diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/AkimaSplineInterpolator.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/AkimaSplineInterpolator.java index 260cbfb24..5b89dfe29 100644 --- a/src/main/java/org/apache/commons/math3/analysis/interpolation/AkimaSplineInterpolator.java +++ b/src/main/java/org/apache/commons/math3/analysis/interpolation/AkimaSplineInterpolator.java @@ -37,30 +37,18 @@ import org.apache.commons.math3.util.Precision; * This implementation is based on the Akima implementation in the CubicSpline * class in the Math.NET Numerics library. The method referenced is * CubicSpline.InterpolateAkimaSorted - *

- * The {@link #interpolate(double[], double[])} method returns a - * {@link PolynomialSplineFunction} consisting of n cubic polynomials, defined - * over the subintervals determined by the x values, x[0] < x[i] ... < x[n]. The - * Akima algorithm requires that n >= 5. *

*

+ * The {@link #interpolate(double[], double[]) interpolate} method returns a + * {@link PolynomialSplineFunction} consisting of n cubic polynomials, defined + * over the subintervals determined by the x values, {@code x[0] < x[i] ... < x[n]}. + * The Akima algorithm requires that {@code n >= 5}. + *

*/ - public class AkimaSplineInterpolator implements UnivariateInterpolator { - - - /** - * The minimum number of points that are needed to compute the function - */ - public static final int MINIMUM_NUMBER_POINTS = 5; - - /** - * Default constructor. Builds an AkimaSplineInterpolator object - */ - public AkimaSplineInterpolator() { - - } + /** The minimum number of points that are needed to compute the function. */ + private static final int MINIMUM_NUMBER_POINTS = 5; /** * Computes an interpolating function for the data set. @@ -68,17 +56,20 @@ public class AkimaSplineInterpolator * @param xvals the arguments for the interpolation points * @param yvals the values for the interpolation points * @return a function which interpolates the data set - * @throws DimensionMismatchException if {@code x} and {@code y} have + * @throws DimensionMismatchException if {@code xvals} and {@code yvals} have * different sizes. - * @throws NonMonotonicSequenceException if {@code x} is not sorted in + * @throws NonMonotonicSequenceException if {@code xvals} is not sorted in * strict increasing order. - * @throws NumberIsTooSmallException if the size of {@code x} is smaller + * @throws NumberIsTooSmallException if the size of {@code xvals} is smaller * than 5. */ - public PolynomialSplineFunction interpolate(double[] xvals, double[] yvals) - throws DimensionMismatchException, NumberIsTooSmallException, - NonMonotonicSequenceException { - if (xvals == null || yvals == null) { + public PolynomialSplineFunction interpolate(double[] xvals, + double[] yvals) + throws DimensionMismatchException, + NumberIsTooSmallException, + NonMonotonicSequenceException { + if (xvals == null || + yvals == null) { throw new NullArgumentException(); } @@ -87,8 +78,7 @@ public class AkimaSplineInterpolator } if (xvals.length < MINIMUM_NUMBER_POINTS) { - throw new NumberIsTooSmallException( - LocalizedFormats.NUMBER_OF_POINTS, + throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, xvals.length, MINIMUM_NUMBER_POINTS, true); } @@ -97,47 +87,44 @@ public class AkimaSplineInterpolator final int numberOfDiffAndWeightElements = xvals.length - 1; - double differences[] = new double[numberOfDiffAndWeightElements]; - double weights[] = new double[numberOfDiffAndWeightElements]; + final double[] differences = new double[numberOfDiffAndWeightElements]; + final double[] weights = new double[numberOfDiffAndWeightElements]; for (int i = 0; i < differences.length; i++) { - differences[i] = (yvals[i + 1] - yvals[i]) / - (xvals[i + 1] - xvals[i]); + differences[i] = (yvals[i + 1] - yvals[i]) / (xvals[i + 1] - xvals[i]); } for (int i = 1; i < weights.length; i++) { weights[i] = FastMath.abs(differences[i] - differences[i - 1]); } - /* Prepare Hermite interpolation scheme */ - - double firstDerivatives[] = new double[xvals.length]; + // Prepare Hermite interpolation scheme. + final double[] firstDerivatives = new double[xvals.length]; for (int i = 2; i < firstDerivatives.length - 2; i++) { - if (Precision.equals(weights[i - 1], 0.0) && - Precision.equals(weights[i + 1], 0.0)) { - firstDerivatives[i] = (((xvals[i + 1] - xvals[i]) * differences[i - 1]) + ((xvals[i] - xvals[i - 1]) * differences[i])) / - (xvals[i + 1] - xvals[i - 1]); + final double wP = weights[i + 1]; + final double wM = weights[i - 1]; + if (Precision.equals(wP, 0.0) && + Precision.equals(wM, 0.0)) { + final double xv = xvals[i]; + final double xvP = xvals[i + 1]; + final double xvM = xvals[i - 1]; + firstDerivatives[i] = (((xvP - xv) * differences[i - 1]) + ((xv - xvM) * differences[i])) / (xvP - xvM); } else { - firstDerivatives[i] = ((weights[i + 1] * differences[i - 1]) + (weights[i - 1] * differences[i])) / - (weights[i + 1] + weights[i - 1]); + firstDerivatives[i] = ((wP * differences[i - 1]) + (wM * differences[i])) / (wP + wM); } } - firstDerivatives[0] = this.differentiateThreePoint(xvals, yvals, 0, 0, - 1, 2); - firstDerivatives[1] = this.differentiateThreePoint(xvals, yvals, 1, 0, - 1, 2); - firstDerivatives[xvals.length - 2] = this - .differentiateThreePoint(xvals, yvals, xvals.length - 2, - xvals.length - 3, xvals.length - 2, - xvals.length - 1); - firstDerivatives[xvals.length - 1] = this - .differentiateThreePoint(xvals, yvals, xvals.length - 1, - xvals.length - 3, xvals.length - 2, - xvals.length - 1); + firstDerivatives[0] = differentiateThreePoint(xvals, yvals, 0, 0, 1, 2); + firstDerivatives[1] = differentiateThreePoint(xvals, yvals, 1, 0, 1, 2); + firstDerivatives[xvals.length - 2] = differentiateThreePoint(xvals, yvals, xvals.length - 2, + xvals.length - 3, xvals.length - 2, + xvals.length - 1); + firstDerivatives[xvals.length - 1] = differentiateThreePoint(xvals, yvals, xvals.length - 1, + xvals.length - 3, xvals.length - 2, + xvals.length - 1); - return this.interpolateHermiteSorted(xvals, yvals, firstDerivatives); + return interpolateHermiteSorted(xvals, yvals, firstDerivatives); } /** @@ -158,16 +145,17 @@ public class AkimaSplineInterpolator int indexOfFirstSample, int indexOfSecondsample, int indexOfThirdSample) { - double x0 = yvals[indexOfFirstSample]; - double x1 = yvals[indexOfSecondsample]; - double x2 = yvals[indexOfThirdSample]; + final double x0 = yvals[indexOfFirstSample]; + final double x1 = yvals[indexOfSecondsample]; + final double x2 = yvals[indexOfThirdSample]; - double t = xvals[indexOfDifferentiation] - xvals[indexOfFirstSample]; - double t1 = xvals[indexOfSecondsample] - xvals[indexOfFirstSample]; - double t2 = xvals[indexOfThirdSample] - xvals[indexOfFirstSample]; + final double t = xvals[indexOfDifferentiation] - xvals[indexOfFirstSample]; + final double t1 = xvals[indexOfSecondsample] - xvals[indexOfFirstSample]; + final double t2 = xvals[indexOfThirdSample] - xvals[indexOfFirstSample]; + + final double a = (x2 - x0 - (t2 / t1 * (x1 - x0))) / (t2 * t2 - t1 * t2); + final double b = (x1 - x0 - a * t1 * t1) / t1; - double a = (x2 - x0 - (t2 / t1 * (x1 - x0))) / (t2 * t2 - t1 * t2); - double b = (x1 - x0 - a * t1 * t1) / t1; return (2 * a * t) + b; } @@ -195,27 +183,29 @@ public class AkimaSplineInterpolator final int minimumLength = 2; if (xvals.length < minimumLength) { - throw new NumberIsTooSmallException( - LocalizedFormats.NUMBER_OF_POINTS, + throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, xvals.length, minimumLength, true); } - int size = xvals.length - 1; - final PolynomialFunction polynomials[] = new PolynomialFunction[size]; - final double coefficients[] = new double[4]; + final int size = xvals.length - 1; + final PolynomialFunction[] polynomials = new PolynomialFunction[size]; + final double[] coefficients = new double[4]; for (int i = 0; i < polynomials.length; i++) { - double w = xvals[i + 1] - xvals[i]; - double w2 = w * w; - coefficients[0] = yvals[i]; + final double w = xvals[i + 1] - xvals[i]; + final double w2 = w * w; + + final double yv = yvals[i]; + final double yvP = yvals[i + 1]; + + final double fd = firstDerivatives[i]; + final double fdP = firstDerivatives[i + 1]; + + coefficients[0] = yv; coefficients[1] = firstDerivatives[i]; - coefficients[2] = (3 * (yvals[i + 1] - yvals[i]) / w - 2 * - firstDerivatives[i] - firstDerivatives[i + 1]) / - w; - coefficients[3] = (2 * (yvals[i] - yvals[i + 1]) / w + - firstDerivatives[i] + firstDerivatives[i + 1]) / - w2; + coefficients[2] = (3 * (yvP - yv) / w - 2 * fd - fdP) / w; + coefficients[3] = (2 * (yv - yvP) / w + fd + fdP) / w2; polynomials[i] = new PolynomialFunction(coefficients); } diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunction.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunction.java index 7942b5229..7dd135a35 100644 --- a/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunction.java +++ b/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunction.java @@ -28,21 +28,24 @@ import org.apache.commons.math3.exception.NonMonotonicSequenceException; import org.apache.commons.math3.util.MathArrays; /** - * Function that implements the bicubic spline - * interpolation. + * Function that implements the + * bicubic spline + * interpolation. + * This implementation currently uses {@link AkimaSplineInterpolator} as the + * underlying one-dimensional interpolator, which requires 5 sample points; + * insufficient data will raise an exception when the + * {@link #value(double,double) value} method is called. * - * @since 2.1 + * @since 3.4 */ public class PiecewiseBicubicSplineInterpolatingFunction implements BivariateFunction { - + /** The minimum number of points that are needed to compute the function. */ + private static final int MIN_NUM_POINTS = 5; /** Samples x-coordinates */ private final double[] xval; - /** Samples y-coordinates */ private final double[] yval; - /** Set of cubic splines patching the whole data grid */ private final double[][] fval; @@ -58,27 +61,34 @@ public class PiecewiseBicubicSplineInterpolatingFunction * @throws DimensionMismatchException if the length of x and y don't match the row, column * height of f */ - - public PiecewiseBicubicSplineInterpolatingFunction(double[] x, double[] y, - double[][] f) - throws DimensionMismatchException, NullArgumentException, - NoDataException, NonMonotonicSequenceException { - - final int minimumLength = AkimaSplineInterpolator.MINIMUM_NUMBER_POINTS; - - if (x == null || y == null || f == null || f[0] == null) { + public PiecewiseBicubicSplineInterpolatingFunction(double[] x, + double[] y, + double[][] f) + throws DimensionMismatchException, + NullArgumentException, + NoDataException, + NonMonotonicSequenceException { + if (x == null || + y == null || + f == null || + f[0] == null) { throw new NullArgumentException(); } final int xLen = x.length; final int yLen = y.length; - if (xLen == 0 || yLen == 0 || f.length == 0 || f[0].length == 0) { + if (xLen == 0 || + yLen == 0 || + f.length == 0 || + f[0].length == 0) { throw new NoDataException(); } - if (xLen < minimumLength || yLen < minimumLength || - f.length < minimumLength || f[0].length < minimumLength) { + if (xLen < MIN_NUM_POINTS || + yLen < MIN_NUM_POINTS || + f.length < MIN_NUM_POINTS || + f[0].length < MIN_NUM_POINTS) { throw new InsufficientDataException(); } @@ -101,35 +111,34 @@ public class PiecewiseBicubicSplineInterpolatingFunction /** * {@inheritDoc} */ - public double value(double x, double y) + public double value(double x, + double y) throws OutOfRangeException { - int index; - PolynomialSplineFunction spline; - AkimaSplineInterpolator interpolator = new AkimaSplineInterpolator(); + final AkimaSplineInterpolator interpolator = new AkimaSplineInterpolator(); final int offset = 2; final int count = offset + 3; final int i = searchIndex(x, xval, offset, count); final int j = searchIndex(y, yval, offset, count); - double xArray[] = new double[count]; - double yArray[] = new double[count]; - double zArray[] = new double[count]; - double interpArray[] = new double[count]; + final double xArray[] = new double[count]; + final double yArray[] = new double[count]; + final double zArray[] = new double[count]; + final double interpArray[] = new double[count]; - for (index = 0; index < count; index++) { + for (int index = 0; index < count; index++) { xArray[index] = xval[i + index]; yArray[index] = yval[j + index]; } for (int zIndex = 0; zIndex < count; zIndex++) { - for (index = 0; index < count; index++) { + for (int index = 0; index < count; index++) { zArray[index] = fval[i + index][j + zIndex]; } - spline = interpolator.interpolate(xArray, zArray); + final PolynomialSplineFunction spline = interpolator.interpolate(xArray, zArray); interpArray[zIndex] = spline.value(x); } - spline = interpolator.interpolate(yArray, interpArray); + final PolynomialSplineFunction spline = interpolator.interpolate(yArray, interpArray); double returnValue = spline.value(y); @@ -144,8 +153,11 @@ public class PiecewiseBicubicSplineInterpolatingFunction * @return {@code true} if (x, y) is a valid point. * @since 3.3 */ - public boolean isValidPoint(double x, double y) { - if (x < xval[0] || x > xval[xval.length - 1] || y < yval[0] || + public boolean isValidPoint(double x, + double y) { + if (x < xval[0] || + x > xval[xval.length - 1] || + y < yval[0] || y > yval[yval.length - 1]) { return false; } else { @@ -164,7 +176,10 @@ public class PiecewiseBicubicSplineInterpolatingFunction * @throws OutOfRangeException if {@code c} is out of the range defined by * the boundary values of {@code val}. */ - private int searchIndex(double c, double[] val, int offset, int count) { + private int searchIndex(double c, + double[] val, + int offset, + int count) { int r = Arrays.binarySearch(val, c); if (r == -1 || r == -val.length - 1) { diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolator.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolator.java index 2063f85aa..826f32872 100644 --- a/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolator.java +++ b/src/main/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolator.java @@ -28,31 +28,28 @@ import org.apache.commons.math3.util.MathArrays; * @since 2.2 */ public class PiecewiseBicubicSplineInterpolator - implements BivariateGridInterpolator -{ - - /** - * Default constructor. - */ - public PiecewiseBicubicSplineInterpolator() - { - - } + implements BivariateGridInterpolator { /** * {@inheritDoc} */ - public PiecewiseBicubicSplineInterpolatingFunction interpolate( final double[] xval, final double[] yval, - final double[][] fval) - throws DimensionMismatchException, NullArgumentException, NoDataException, NonMonotonicSequenceException - { - if ( xval == null || yval == null || fval == null || fval[0] == null ) - { + public PiecewiseBicubicSplineInterpolatingFunction interpolate( final double[] xval, + final double[] yval, + final double[][] fval) + throws DimensionMismatchException, + NullArgumentException, + NoDataException, + NonMonotonicSequenceException { + if ( xval == null || + yval == null || + fval == null || + fval[0] == null ) { throw new NullArgumentException(); } - if ( xval.length == 0 || yval.length == 0 || fval.length == 0 ) - { + if ( xval.length == 0 || + yval.length == 0 || + fval.length == 0 ) { throw new NoDataException(); } diff --git a/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java b/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java index 10f7822e3..19a060c72 100644 --- a/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java +++ b/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java @@ -35,14 +35,12 @@ import org.junit.Test; /** * Test case for the piecewise bicubic function. */ -public final class PiecewiseBicubicSplineInterpolatingFunctionTest -{ +public final class PiecewiseBicubicSplineInterpolatingFunctionTest { /** * Test preconditions. */ @Test - public void testPreconditions() - { + public void testPreconditions() { double[] xval = new double[] { 3, 4, 5, 6.5, 7.5 }; double[] yval = new double[] { -4, -3, -1, 2.5, 3.5 }; double[][] zval = new double[xval.length][yval.length]; @@ -50,112 +48,82 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest @SuppressWarnings("unused") PiecewiseBicubicSplineInterpolatingFunction bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, zval ); - try - { + try { bcf = new PiecewiseBicubicSplineInterpolatingFunction( null, yval, zval ); Assert.fail( "Failed to detect x null pointer" ); - } - catch ( NullArgumentException iae ) - { + } catch ( NullArgumentException iae ) { // Expected. - } + } - try - { + try { bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, null, zval ); Assert.fail( "Failed to detect y null pointer" ); - } - catch ( NullArgumentException iae ) - { + } catch ( NullArgumentException iae ) { // Expected. - } + } - try - { + try { bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, null ); Assert.fail( "Failed to detect z null pointer" ); - } - catch ( NullArgumentException iae ) - { + } catch ( NullArgumentException iae ) { // Expected. - } + } - try - { + try { double xval1[] = { 0.0, 1.0, 2.0, 3.0 }; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval1, yval, zval ); Assert.fail( "Failed to detect insufficient x data" ); - } - catch ( InsufficientDataException iae ) - { + } catch ( InsufficientDataException iae ) { // Expected. } - try - { + try { double yval1[] = { 0.0, 1.0, 2.0, 3.0 }; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval1, zval ); Assert.fail( "Failed to detect insufficient y data" ); - } - catch ( InsufficientDataException iae ) - { + } catch ( InsufficientDataException iae ) { // Expected. - } + } - try - { + try { double zval1[][] = new double[4][4]; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, zval1 ); Assert.fail( "Failed to detect insufficient z data" ); - } - catch ( InsufficientDataException iae ) - { + } catch ( InsufficientDataException iae ) { // Expected. - } + } - try - { + try { double xval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval1, yval, zval ); Assert.fail( "Failed to detect data set array with different sizes." ); - } - catch ( DimensionMismatchException iae ) - { + } catch ( DimensionMismatchException iae ) { // Expected. - } + } - try - { + try { double yval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval1, zval ); Assert.fail( "Failed to detect data set array with different sizes." ); - } - catch ( DimensionMismatchException iae ) - { + } catch ( DimensionMismatchException iae ) { // Expected. - } + } // X values not sorted. - try - { + try { double xval1[] = { 0.0, 1.0, 0.5, 7.0, 3.5 }; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval1, yval, zval ); Assert.fail( "Failed to detect unsorted x arguments." ); - } - catch ( NonMonotonicSequenceException iae ) - { + } catch ( NonMonotonicSequenceException iae ) { // Expected. } // Y values not sorted. - try - { + try { double yval1[] = { 0.0, 1.0, 1.5, 0.0, 3.0 }; bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval1, zval ); Assert.fail( "Failed to detect unsorted y arguments." ); - } - catch ( NonMonotonicSequenceException iae ) - { + } catch ( NonMonotonicSequenceException iae ) { // Expected. } } @@ -166,8 +134,7 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest * z = 2 x - 3 y + 5 */ @Test - public void testInterpolatePlane() - { + public void testInterpolatePlane() { final int numberOfElements = 10; final double minimumX = -10; final double maximumX = 10; @@ -178,10 +145,8 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest final double maxTolerance = 6e-14; // Function values - BivariateFunction f = new BivariateFunction() - { - public double value( double x, double y ) - { + BivariateFunction f = new BivariateFunction() { + public double value( double x, double y ) { return 2 * x - 3 * y + 5; } }; @@ -196,8 +161,7 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest * z = 2 x2 - 3 y2 + 4 x y - 5 */ @Test - public void testInterpolationParabaloid() - { + public void testInterpolationParabaloid() { final int numberOfElements = 10; final double minimumX = -10; final double maximumX = 10; @@ -208,22 +172,19 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest final double maxTolerance = 6e-14; // Function values - BivariateFunction f = new BivariateFunction() - { - public double value( double x, double y ) - { + BivariateFunction f = new BivariateFunction() { + public double value( double x, double y ) { return 2 * x * x - 3 * y * y + 4 * x * y - 5; } }; testInterpolation( minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f, interpolationTolerance, maxTolerance ); - } + } private void testInterpolation( double minimumX, double maximumX, double minimumY, double maximumY, int numberOfElements, int numberOfSamples, BivariateFunction f, double tolerance, - double maxTolerance ) - { + double maxTolerance ) { double expected; double actual; double currentX; @@ -234,11 +195,9 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest double yValues[] = new double[numberOfElements]; double zValues[][] = new double[numberOfElements][numberOfElements]; - for ( int i = 0; i < numberOfElements; i++ ) - { + for ( int i = 0; i < numberOfElements; i++ ) { xValues[i] = minimumX + deltaX * (double) i; - for ( int j = 0; j < numberOfElements; j++ ) - { + for ( int j = 0; j < numberOfElements; j++ ) { yValues[j] = minimumY + deltaY * (double) j; zValues[i][j] = f.value( xValues[i], yValues[j] ); } @@ -246,11 +205,9 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest BivariateFunction interpolation = new PiecewiseBicubicSplineInterpolatingFunction( xValues, yValues, zValues ); - for ( int i = 0; i < numberOfElements; i++ ) - { + for ( int i = 0; i < numberOfElements; i++ ) { currentX = xValues[i]; - for ( int j = 0; j < numberOfElements; j++ ) - { + for ( int j = 0; j < numberOfElements; j++ ) { currentY = yValues[j]; expected = f.value( currentX, currentY ); actual = interpolation.value( currentX, currentY ); @@ -259,21 +216,18 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest } final RandomGenerator rng = new Well19937c( 1234567L ); // "tol" depends on the seed. - final UniformRealDistribution distX = - new UniformRealDistribution( rng, xValues[0], xValues[xValues.length - 1] ); - final UniformRealDistribution distY = - new UniformRealDistribution( rng, yValues[0], yValues[yValues.length - 1] ); + final UniformRealDistribution distX = new UniformRealDistribution( rng, xValues[0], xValues[xValues.length - 1] ); + final UniformRealDistribution distY = new UniformRealDistribution( rng, yValues[0], yValues[yValues.length - 1] ); double sumError = 0; - for ( int i = 0; i < numberOfSamples; i++ ) - { + for ( int i = 0; i < numberOfSamples; i++ ) { currentX = distX.sample(); currentY = distY.sample(); expected = f.value( currentX, currentY ); actual = interpolation.value( currentX, currentY ); sumError += FastMath.abs( actual - expected ); assertEquals( expected, actual, maxTolerance ); - } + } assertEquals( 0.0, ( sumError / (double) numberOfSamples ), tolerance ); } diff --git a/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java b/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java index 50d41b78a..367971bbc 100644 --- a/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java +++ b/src/test/java/org/apache/commons/math3/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java @@ -31,14 +31,12 @@ import org.junit.Test; /** * Test case for the piecewise bicubic interpolator. */ -public final class PiecewiseBicubicSplineInterpolatorTest -{ +public final class PiecewiseBicubicSplineInterpolatorTest { /** * Test preconditions. */ @Test - public void testPreconditions() - { + public void testPreconditions() { double[] xval = new double[] { 3, 4, 5, 6.5, 7.5 }; double[] yval = new double[] { -4, -3, -1, 2.5, 3.5 }; double[][] zval = new double[xval.length][yval.length]; @@ -46,115 +44,84 @@ public final class PiecewiseBicubicSplineInterpolatorTest @SuppressWarnings( "unused" ) BivariateGridInterpolator interpolator = new PiecewiseBicubicSplineInterpolator(); - try - { + try { interpolator.interpolate( null, yval, zval ); Assert.fail( "Failed to detect x null pointer" ); - } - catch ( NullArgumentException iae ) - { + } catch ( NullArgumentException iae ) { // Expected. } - try - { + try { interpolator.interpolate( xval, null, zval ); Assert.fail( "Failed to detect y null pointer" ); - } - catch ( NullArgumentException iae ) - { + } catch ( NullArgumentException iae ) { // Expected. } - try - { + try { interpolator.interpolate( xval, yval, null ); Assert.fail( "Failed to detect z null pointer" ); - } - catch ( NullArgumentException iae ) - { + } catch ( NullArgumentException iae ) { // Expected. } - try - { + try { double xval1[] = { 0.0, 1.0, 2.0, 3.0 }; interpolator.interpolate( xval1, yval, zval ); Assert.fail( "Failed to detect insufficient x data" ); - } - catch ( InsufficientDataException iae ) - { + } catch ( InsufficientDataException iae ) { // Expected. } - try - { + try { double yval1[] = { 0.0, 1.0, 2.0, 3.0 }; interpolator.interpolate( xval, yval1, zval ); Assert.fail( "Failed to detect insufficient y data" ); - } - catch ( InsufficientDataException iae ) - { + } catch ( InsufficientDataException iae ) { // Expected. } - try - { + try { double zval1[][] = new double[4][4]; interpolator.interpolate( xval, yval, zval1 ); Assert.fail( "Failed to detect insufficient z data" ); - } - catch ( InsufficientDataException iae ) - { + } catch ( InsufficientDataException iae ) { // Expected. } - try - { + try { double xval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; interpolator.interpolate( xval1, yval, zval ); Assert.fail( "Failed to detect data set array with different sizes." ); - } - catch ( DimensionMismatchException iae ) - { + } catch ( DimensionMismatchException iae ) { // Expected. } - try - { + try { double yval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; interpolator.interpolate( xval, yval1, zval ); Assert.fail( "Failed to detect data set array with different sizes." ); - } - catch ( DimensionMismatchException iae ) - { + } catch ( DimensionMismatchException iae ) { // Expected. } // X values not sorted. - try - { + try { double xval1[] = { 0.0, 1.0, 0.5, 7.0, 3.5 }; interpolator.interpolate( xval1, yval, zval ); Assert.fail( "Failed to detect unsorted x arguments." ); - } - catch ( NonMonotonicSequenceException iae ) - { + } catch ( NonMonotonicSequenceException iae ) { // Expected. } // Y values not sorted. - try - { + try { double yval1[] = { 0.0, 1.0, 1.5, 0.0, 3.0 }; interpolator.interpolate( xval, yval1, zval ); Assert.fail( "Failed to detect unsorted y arguments." ); - } - catch ( NonMonotonicSequenceException iae ) - { + } catch ( NonMonotonicSequenceException iae ) { // Expected. } - } /** @@ -163,32 +130,26 @@ public final class PiecewiseBicubicSplineInterpolatorTest * z = 2 x - 3 y + 5 */ @Test - public void testInterpolation1() - { + public void testInterpolation1() { final int sz = 21; double[] xval = new double[sz]; double[] yval = new double[sz]; // Coordinate values final double delta = 1d / (sz - 1); - for ( int i = 0; i < sz; i++ ) - { + for ( int i = 0; i < sz; i++ ){ xval[i] = -1 + 15 * i * delta; yval[i] = -20 + 30 * i * delta; } // Function values - BivariateFunction f = new BivariateFunction() - { - public double value( double x, double y ) - { + BivariateFunction f = new BivariateFunction() { + public double value( double x, double y ) { return 2 * x - 3 * y + 5; } }; double[][] zval = new double[xval.length][yval.length]; - for ( int i = 0; i < xval.length; i++ ) - { - for ( int j = 0; j < yval.length; j++ ) - { + for ( int i = 0; i < xval.length; i++ ) { + for ( int j = 0; j < yval.length; j++ ) { zval[i][j] = f.value(xval[i], yval[j]); } } @@ -203,11 +164,9 @@ public final class PiecewiseBicubicSplineInterpolatorTest final int numSamples = 50; final double tol = 2e-14; - for ( int i = 0; i < numSamples; i++ ) - { + for ( int i = 0; i < numSamples; i++ ) { x = distX.sample(); - for ( int j = 0; j < numSamples; j++ ) - { + for ( int j = 0; j < numSamples; j++ ) { y = distY.sample(); // System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y)); Assert.assertEquals(f.value(x, y), p.value(x, y), tol); @@ -222,32 +181,26 @@ public final class PiecewiseBicubicSplineInterpolatorTest * z = 2 x2 - 3 y2 + 4 x y - 5 */ @Test - public void testInterpolation2() - { + public void testInterpolation2() { final int sz = 21; double[] xval = new double[sz]; double[] yval = new double[sz]; // Coordinate values final double delta = 1d / (sz - 1); - for ( int i = 0; i < sz; i++ ) - { + for ( int i = 0; i < sz; i++ ) { xval[i] = -1 + 15 * i * delta; yval[i] = -20 + 30 * i * delta; } // Function values - BivariateFunction f = new BivariateFunction() - { - public double value( double x, double y ) - { + BivariateFunction f = new BivariateFunction() { + public double value( double x, double y ) { return 2 * x * x - 3 * y * y + 4 * x * y - 5; } }; double[][] zval = new double[xval.length][yval.length]; - for ( int i = 0; i < xval.length; i++ ) - { - for ( int j = 0; j < yval.length; j++ ) - { + for ( int i = 0; i < xval.length; i++ ) { + for ( int j = 0; j < yval.length; j++ ) { zval[i][j] = f.value(xval[i], yval[j]); } } @@ -262,11 +215,9 @@ public final class PiecewiseBicubicSplineInterpolatorTest final int numSamples = 50; final double tol = 5e-13; - for ( int i = 0; i < numSamples; i++ ) - { + for ( int i = 0; i < numSamples; i++ ) { x = distX.sample(); - for ( int j = 0; j < numSamples; j++ ) - { + for ( int j = 0; j < numSamples; j++ ) { y = distY.sample(); // System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y)); Assert.assertEquals(f.value(x, y), p.value(x, y), tol);