.math4.linear.MatrixUtils;
import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.optim.PointValuePair;
import org.apache.commons.math4.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* A tableau for use in the Simplex method.

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.optim.ConvergenceChecker;
import org.apache.commons.math4.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* For a function defined on some interval {@code (lo, hi)}, this class

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Abstract base class for implementations of the

View File

@ -34,7 +34,7 @@ import org.apache.commons.math4.stat.descriptive.summary.SumOfSquares;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* <p>Computes summary statistics for a stream of n-tuples added using the

View File

@ -20,7 +20,7 @@ import java.io.Serializable;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Value object representing the results of a univariate statistical summary.

View File

@ -32,7 +32,7 @@ import org.apache.commons.math4.stat.descriptive.summary.SumOfLogs;
import org.apache.commons.math4.stat.descriptive.summary.SumOfSquares;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* <p>

View File

@ -37,7 +37,7 @@ import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStat
import org.apache.commons.math4.stat.descriptive.StorelessUnivariateStatistic;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* A {@link StorelessUnivariateStatistic} estimating percentiles using the

View File

@ -32,7 +32,7 @@ import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.MedianOf3PivotingStrategy;
import org.apache.commons.math4.util.PivotingStrategyInterface;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Provides percentile computation.

View File

@ -21,7 +21,7 @@ import java.util.Arrays;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* This class is a concrete implementation of the {@link UpdatingMultipleLinearRegression} interface.

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.exception.NoDataException;
import org.apache.commons.math4.exception.OutOfRangeException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Estimates an ordinary least squares regression model

View File

@ -16,6 +16,7 @@
*/
package org.apache.commons.math4.util;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.exception.ConvergenceException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.util.LocalizedFormats;

View File

@ -18,6 +18,7 @@ package org.apache.commons.math4.util;
import java.io.PrintStream;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.exception.MathArithmeticException;
import org.apache.commons.math4.exception.util.LocalizedFormats;

View File

@ -26,6 +26,7 @@ import java.util.Iterator;
import java.util.List;
import java.util.TreeSet;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.MathArithmeticException;

View File

@ -1,608 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.util;
import java.math.BigDecimal;
import org.apache.commons.math4.exception.MathArithmeticException;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
/**
* Utilities for comparing numbers.
*
* @since 3.0
*/
public class Precision {
/**
* <p>
* Largest double-precision floating-point number such that
* {@code 1 + EPSILON} is numerically equal to 1. This value is an upper
* bound on the relative error due to rounding real numbers to double
* precision floating-point numbers.
* </p>
* <p>
* In IEEE 754 arithmetic, this is 2<sup>-53</sup>.
* </p>
*
* @see <a href="http://en.wikipedia.org/wiki/Machine_epsilon">Machine epsilon</a>
*/
public static final double EPSILON;
/**
* Safe minimum, such that {@code 1 / SAFE_MIN} does not overflow.
* <br/>
* In IEEE 754 arithmetic, this is also the smallest normalized
* number 2<sup>-1022</sup>.
*/
public static final double SAFE_MIN;
/** Exponent offset in IEEE754 representation. */
private static final long EXPONENT_OFFSET = 1023l;
/** Offset to order signed double numbers lexicographically. */
private static final long SGN_MASK = 0x8000000000000000L;
/** Offset to order signed double numbers lexicographically. */
private static final int SGN_MASK_FLOAT = 0x80000000;
/** Positive zero. */
private static final double POSITIVE_ZERO = 0d;
/** Positive zero bits. */
private static final long POSITIVE_ZERO_DOUBLE_BITS = Double.doubleToRawLongBits(+0.0);
/** Negative zero bits. */
private static final long NEGATIVE_ZERO_DOUBLE_BITS = Double.doubleToRawLongBits(-0.0);
/** Positive zero bits. */
private static final int POSITIVE_ZERO_FLOAT_BITS = Float.floatToRawIntBits(+0.0f);
/** Negative zero bits. */
private static final int NEGATIVE_ZERO_FLOAT_BITS = Float.floatToRawIntBits(-0.0f);
static {
/*
* This was previously expressed as = 0x1.0p-53;
* However, OpenJDK (Sparc Solaris) cannot handle such small
* constants: MATH-721
*/
EPSILON = Double.longBitsToDouble((EXPONENT_OFFSET - 53l) << 52);
/*
* This was previously expressed as = 0x1.0p-1022;
* However, OpenJDK (Sparc Solaris) cannot handle such small
* constants: MATH-721
*/
SAFE_MIN = Double.longBitsToDouble((EXPONENT_OFFSET - 1022l) << 52);
}
/**
* Private constructor.
*/
private Precision() {}
/**
* Compares two numbers given some amount of allowed error.
*
* @param x the first number
* @param y the second number
* @param eps the amount of error to allow when checking for equality
* @return <ul><li>0 if {@link #equals(double, double, double) equals(x, y, eps)}</li>
* <li>&lt; 0 if !{@link #equals(double, double, double) equals(x, y, eps)} &amp;&amp; x &lt; y</li>
* <li>> 0 if !{@link #equals(double, double, double) equals(x, y, eps)} &amp;&amp; x > y or
* either argument is NaN</li></ul>
*/
public static int compareTo(double x, double y, double eps) {
if (equals(x, y, eps)) {
return 0;
} else if (x < y) {
return -1;
}
return 1;
}
/**
* Compares two numbers given some amount of allowed error.
* Two float numbers are considered equal if there are {@code (maxUlps - 1)}
* (or fewer) floating point numbers between them, i.e. two adjacent floating
* point numbers are considered equal.
* Adapted from <a
* href="http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/">
* Bruce Dawson</a>. Returns {@code false} if either of the arguments is NaN.
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return <ul><li>0 if {@link #equals(double, double, int) equals(x, y, maxUlps)}</li>
* <li>&lt; 0 if !{@link #equals(double, double, int) equals(x, y, maxUlps)} &amp;&amp; x &lt; y</li>
* <li>&gt; 0 if !{@link #equals(double, double, int) equals(x, y, maxUlps)} &amp;&amp; x > y
* or either argument is NaN</li></ul>
*/
public static int compareTo(final double x, final double y, final int maxUlps) {
if (equals(x, y, maxUlps)) {
return 0;
} else if (x < y) {
return -1;
}
return 1;
}
/**
* Returns true iff they are equal as defined by
* {@link #equals(float,float,int) equals(x, y, 1)}.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal.
*/
public static boolean equals(float x, float y) {
return equals(x, y, 1);
}
/**
* Returns true if both arguments are NaN or they are
* equal as defined by {@link #equals(float,float) equals(x, y, 1)}.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(float x, float y) {
return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, 1);
}
/**
* Returns true if the arguments are equal or within the range of allowed
* error (inclusive). Returns {@code false} if either of the arguments
* is NaN.
*
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other.
* @since 2.2
*/
public static boolean equals(float x, float y, float eps) {
return equals(x, y, 1) || FastMath.abs(y - x) <= eps;
}
/**
* Returns true if the arguments are both NaN, are equal, or are within the range
* of allowed error (inclusive).
*
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other,
* or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(float x, float y, float eps) {
return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
}
/**
* Returns true if the arguments are equal or within the range of allowed
* error (inclusive).
* Two float numbers are considered equal if there are {@code (maxUlps - 1)}
* (or fewer) floating point numbers between them, i.e. two adjacent floating
* point numbers are considered equal.
* Adapted from <a
* href="http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/">
* Bruce Dawson</a>. Returns {@code false} if either of the arguments is NaN.
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating
* point values between {@code x} and {@code y}.
* @since 2.2
*/
public static boolean equals(final float x, final float y, final int maxUlps) {
final int xInt = Float.floatToRawIntBits(x);
final int yInt = Float.floatToRawIntBits(y);
final boolean isEqual;
if (((xInt ^ yInt) & SGN_MASK_FLOAT) == 0) {
// number have same sign, there is no risk of overflow
isEqual = FastMath.abs(xInt - yInt) <= maxUlps;
} else {
// number have opposite signs, take care of overflow
final int deltaPlus;
final int deltaMinus;
if (xInt < yInt) {
deltaPlus = yInt - POSITIVE_ZERO_FLOAT_BITS;
deltaMinus = xInt - NEGATIVE_ZERO_FLOAT_BITS;
} else {
deltaPlus = xInt - POSITIVE_ZERO_FLOAT_BITS;
deltaMinus = yInt - NEGATIVE_ZERO_FLOAT_BITS;
}
if (deltaPlus > maxUlps) {
isEqual = false;
} else {
isEqual = deltaMinus <= (maxUlps - deltaPlus);
}
}
return isEqual && !Float.isNaN(x) && !Float.isNaN(y);
}
/**
* Returns true if the arguments are both NaN or if they are equal as defined
* by {@link #equals(float,float,int) equals(x, y, maxUlps)}.
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if both arguments are NaN or if there are less than
* {@code maxUlps} floating point values between {@code x} and {@code y}.
* @since 2.2
*/
public static boolean equalsIncludingNaN(float x, float y, int maxUlps) {
return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, maxUlps);
}
/**
* Returns true iff they are equal as defined by
* {@link #equals(double,double,int) equals(x, y, 1)}.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal.
*/
public static boolean equals(double x, double y) {
return equals(x, y, 1);
}
/**
* Returns true if the arguments are both NaN or they are
* equal as defined by {@link #equals(double,double) equals(x, y, 1)}.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double x, double y) {
return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, 1);
}
/**
* Returns {@code true} if there is no double value strictly between the
* arguments or the difference between them is within the range of allowed
* error (inclusive). Returns {@code false} if either of the arguments
* is NaN.
*
* @param x First value.
* @param y Second value.
* @param eps Amount of allowed absolute error.
* @return {@code true} if the values are two adjacent floating point
* numbers or they are within range of each other.
*/
public static boolean equals(double x, double y, double eps) {
return equals(x, y, 1) || FastMath.abs(y - x) <= eps;
}
/**
* Returns {@code true} if there is no double value strictly between the
* arguments or the relative difference between them is less than or equal
* to the given tolerance. Returns {@code false} if either of the arguments
* is NaN.
*
* @param x First value.
* @param y Second value.
* @param eps Amount of allowed relative error.
* @return {@code true} if the values are two adjacent floating point
* numbers or they are within range of each other.
* @since 3.1
*/
public static boolean equalsWithRelativeTolerance(double x, double y, double eps) {
if (equals(x, y, 1)) {
return true;
}
final double absoluteMax = FastMath.max(FastMath.abs(x), FastMath.abs(y));
final double relativeDifference = FastMath.abs((x - y) / absoluteMax);
return relativeDifference <= eps;
}
/**
* Returns true if the arguments are both NaN, are equal or are within the range
* of allowed error (inclusive).
*
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other,
* or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double x, double y, double eps) {
return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
}
/**
* Returns true if the arguments are equal or within the range of allowed
* error (inclusive).
* <p>
* Two float numbers are considered equal if there are {@code (maxUlps - 1)}
* (or fewer) floating point numbers between them, i.e. two adjacent
* floating point numbers are considered equal.
* </p>
* <p>
* Adapted from <a
* href="http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/">
* Bruce Dawson</a>. Returns {@code false} if either of the arguments is NaN.
* </p>
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating
* point values between {@code x} and {@code y}.
*/
public static boolean equals(final double x, final double y, final int maxUlps) {
final long xInt = Double.doubleToRawLongBits(x);
final long yInt = Double.doubleToRawLongBits(y);
final boolean isEqual;
if (((xInt ^ yInt) & SGN_MASK) == 0l) {
// number have same sign, there is no risk of overflow
isEqual = FastMath.abs(xInt - yInt) <= maxUlps;
} else {
// number have opposite signs, take care of overflow
final long deltaPlus;
final long deltaMinus;
if (xInt < yInt) {
deltaPlus = yInt - POSITIVE_ZERO_DOUBLE_BITS;
deltaMinus = xInt - NEGATIVE_ZERO_DOUBLE_BITS;
} else {
deltaPlus = xInt - POSITIVE_ZERO_DOUBLE_BITS;
deltaMinus = yInt - NEGATIVE_ZERO_DOUBLE_BITS;
}
if (deltaPlus > maxUlps) {
isEqual = false;
} else {
isEqual = deltaMinus <= (maxUlps - deltaPlus);
}
}
return isEqual && !Double.isNaN(x) && !Double.isNaN(y);
}
/**
* Returns true if both arguments are NaN or if they are equal as defined
* by {@link #equals(double,double,int) equals(x, y, maxUlps)}.
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if both arguments are NaN or if there are less than
* {@code maxUlps} floating point values between {@code x} and {@code y}.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double x, double y, int maxUlps) {
return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, maxUlps);
}
/**
* Rounds the given value to the specified number of decimal places.
* The value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method.
*
* @param x Value to round.
* @param scale Number of digits to the right of the decimal point.
* @return the rounded value.
* @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0)
*/
public static double round(double x, int scale) {
return round(x, scale, BigDecimal.ROUND_HALF_UP);
}
/**
* Rounds the given value to the specified number of decimal places.
* The value is rounded using the given method which is any method defined
* in {@link BigDecimal}.
* If {@code x} is infinite or {@code NaN}, then the value of {@code x} is
* returned unchanged, regardless of the other parameters.
*
* @param x Value to round.
* @param scale Number of digits to the right of the decimal point.
* @param roundingMethod Rounding method as defined in {@link BigDecimal}.
* @return the rounded value.
* @throws ArithmeticException if {@code roundingMethod == ROUND_UNNECESSARY}
* and the specified scaling operation would require rounding.
* @throws IllegalArgumentException if {@code roundingMethod} does not
* represent a valid rounding mode.
* @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0)
*/
public static double round(double x, int scale, int roundingMethod) {
try {
final double rounded = (new BigDecimal(Double.toString(x))
.setScale(scale, roundingMethod))
.doubleValue();
// MATH-1089: negative values rounded to zero should result in negative zero
return rounded == POSITIVE_ZERO ? POSITIVE_ZERO * x : rounded;
} catch (NumberFormatException ex) {
if (Double.isInfinite(x)) {
return x;
} else {
return Double.NaN;
}
}
}
/**
* Rounds the given value to the specified number of decimal places.
* The value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method.
*
* @param x Value to round.
* @param scale Number of digits to the right of the decimal point.
* @return the rounded value.
* @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0)
*/
public static float round(float x, int scale) {
return round(x, scale, BigDecimal.ROUND_HALF_UP);
}
/**
* Rounds the given value to the specified number of decimal places.
* The value is rounded using the given method which is any method defined
* in {@link BigDecimal}.
*
* @param x Value to round.
* @param scale Number of digits to the right of the decimal point.
* @param roundingMethod Rounding method as defined in {@link BigDecimal}.
* @return the rounded value.
* @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0)
* @throws MathArithmeticException if an exact operation is required but result is not exact
* @throws MathIllegalArgumentException if {@code roundingMethod} is not a valid rounding method.
*/
public static float round(float x, int scale, int roundingMethod)
throws MathArithmeticException, MathIllegalArgumentException {
final float sign = FastMath.copySign(1f, x);
final float factor = (float) FastMath.pow(10.0f, scale) * sign;
return (float) roundUnscaled(x * factor, sign, roundingMethod) / factor;
}
/**
* Rounds the given non-negative value to the "nearest" integer. Nearest is
* determined by the rounding method specified. Rounding methods are defined
* in {@link BigDecimal}.
*
* @param unscaled Value to round.
* @param sign Sign of the original, scaled value.
* @param roundingMethod Rounding method, as defined in {@link BigDecimal}.
* @return the rounded value.
* @throws MathArithmeticException if an exact operation is required but result is not exact
* @throws MathIllegalArgumentException if {@code roundingMethod} is not a valid rounding method.
* @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0)
*/
private static double roundUnscaled(double unscaled,
double sign,
int roundingMethod)
throws MathArithmeticException, MathIllegalArgumentException {
switch (roundingMethod) {
case BigDecimal.ROUND_CEILING :
if (sign == -1) {
unscaled = FastMath.floor(FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY));
} else {
unscaled = FastMath.ceil(FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY));
}
break;
case BigDecimal.ROUND_DOWN :
unscaled = FastMath.floor(FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY));
break;
case BigDecimal.ROUND_FLOOR :
if (sign == -1) {
unscaled = FastMath.ceil(FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY));
} else {
unscaled = FastMath.floor(FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY));
}
break;
case BigDecimal.ROUND_HALF_DOWN : {
unscaled = FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY);
double fraction = unscaled - FastMath.floor(unscaled);
if (fraction > 0.5) {
unscaled = FastMath.ceil(unscaled);
} else {
unscaled = FastMath.floor(unscaled);
}
break;
}
case BigDecimal.ROUND_HALF_EVEN : {
double fraction = unscaled - FastMath.floor(unscaled);
if (fraction > 0.5) {
unscaled = FastMath.ceil(unscaled);
} else if (fraction < 0.5) {
unscaled = FastMath.floor(unscaled);
} else {
// The following equality test is intentional and needed for rounding purposes
if (FastMath.floor(unscaled) / 2.0 == FastMath.floor(FastMath.floor(unscaled) / 2.0)) { // even
unscaled = FastMath.floor(unscaled);
} else { // odd
unscaled = FastMath.ceil(unscaled);
}
}
break;
}
case BigDecimal.ROUND_HALF_UP : {
unscaled = FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY);
double fraction = unscaled - FastMath.floor(unscaled);
if (fraction >= 0.5) {
unscaled = FastMath.ceil(unscaled);
} else {
unscaled = FastMath.floor(unscaled);
}
break;
}
case BigDecimal.ROUND_UNNECESSARY :
if (unscaled != FastMath.floor(unscaled)) {
throw new MathArithmeticException();
}
break;
case BigDecimal.ROUND_UP :
// do not round if the discarded fraction is equal to zero
if (unscaled != FastMath.floor(unscaled)) {
unscaled = FastMath.ceil(FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY));
}
break;
default :
throw new MathIllegalArgumentException(LocalizedFormats.INVALID_ROUNDING_METHOD,
roundingMethod,
"ROUND_CEILING", BigDecimal.ROUND_CEILING,
"ROUND_DOWN", BigDecimal.ROUND_DOWN,
"ROUND_FLOOR", BigDecimal.ROUND_FLOOR,
"ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN,
"ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN,
"ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP,
"ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY,
"ROUND_UP", BigDecimal.ROUND_UP);
}
return unscaled;
}
/**
* Computes a number {@code delta} close to {@code originalDelta} with
* the property that <pre><code>
* x + delta - x
* </code></pre>
* is exactly machine-representable.
* This is useful when computing numerical derivatives, in order to reduce
* roundoff errors.
*
* @param x Value.
* @param originalDelta Offset value.
* @return a number {@code delta} so that {@code x + delta} and {@code x}
* differ by a representable floating number.
*/
public static double representableDelta(double x,
double originalDelta) {
return x + originalDelta - x;
}
}

View File

@ -32,7 +32,7 @@ import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.stat.inference.ChiSquareTest;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
/**

View File

@ -31,7 +31,7 @@ import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.ArithmeticUtils;
import org.apache.commons.math4.util.CombinatoricsUtils;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.analysis.function.HarmonicOscillator;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -29,7 +29,7 @@ import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.exception.OutOfRangeException;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -26,7 +26,7 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -20,7 +20,7 @@ import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.analysis.integration.IterativeLegendreGaussIntegrator;
import org.apache.commons.math4.util.CombinatoricsUtils;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.ExtendedFieldElementAbstractTest;
import org.apache.commons.math4.dfp.Dfp;
import org.apache.commons.math4.dfp.DfpField;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.After;
import org.junit.Assert;
import org.junit.Before;

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.distribution;
import org.apache.commons.math4.distribution.ExponentialDistribution;
import org.apache.commons.math4.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.distribution;
import org.apache.commons.math4.distribution.GumbelDistribution;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.distribution.IntegerDistribution;
import org.apache.commons.math4.exception.NotPositiveException;
import org.apache.commons.math4.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.rng.simple.RandomSource;
import org.junit.Assert;
import org.junit.Test;

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.distribution;
import org.apache.commons.math4.distribution.LaplaceDistribution;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.distribution;
import org.apache.commons.math4.distribution.LevyDistribution;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.distribution;
import org.apache.commons.math4.distribution.LogisticDistribution;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.distribution;
import org.apache.commons.math4.distribution.NakagamiDistribution;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -22,7 +22,7 @@ import org.junit.Test;
import org.apache.commons.math4.distribution.IntegerDistribution;
import org.apache.commons.math4.distribution.UniformIntegerDistribution;
import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Test cases for UniformIntegerDistribution. See class javadoc for

View File

@ -29,7 +29,7 @@ import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -22,7 +22,7 @@ import org.junit.Assert;
import org.junit.Test;
import org.apache.commons.math4.fitting.WeightedObservedPoint;
import org.apache.commons.math4.fitting.WeightedObservedPoints;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/**
* Tests {@link WeightedObservedPoints}.

View File

@ -31,7 +31,7 @@ import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.linear.SingularMatrixException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Pair;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -35,7 +35,7 @@ import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.linear.SingularMatrixException;
import org.apache.commons.math4.optim.ConvergenceChecker;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.geometry.euclidean.oned;
import org.apache.commons.math4.geometry.euclidean.oned.Interval;
import org.apache.commons.math4.geometry.partitioning.Region;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.junit.Assert;
import org.junit.Test;

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.geometry.euclidean.oned.Vector1D;
import org.apache.commons.math4.geometry.partitioning.Region;
import org.apache.commons.math4.geometry.partitioning.RegionFactory;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -27,7 +27,7 @@ import org.apache.commons.math4.exception.MathArithmeticException;
import org.apache.commons.math4.geometry.Space;
import org.apache.commons.math4.geometry.euclidean.oned.Vector1D;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -30,7 +30,7 @@ import org.apache.commons.math4.geometry.euclidean.threed.Vector3D;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -27,7 +27,7 @@ import java.util.Arrays;
import java.util.List;
import java.util.StringTokenizer;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
/** This class is a small and incomplete parser for PLY files.
* <p>

View File

@ -31,7 +31,7 @@ import org.apache.commons.math4.geometry.euclidean.threed.Vector3D;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -33,7 +33,7 @@ import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.geometry.partitioning.Region;
import org.apache.commons.math4.geometry.spherical.oned.Arc;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -36,7 +36,7 @@ import org.apache.commons.math4.geometry.spherical.oned.Sphere1D;
import org.apache.commons.math4.geometry.spherical.oned.SubLimitAngle;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -27,7 +27,7 @@ import org.apache.commons.math4.linear.MatrixUtils;
import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.linear.SingularMatrixException;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -32,7 +32,7 @@ import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.linear.TriDiagonalTransformer;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.rng.simple.RandomSource;
import org.junit.After;
import org.junit.Assert;

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.linear.EigenDecomposition;
import org.apache.commons.math4.linear.MatrixUtils;
import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.linear.SingularMatrixException;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Test;
import org.junit.Assert;

View File

@ -35,7 +35,7 @@ import org.apache.commons.math4.optim.linear.SimplexSolver;
import org.apache.commons.math4.optim.linear.SolutionCallback;
import org.apache.commons.math4.optim.linear.UnboundedSolutionException;
import org.apache.commons.math4.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Test;
import org.junit.Assert;

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.StatUtils;
import org.apache.commons.math4.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -26,7 +26,7 @@ import org.apache.commons.math4.distribution.RealDistribution;
import org.apache.commons.math4.distribution.AbstractRealDistribution;
import org.apache.commons.math4.distribution.UniformIntegerDistribution;
import org.apache.commons.math4.distribution.UniformRealDistribution;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.rng.simple.RandomSource;
import org.junit.Assert;
import org.junit.Test;

View File

@ -28,7 +28,7 @@ import org.apache.commons.math4.stat.descriptive.rank.Min;
import org.apache.commons.math4.stat.descriptive.rank.Percentile;
import org.apache.commons.math4.stat.descriptive.summary.Sum;
import org.apache.commons.math4.stat.descriptive.summary.SumOfSquares;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.transform;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.transform.FastHadamardTransformer;
import org.apache.commons.math4.transform.TransformType;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -26,7 +26,7 @@ import java.util.List;
import org.apache.commons.math4.exception.MathArithmeticException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;

View File

@ -27,6 +27,7 @@ import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.TestUtils;
import org.apache.commons.math4.dfp.Dfp;
import org.apache.commons.math4.dfp.DfpField;

View File

@ -29,7 +29,7 @@ import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;

View File

@ -25,7 +25,7 @@ import java.util.Random;
import java.util.Set;
import org.apache.commons.math4.util.OpenIntToDoubleHashMap;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

View File

@ -1,553 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with this
* work for additional information regarding copyright ownership. The ASF
* licenses this file to You under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law
* or agreed to in writing, software distributed under the License is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the specific language
* governing permissions and limitations under the License.
*/
package org.apache.commons.math4.util;
import java.math.BigDecimal;
import org.apache.commons.math4.TestUtils;
import org.apache.commons.math4.exception.MathArithmeticException;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.junit.Assert;
import org.junit.Test;
/**
* Test cases for the {@link Precision} class.
*
*/
public class PrecisionTest {
@Test
public void testEqualsWithRelativeTolerance() {
Assert.assertTrue(Precision.equalsWithRelativeTolerance(0d, 0d, 0d));
Assert.assertTrue(Precision.equalsWithRelativeTolerance(0d, 1 / Double.NEGATIVE_INFINITY, 0d));
final double eps = 1e-14;
Assert.assertFalse(Precision.equalsWithRelativeTolerance(1.987654687654968, 1.987654687654988, eps));
Assert.assertTrue(Precision.equalsWithRelativeTolerance(1.987654687654968, 1.987654687654987, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(1.987654687654968, 1.987654687654948, eps));
Assert.assertTrue(Precision.equalsWithRelativeTolerance(1.987654687654968, 1.987654687654949, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(Precision.SAFE_MIN, 0.0, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(1.0000000000001e-300, 1e-300, eps));
Assert.assertTrue(Precision.equalsWithRelativeTolerance(1.00000000000001e-300, 1e-300, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(Double.NEGATIVE_INFINITY, 1.23, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(Double.POSITIVE_INFINITY, 1.23, eps));
Assert.assertTrue(Precision.equalsWithRelativeTolerance(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, eps));
Assert.assertTrue(Precision.equalsWithRelativeTolerance(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(Double.NaN, 1.23, eps));
Assert.assertFalse(Precision.equalsWithRelativeTolerance(Double.NaN, Double.NaN, eps));
}
@Test
public void testEqualsIncludingNaN() {
double[] testArray = {
Double.NaN,
Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY,
1d,
0d };
for (int i = 0; i < testArray.length; i++) {
for (int j = 0; j < testArray.length; j++) {
if (i == j) {
Assert.assertTrue(Precision.equalsIncludingNaN(testArray[i], testArray[j]));
Assert.assertTrue(Precision.equalsIncludingNaN(testArray[j], testArray[i]));
} else {
Assert.assertTrue(!Precision.equalsIncludingNaN(testArray[i], testArray[j]));
Assert.assertTrue(!Precision.equalsIncludingNaN(testArray[j], testArray[i]));
}
}
}
}
@Test
public void testEqualsWithAllowedDelta() {
Assert.assertTrue(Precision.equals(153.0000, 153.0000, .0625));
Assert.assertTrue(Precision.equals(153.0000, 153.0625, .0625));
Assert.assertTrue(Precision.equals(152.9375, 153.0000, .0625));
Assert.assertFalse(Precision.equals(153.0000, 153.0625, .0624));
Assert.assertFalse(Precision.equals(152.9374, 153.0000, .0625));
Assert.assertFalse(Precision.equals(Double.NaN, Double.NaN, 1.0));
Assert.assertTrue(Precision.equals(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 1.0));
Assert.assertTrue(Precision.equals(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 1.0));
Assert.assertFalse(Precision.equals(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 1.0));
}
@Test
public void testMath475() {
final double a = 1.7976931348623182E16;
final double b = FastMath.nextUp(a);
double diff = FastMath.abs(a - b);
// Because they are adjacent floating point numbers, "a" and "b" are
// considered equal even though the allowed error is smaller than
// their difference.
Assert.assertTrue(Precision.equals(a, b, 0.5 * diff));
final double c = FastMath.nextUp(b);
diff = FastMath.abs(a - c);
// Because "a" and "c" are not adjacent, the tolerance is taken into
// account for assessing equality.
Assert.assertTrue(Precision.equals(a, c, diff));
Assert.assertFalse(Precision.equals(a, c, (1 - 1e-16) * diff));
}
@Test
public void testEqualsIncludingNaNWithAllowedDelta() {
Assert.assertTrue(Precision.equalsIncludingNaN(153.0000, 153.0000, .0625));
Assert.assertTrue(Precision.equalsIncludingNaN(153.0000, 153.0625, .0625));
Assert.assertTrue(Precision.equalsIncludingNaN(152.9375, 153.0000, .0625));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.NaN, Double.NaN, 1.0));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 1.0));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 1.0));
Assert.assertFalse(Precision.equalsIncludingNaN(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 1.0));
Assert.assertFalse(Precision.equalsIncludingNaN(153.0000, 153.0625, .0624));
Assert.assertFalse(Precision.equalsIncludingNaN(152.9374, 153.0000, .0625));
}
// Tests for floating point equality
@Test
public void testFloatEqualsWithAllowedUlps() {
Assert.assertTrue("+0.0f == -0.0f",Precision.equals(0.0f, -0.0f));
Assert.assertTrue("+0.0f == -0.0f (1 ulp)",Precision.equals(0.0f, -0.0f, 1));
float oneFloat = 1.0f;
Assert.assertTrue("1.0f == 1.0f + 1 ulp",Precision.equals(oneFloat, Float.intBitsToFloat(1 + Float.floatToIntBits(oneFloat))));
Assert.assertTrue("1.0f == 1.0f + 1 ulp (1 ulp)",Precision.equals(oneFloat, Float.intBitsToFloat(1 + Float.floatToIntBits(oneFloat)), 1));
Assert.assertFalse("1.0f != 1.0f + 2 ulp (1 ulp)",Precision.equals(oneFloat, Float.intBitsToFloat(2 + Float.floatToIntBits(oneFloat)), 1));
Assert.assertTrue(Precision.equals(153.0f, 153.0f, 1));
// These tests need adjusting for floating point precision
// Assert.assertTrue(Precision.equals(153.0f, 153.00000000000003f, 1));
// Assert.assertFalse(Precision.equals(153.0f, 153.00000000000006f, 1));
// Assert.assertTrue(Precision.equals(153.0f, 152.99999999999997f, 1));
// Assert.assertFalse(Precision.equals(153f, 152.99999999999994f, 1));
//
// Assert.assertTrue(Precision.equals(-128.0f, -127.99999999999999f, 1));
// Assert.assertFalse(Precision.equals(-128.0f, -127.99999999999997f, 1));
// Assert.assertTrue(Precision.equals(-128.0f, -128.00000000000003f, 1));
// Assert.assertFalse(Precision.equals(-128.0f, -128.00000000000006f, 1));
Assert.assertTrue(Precision.equals(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, 1));
Assert.assertTrue(Precision.equals(Double.MAX_VALUE, Float.POSITIVE_INFINITY, 1));
Assert.assertTrue(Precision.equals(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, 1));
Assert.assertTrue(Precision.equals(-Float.MAX_VALUE, Float.NEGATIVE_INFINITY, 1));
Assert.assertFalse(Precision.equals(Float.NaN, Float.NaN, 1));
Assert.assertFalse(Precision.equals(Float.NaN, Float.NaN, 0));
Assert.assertFalse(Precision.equals(Float.NaN, 0, 0));
Assert.assertFalse(Precision.equals(Float.NaN, Float.POSITIVE_INFINITY, 0));
Assert.assertFalse(Precision.equals(Float.NaN, Float.NEGATIVE_INFINITY, 0));
Assert.assertFalse(Precision.equals(Float.NEGATIVE_INFINITY, Float.POSITIVE_INFINITY, 100000));
}
@Test
public void testEqualsWithAllowedUlps() {
Assert.assertTrue(Precision.equals(0.0, -0.0, 1));
Assert.assertTrue(Precision.equals(1.0, 1 + FastMath.ulp(1d), 1));
Assert.assertFalse(Precision.equals(1.0, 1 + 2 * FastMath.ulp(1d), 1));
final double nUp1 = FastMath.nextAfter(1d, Double.POSITIVE_INFINITY);
final double nnUp1 = FastMath.nextAfter(nUp1, Double.POSITIVE_INFINITY);
Assert.assertTrue(Precision.equals(1.0, nUp1, 1));
Assert.assertTrue(Precision.equals(nUp1, nnUp1, 1));
Assert.assertFalse(Precision.equals(1.0, nnUp1, 1));
Assert.assertTrue(Precision.equals(0.0, FastMath.ulp(0d), 1));
Assert.assertTrue(Precision.equals(0.0, -FastMath.ulp(0d), 1));
Assert.assertTrue(Precision.equals(153.0, 153.0, 1));
Assert.assertTrue(Precision.equals(153.0, 153.00000000000003, 1));
Assert.assertFalse(Precision.equals(153.0, 153.00000000000006, 1));
Assert.assertTrue(Precision.equals(153.0, 152.99999999999997, 1));
Assert.assertFalse(Precision.equals(153, 152.99999999999994, 1));
Assert.assertTrue(Precision.equals(-128.0, -127.99999999999999, 1));
Assert.assertFalse(Precision.equals(-128.0, -127.99999999999997, 1));
Assert.assertTrue(Precision.equals(-128.0, -128.00000000000003, 1));
Assert.assertFalse(Precision.equals(-128.0, -128.00000000000006, 1));
Assert.assertTrue(Precision.equals(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 1));
Assert.assertTrue(Precision.equals(Double.MAX_VALUE, Double.POSITIVE_INFINITY, 1));
Assert.assertTrue(Precision.equals(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 1));
Assert.assertTrue(Precision.equals(-Double.MAX_VALUE, Double.NEGATIVE_INFINITY, 1));
Assert.assertFalse(Precision.equals(Double.NaN, Double.NaN, 1));
Assert.assertFalse(Precision.equals(Double.NaN, Double.NaN, 0));
Assert.assertFalse(Precision.equals(Double.NaN, 0, 0));
Assert.assertFalse(Precision.equals(Double.NaN, Double.POSITIVE_INFINITY, 0));
Assert.assertFalse(Precision.equals(Double.NaN, Double.NEGATIVE_INFINITY, 0));
Assert.assertFalse(Precision.equals(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 100000));
}
@Test
public void testEqualsIncludingNaNWithAllowedUlps() {
Assert.assertTrue(Precision.equalsIncludingNaN(0.0, -0.0, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(1.0, 1 + FastMath.ulp(1d), 1));
Assert.assertFalse(Precision.equalsIncludingNaN(1.0, 1 + 2 * FastMath.ulp(1d), 1));
final double nUp1 = FastMath.nextAfter(1d, Double.POSITIVE_INFINITY);
final double nnUp1 = FastMath.nextAfter(nUp1, Double.POSITIVE_INFINITY);
Assert.assertTrue(Precision.equalsIncludingNaN(1.0, nUp1, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(nUp1, nnUp1, 1));
Assert.assertFalse(Precision.equalsIncludingNaN(1.0, nnUp1, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(0.0, FastMath.ulp(0d), 1));
Assert.assertTrue(Precision.equalsIncludingNaN(0.0, -FastMath.ulp(0d), 1));
Assert.assertTrue(Precision.equalsIncludingNaN(153.0, 153.0, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(153.0, 153.00000000000003, 1));
Assert.assertFalse(Precision.equalsIncludingNaN(153.0, 153.00000000000006, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(153.0, 152.99999999999997, 1));
Assert.assertFalse(Precision.equalsIncludingNaN(153, 152.99999999999994, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(-128.0, -127.99999999999999, 1));
Assert.assertFalse(Precision.equalsIncludingNaN(-128.0, -127.99999999999997, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(-128.0, -128.00000000000003, 1));
Assert.assertFalse(Precision.equalsIncludingNaN(-128.0, -128.00000000000006, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.MAX_VALUE, Double.POSITIVE_INFINITY, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(-Double.MAX_VALUE, Double.NEGATIVE_INFINITY, 1));
Assert.assertTrue(Precision.equalsIncludingNaN(Double.NaN, Double.NaN, 1));
Assert.assertFalse(Precision.equalsIncludingNaN(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 100000));
}
@Test
public void testCompareToEpsilon() {
Assert.assertEquals(0, Precision.compareTo(152.33, 152.32, .011));
Assert.assertTrue(Precision.compareTo(152.308, 152.32, .011) < 0);
Assert.assertTrue(Precision.compareTo(152.33, 152.318, .011) > 0);
Assert.assertEquals(0, Precision.compareTo(Double.MIN_VALUE, +0.0, Double.MIN_VALUE));
Assert.assertEquals(0, Precision.compareTo(Double.MIN_VALUE, -0.0, Double.MIN_VALUE));
}
@Test
public void testCompareToMaxUlps() {
double a = 152.32;
double delta = FastMath.ulp(a);
for (int i = 0; i <= 10; ++i) {
if (i <= 5) {
Assert.assertEquals( 0, Precision.compareTo(a, a + i * delta, 5));
Assert.assertEquals( 0, Precision.compareTo(a, a - i * delta, 5));
} else {
Assert.assertEquals(-1, Precision.compareTo(a, a + i * delta, 5));
Assert.assertEquals(+1, Precision.compareTo(a, a - i * delta, 5));
}
}
Assert.assertEquals( 0, Precision.compareTo(-0.0, 0.0, 0));
Assert.assertEquals(-1, Precision.compareTo(-Double.MIN_VALUE, -0.0, 0));
Assert.assertEquals( 0, Precision.compareTo(-Double.MIN_VALUE, -0.0, 1));
Assert.assertEquals(-1, Precision.compareTo(-Double.MIN_VALUE, +0.0, 0));
Assert.assertEquals( 0, Precision.compareTo(-Double.MIN_VALUE, +0.0, 1));
Assert.assertEquals(+1, Precision.compareTo( Double.MIN_VALUE, -0.0, 0));
Assert.assertEquals( 0, Precision.compareTo( Double.MIN_VALUE, -0.0, 1));
Assert.assertEquals(+1, Precision.compareTo( Double.MIN_VALUE, +0.0, 0));
Assert.assertEquals( 0, Precision.compareTo( Double.MIN_VALUE, +0.0, 1));
Assert.assertEquals(-1, Precision.compareTo(-Double.MIN_VALUE, Double.MIN_VALUE, 0));
Assert.assertEquals(-1, Precision.compareTo(-Double.MIN_VALUE, Double.MIN_VALUE, 1));
Assert.assertEquals( 0, Precision.compareTo(-Double.MIN_VALUE, Double.MIN_VALUE, 2));
Assert.assertEquals( 0, Precision.compareTo(Double.MAX_VALUE, Double.POSITIVE_INFINITY, 1));
Assert.assertEquals(-1, Precision.compareTo(Double.MAX_VALUE, Double.POSITIVE_INFINITY, 0));
Assert.assertEquals(+1, Precision.compareTo(Double.MAX_VALUE, Double.NaN, Integer.MAX_VALUE));
Assert.assertEquals(+1, Precision.compareTo(Double.NaN, Double.MAX_VALUE, Integer.MAX_VALUE));
}
@Test
public void testRoundDouble() {
double x = 1.234567890;
Assert.assertEquals(1.23, Precision.round(x, 2), 0.0);
Assert.assertEquals(1.235, Precision.round(x, 3), 0.0);
Assert.assertEquals(1.2346, Precision.round(x, 4), 0.0);
// JIRA MATH-151
Assert.assertEquals(39.25, Precision.round(39.245, 2), 0.0);
Assert.assertEquals(39.24, Precision.round(39.245, 2, BigDecimal.ROUND_DOWN), 0.0);
double xx = 39.0;
xx += 245d / 1000d;
Assert.assertEquals(39.25, Precision.round(xx, 2), 0.0);
// BZ 35904
Assert.assertEquals(30.1d, Precision.round(30.095d, 2), 0.0d);
Assert.assertEquals(30.1d, Precision.round(30.095d, 1), 0.0d);
Assert.assertEquals(33.1d, Precision.round(33.095d, 1), 0.0d);
Assert.assertEquals(33.1d, Precision.round(33.095d, 2), 0.0d);
Assert.assertEquals(50.09d, Precision.round(50.085d, 2), 0.0d);
Assert.assertEquals(50.19d, Precision.round(50.185d, 2), 0.0d);
Assert.assertEquals(50.01d, Precision.round(50.005d, 2), 0.0d);
Assert.assertEquals(30.01d, Precision.round(30.005d, 2), 0.0d);
Assert.assertEquals(30.65d, Precision.round(30.645d, 2), 0.0d);
Assert.assertEquals(1.24, Precision.round(x, 2, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(1.235, Precision.round(x, 3, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(1.2346, Precision.round(x, 4, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(-1.23, Precision.round(-x, 2, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(-1.234, Precision.round(-x, 3, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(-1.2345, Precision.round(-x, 4, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(1.23, Precision.round(x, 2, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(1.234, Precision.round(x, 3, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(1.2345, Precision.round(x, 4, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(-1.23, Precision.round(-x, 2, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(-1.234, Precision.round(-x, 3, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(-1.2345, Precision.round(-x, 4, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(1.23, Precision.round(x, 2, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(1.234, Precision.round(x, 3, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(1.2345, Precision.round(x, 4, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(-1.24, Precision.round(-x, 2, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(-1.235, Precision.round(-x, 3, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(-1.2346, Precision.round(-x, 4, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(1.23, Precision.round(x, 2, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.235, Precision.round(x, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.2346, Precision.round(x, 4, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.23, Precision.round(-x, 2, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.235, Precision.round(-x, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.2346, Precision.round(-x, 4, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.234, Precision.round(1.2345, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.234, Precision.round(-1.2345, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.23, Precision.round(x, 2, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.235, Precision.round(x, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.2346, Precision.round(x, 4, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.23, Precision.round(-x, 2, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.235, Precision.round(-x, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.2346, Precision.round(-x, 4, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.234, Precision.round(1.2345, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.234, Precision.round(-1.2345, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.236, Precision.round(1.2355, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.236, Precision.round(-1.2355, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.23, Precision.round(x, 2, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(1.235, Precision.round(x, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(1.2346, Precision.round(x, 4, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.23, Precision.round(-x, 2, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.235, Precision.round(-x, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.2346, Precision.round(-x, 4, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(1.235, Precision.round(1.2345, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.235, Precision.round(-1.2345, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.23, Precision.round(-1.23, 2, BigDecimal.ROUND_UNNECESSARY), 0.0);
Assert.assertEquals(1.23, Precision.round(1.23, 2, BigDecimal.ROUND_UNNECESSARY), 0.0);
try {
Precision.round(1.234, 2, BigDecimal.ROUND_UNNECESSARY);
Assert.fail();
} catch (ArithmeticException ex) {
// expected
}
Assert.assertEquals(1.24, Precision.round(x, 2, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(1.235, Precision.round(x, 3, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(1.2346, Precision.round(x, 4, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(-1.24, Precision.round(-x, 2, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(-1.235, Precision.round(-x, 3, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(-1.2346, Precision.round(-x, 4, BigDecimal.ROUND_UP), 0.0);
try {
Precision.round(1.234, 2, 1923);
Assert.fail();
} catch (IllegalArgumentException ex) {
// expected
}
// MATH-151
Assert.assertEquals(39.25, Precision.round(39.245, 2, BigDecimal.ROUND_HALF_UP), 0.0);
// special values
TestUtils.assertEquals(Double.NaN, Precision.round(Double.NaN, 2), 0.0);
Assert.assertEquals(0.0, Precision.round(0.0, 2), 0.0);
Assert.assertEquals(Double.POSITIVE_INFINITY, Precision.round(Double.POSITIVE_INFINITY, 2), 0.0);
Assert.assertEquals(Double.NEGATIVE_INFINITY, Precision.round(Double.NEGATIVE_INFINITY, 2), 0.0);
// comparison of positive and negative zero is not possible -> always equal thus do string comparison
Assert.assertEquals("-0.0", Double.toString(Precision.round(-0.0, 0)));
Assert.assertEquals("-0.0", Double.toString(Precision.round(-1e-10, 0)));
}
@Test
public void testRoundFloat() {
float x = 1.234567890f;
Assert.assertEquals(1.23f, Precision.round(x, 2), 0.0);
Assert.assertEquals(1.235f, Precision.round(x, 3), 0.0);
Assert.assertEquals(1.2346f, Precision.round(x, 4), 0.0);
// BZ 35904
Assert.assertEquals(30.1f, Precision.round(30.095f, 2), 0.0f);
Assert.assertEquals(30.1f, Precision.round(30.095f, 1), 0.0f);
Assert.assertEquals(50.09f, Precision.round(50.085f, 2), 0.0f);
Assert.assertEquals(50.19f, Precision.round(50.185f, 2), 0.0f);
Assert.assertEquals(50.01f, Precision.round(50.005f, 2), 0.0f);
Assert.assertEquals(30.01f, Precision.round(30.005f, 2), 0.0f);
Assert.assertEquals(30.65f, Precision.round(30.645f, 2), 0.0f);
Assert.assertEquals(1.24f, Precision.round(x, 2, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(1.235f, Precision.round(x, 3, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(1.2346f, Precision.round(x, 4, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(-1.23f, Precision.round(-x, 2, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(-1.234f, Precision.round(-x, 3, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(-1.2345f, Precision.round(-x, 4, BigDecimal.ROUND_CEILING), 0.0);
Assert.assertEquals(1.23f, Precision.round(x, 2, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(1.234f, Precision.round(x, 3, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(1.2345f, Precision.round(x, 4, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(-1.23f, Precision.round(-x, 2, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(-1.234f, Precision.round(-x, 3, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(-1.2345f, Precision.round(-x, 4, BigDecimal.ROUND_DOWN), 0.0);
Assert.assertEquals(1.23f, Precision.round(x, 2, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(1.234f, Precision.round(x, 3, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(1.2345f, Precision.round(x, 4, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(-1.24f, Precision.round(-x, 2, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(-1.235f, Precision.round(-x, 3, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(-1.2346f, Precision.round(-x, 4, BigDecimal.ROUND_FLOOR), 0.0);
Assert.assertEquals(1.23f, Precision.round(x, 2, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.235f, Precision.round(x, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.2346f, Precision.round(x, 4, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.23f, Precision.round(-x, 2, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.235f, Precision.round(-x, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.2346f, Precision.round(-x, 4, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.234f, Precision.round(1.2345f, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(-1.234f, Precision.round(-1.2345f, 3, BigDecimal.ROUND_HALF_DOWN), 0.0);
Assert.assertEquals(1.23f, Precision.round(x, 2, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.235f, Precision.round(x, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.2346f, Precision.round(x, 4, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.23f, Precision.round(-x, 2, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.235f, Precision.round(-x, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.2346f, Precision.round(-x, 4, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.234f, Precision.round(1.2345f, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.234f, Precision.round(-1.2345f, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.236f, Precision.round(1.2355f, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(-1.236f, Precision.round(-1.2355f, 3, BigDecimal.ROUND_HALF_EVEN), 0.0);
Assert.assertEquals(1.23f, Precision.round(x, 2, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(1.235f, Precision.round(x, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(1.2346f, Precision.round(x, 4, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.23f, Precision.round(-x, 2, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.235f, Precision.round(-x, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.2346f, Precision.round(-x, 4, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(1.235f, Precision.round(1.2345f, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.235f, Precision.round(-1.2345f, 3, BigDecimal.ROUND_HALF_UP), 0.0);
Assert.assertEquals(-1.23f, Precision.round(-1.23f, 2, BigDecimal.ROUND_UNNECESSARY), 0.0);
Assert.assertEquals(1.23f, Precision.round(1.23f, 2, BigDecimal.ROUND_UNNECESSARY), 0.0);
try {
Precision.round(1.234f, 2, BigDecimal.ROUND_UNNECESSARY);
Assert.fail();
} catch (MathArithmeticException ex) {
// success
}
Assert.assertEquals(1.24f, Precision.round(x, 2, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(1.235f, Precision.round(x, 3, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(1.2346f, Precision.round(x, 4, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(-1.24f, Precision.round(-x, 2, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(-1.235f, Precision.round(-x, 3, BigDecimal.ROUND_UP), 0.0);
Assert.assertEquals(-1.2346f, Precision.round(-x, 4, BigDecimal.ROUND_UP), 0.0);
try {
Precision.round(1.234f, 2, 1923);
Assert.fail();
} catch (MathIllegalArgumentException ex) {
// success
}
// special values
TestUtils.assertEquals(Float.NaN, Precision.round(Float.NaN, 2), 0.0f);
Assert.assertEquals(0.0f, Precision.round(0.0f, 2), 0.0f);
Assert.assertEquals(Float.POSITIVE_INFINITY, Precision.round(Float.POSITIVE_INFINITY, 2), 0.0f);
Assert.assertEquals(Float.NEGATIVE_INFINITY, Precision.round(Float.NEGATIVE_INFINITY, 2), 0.0f);
// comparison of positive and negative zero is not possible -> always equal thus do string comparison
Assert.assertEquals("-0.0", Float.toString(Precision.round(-0.0f, 0)));
Assert.assertEquals("-0.0", Float.toString(Precision.round(-1e-10f, 0)));
// MATH-1070
Assert.assertEquals(0.0f, Precision.round(0f, 2, BigDecimal.ROUND_UP), 0.0f);
Assert.assertEquals(0.05f, Precision.round(0.05f, 2, BigDecimal.ROUND_UP), 0.0f);
Assert.assertEquals(0.06f, Precision.round(0.051f, 2, BigDecimal.ROUND_UP), 0.0f);
Assert.assertEquals(0.06f, Precision.round(0.0505f, 2, BigDecimal.ROUND_UP), 0.0f);
Assert.assertEquals(0.06f, Precision.round(0.059f, 2, BigDecimal.ROUND_UP), 0.0f);
}
@Test
public void testIssue721() {
Assert.assertEquals(-53, FastMath.getExponent(Precision.EPSILON));
Assert.assertEquals(-1022, FastMath.getExponent(Precision.SAFE_MIN));
}
@Test
public void testRepresentableDelta() {
int nonRepresentableCount = 0;
final double x = 100;
final int numTrials = 10000;
for (int i = 0; i < numTrials; i++) {
final double originalDelta = FastMath.random();
final double delta = Precision.representableDelta(x, originalDelta);
if (delta != originalDelta) {
++nonRepresentableCount;
}
}
Assert.assertTrue(nonRepresentableCount / (double) numTrials > 0.9);
}
@Test
public void testMath843() {
final double afterEpsilon = FastMath.nextAfter(Precision.EPSILON,
Double.POSITIVE_INFINITY);
// a) 1 + EPSILON is equal to 1.
Assert.assertTrue(1 + Precision.EPSILON == 1);
// b) 1 + "the number after EPSILON" is not equal to 1.
Assert.assertFalse(1 + afterEpsilon == 1);
}
@Test
public void testMath1127() {
Assert.assertFalse(Precision.equals(2.0, -2.0, 1));
Assert.assertTrue(Precision.equals(0.0, -0.0, 0));
Assert.assertFalse(Precision.equals(2.0f, -2.0f, 1));
Assert.assertTrue(Precision.equals(0.0f, -0.0f, 0));
}
}

View File

@ -35,7 +35,7 @@ import org.apache.commons.math4.genetics.Population;
import org.apache.commons.math4.genetics.StoppingCondition;
import org.apache.commons.math4.genetics.TournamentSelection;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Precision;
import org.apache.commons.numbers.core.Precision;
public class HelloWorldExample {
public static final int POPULATION_SIZE = 1000;