diff --git a/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java b/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java
new file mode 100644
index 000000000..a6d5e3404
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java
@@ -0,0 +1,346 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.ode.sampling.FieldStepHandler;
+import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * This class stores all information provided by an ODE integrator
+ * during the integration process and build a continuous model of the
+ * solution from this.
+ *
+ *
This class act as a step handler from the integrator point of
+ * view. It is called iteratively during the integration process and
+ * stores a copy of all steps information in a sorted collection for
+ * later use. Once the integration process is over, the user can use
+ * the {@link #setInterpolatedTime setInterpolatedTime} and {@link
+ * #getInterpolatedState getInterpolatedState} to retrieve this
+ * information at any time. It is important to wait for the
+ * integration to be over before attempting to call {@link
+ * #setInterpolatedTime setInterpolatedTime} because some internal
+ * variables are set only once the last step has been handled.
+ *
+ * This is useful for example if the main loop of the user
+ * application should remain independent from the integration process
+ * or if one needs to mimic the behaviour of an analytical model
+ * despite a numerical model is used (i.e. one needs the ability to
+ * get the model value at any time or to navigate through the
+ * data).
+ *
+ * If problem modeling is done with several separate
+ * integration phases for contiguous intervals, the same
+ * ContinuousOutputModel can be used as step handler for all
+ * integration phases as long as they are performed in order and in
+ * the same direction. As an example, one can extrapolate the
+ * trajectory of a satellite with one model (i.e. one set of
+ * differential equations) up to the beginning of a maneuver, use
+ * another more complex model including thrusters modeling and
+ * accurate attitude control during the maneuver, and revert to the
+ * first model after the end of the maneuver. If the same continuous
+ * output model handles the steps of all integration phases, the user
+ * do not need to bother when the maneuver begins or ends, he has all
+ * the data available in a transparent manner.
+ *
+ * One should be aware that the amount of data stored in a
+ * ContinuousOutputFieldModel instance can be important if the state vector
+ * is large, if the integration interval is long or if the steps are
+ * small (which can result from small tolerance settings in {@link
+ * org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive
+ * step size integrators}).
+ *
+ * @see FieldStepHandler
+ * @see FieldStepInterpolator
+ * @param the type of the field elements
+ * @since 3.6
+ */
+
+public class ContinuousOutputFieldModel>
+ implements FieldStepHandler {
+
+ /** Initial integration time. */
+ private T initialTime;
+
+ /** Final integration time. */
+ private T finalTime;
+
+ /** Integration direction indicator. */
+ private boolean forward;
+
+ /** Current interpolator index. */
+ private int index;
+
+ /** Steps table. */
+ private List> steps;
+
+ /** Simple constructor.
+ * Build an empty continuous output model.
+ */
+ public ContinuousOutputFieldModel() {
+ steps = new ArrayList>();
+ initialTime = null;
+ finalTime = null;
+ forward = true;
+ index = 0;
+ }
+
+ /** Append another model at the end of the instance.
+ * @param model model to add at the end of the instance
+ * @exception MathIllegalArgumentException if the model to append is not
+ * compatible with the instance (dimension of the state vector,
+ * propagation direction, hole between the dates)
+ * @exception DimensionMismatchException if the dimensions of the states or
+ * the number of secondary states do not match
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * during step finalization
+ */
+ public void append(final ContinuousOutputFieldModel model)
+ throws MathIllegalArgumentException, MaxCountExceededException {
+
+ if (model.steps.size() == 0) {
+ return;
+ }
+
+ if (steps.size() == 0) {
+ initialTime = model.initialTime;
+ forward = model.forward;
+ } else {
+
+ // safety checks
+ final FieldODEStateAndDerivative s1 = steps.get(0).getPreviousState();
+ final FieldODEStateAndDerivative s2 = model.steps.get(0).getPreviousState();
+ checkDimensionsEquality(s1.getStateDimension(), s2.getStateDimension());
+ checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
+ for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
+ checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
+ }
+
+ if (forward ^ model.forward) {
+ throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
+ }
+
+ final FieldStepInterpolator lastInterpolator = steps.get(index);
+ final T current = lastInterpolator.getCurrentState().getTime();
+ final T previous = lastInterpolator.getPreviousState().getTime();
+ final T step = current.subtract(previous);
+ final T gap = model.getInitialTime().subtract(current);
+ if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) {
+ throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
+ gap.abs().getReal());
+ }
+
+ }
+
+ for (FieldStepInterpolator interpolator : model.steps) {
+ steps.add(interpolator.copy());
+ }
+
+ index = steps.size() - 1;
+ finalTime = (steps.get(index)).getCurrentState().getTime();
+
+ }
+
+ /** Check dimensions equality.
+ * @param d1 first dimension
+ * @param d2 second dimansion
+ * @exception DimensionMismatchException if dimensions do not match
+ */
+ private void checkDimensionsEquality(final int d1, final int d2)
+ throws DimensionMismatchException {
+ if (d1 != d2) {
+ throw new DimensionMismatchException(d2, d1);
+ }
+ }
+
+ /** {@inheritDoc} */
+ public void init(final FieldODEStateAndDerivative initialState, final T t) {
+ initialTime = initialState.getTime();
+ finalTime = t;
+ forward = true;
+ index = 0;
+ steps.clear();
+ }
+
+ /** Handle the last accepted step.
+ * A copy of the information provided by the last step is stored in
+ * the instance for later use.
+ * @param interpolator interpolator for the last accepted step.
+ * @param isLast true if the step is the last one
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * during step finalization
+ */
+ public void handleStep(final FieldStepInterpolator interpolator, final boolean isLast)
+ throws MaxCountExceededException {
+
+ if (steps.size() == 0) {
+ initialTime = interpolator.getPreviousState().getTime();
+ forward = interpolator.isForward();
+ }
+
+ steps.add(interpolator.copy());
+
+ if (isLast) {
+ finalTime = interpolator.getCurrentState().getTime();
+ index = steps.size() - 1;
+ }
+
+ }
+
+ /**
+ * Get the initial integration time.
+ * @return initial integration time
+ */
+ public T getInitialTime() {
+ return initialTime;
+ }
+
+ /**
+ * Get the final integration time.
+ * @return final integration time
+ */
+ public T getFinalTime() {
+ return finalTime;
+ }
+
+ /**
+ * Get the state at interpolated time.
+ * @param time time of the interpolated point
+ * @return state at interpolated time
+ */
+ public FieldODEStateAndDerivative getInterpolatedState(final T time) {
+
+ // initialize the search with the complete steps table
+ int iMin = 0;
+ final FieldStepInterpolator sMin = steps.get(iMin);
+ T tMin = sMin.getPreviousState().getTime().add(sMin.getCurrentState().getTime()).multiply(0.5);
+
+ int iMax = steps.size() - 1;
+ final FieldStepInterpolator sMax = steps.get(iMax);
+ T tMax = sMax.getPreviousState().getTime().add(sMax.getCurrentState().getTime()).multiply(0.5);
+
+ // handle points outside of the integration interval
+ // or in the first and last step
+ if (locatePoint(time, sMin) <= 0) {
+ index = iMin;
+ return sMin.getInterpolatedState(time);
+ }
+ if (locatePoint(time, sMax) >= 0) {
+ index = iMax;
+ return sMax.getInterpolatedState(time);
+ }
+
+ // reduction of the table slice size
+ while (iMax - iMin > 5) {
+
+ // use the last estimated index as the splitting index
+ final FieldStepInterpolator si = steps.get(index);
+ final int location = locatePoint(time, si);
+ if (location < 0) {
+ iMax = index;
+ tMax = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
+ } else if (location > 0) {
+ iMin = index;
+ tMin = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
+ } else {
+ // we have found the target step, no need to continue searching
+ return si.getInterpolatedState(time);
+ }
+
+ // compute a new estimate of the index in the reduced table slice
+ final int iMed = (iMin + iMax) / 2;
+ final FieldStepInterpolator sMed = steps.get(iMed);
+ final T tMed = sMed.getPreviousState().getTime().add(sMed.getCurrentState().getTime()).multiply(0.5);
+
+ if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0 ||
+ tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) {
+ // too close to the bounds, we estimate using a simple dichotomy
+ index = iMed;
+ } else {
+ // estimate the index using a reverse quadratic polynomial
+ // (reverse means we have i = P(t), thus allowing to simply
+ // compute index = P(time) rather than solving a quadratic equation)
+ final T d12 = tMax.subtract(tMed);
+ final T d23 = tMed.subtract(tMin);
+ final T d13 = tMax.subtract(tMin);
+ final T dt1 = time.subtract(tMax);
+ final T dt2 = time.subtract(tMed);
+ final T dt3 = time.subtract(tMin);
+ final T iLagrange = dt2.multiply(dt3).multiply(d23).multiply(iMax).
+ subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed)).
+ add( dt1.multiply(dt2).multiply(d12).multiply(iMin)).
+ divide(d12.multiply(d23).multiply(d13));
+ index = (int) FastMath.rint(iLagrange.getReal());
+ }
+
+ // force the next size reduction to be at least one tenth
+ final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
+ final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
+ if (index < low) {
+ index = low;
+ } else if (index > high) {
+ index = high;
+ }
+
+ }
+
+ // now the table slice is very small, we perform an iterative search
+ index = iMin;
+ while (index <= iMax && locatePoint(time, steps.get(index)) > 0) {
+ ++index;
+ }
+
+ return steps.get(index).getInterpolatedState(time);
+
+ }
+
+ /** Compare a step interval and a double.
+ * @param time point to locate
+ * @param interval step interval
+ * @return -1 if the double is before the interval, 0 if it is in
+ * the interval, and +1 if it is after the interval, according to
+ * the interval direction
+ */
+ private int locatePoint(final T time, final FieldStepInterpolator interval) {
+ if (forward) {
+ if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) {
+ return -1;
+ } else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) {
+ return +1;
+ } else {
+ return 0;
+ }
+ }
+ if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) {
+ return -1;
+ } else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) {
+ return +1;
+ } else {
+ return 0;
+ }
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/ode/FieldODEState.java b/src/main/java/org/apache/commons/math3/ode/FieldODEState.java
index 35f697440..d18dc6a79 100644
--- a/src/main/java/org/apache/commons/math3/ode/FieldODEState.java
+++ b/src/main/java/org/apache/commons/math3/ode/FieldODEState.java
@@ -95,6 +95,13 @@ public class FieldODEState> {
return time;
}
+ /** Get main state dimension.
+ * @return main state dimension
+ */
+ public int getStateDimension() {
+ return state.length;
+ }
+
/** Get main state at time.
* @return main state at time
*/
@@ -102,6 +109,22 @@ public class FieldODEState> {
return state.clone();
}
+ /** Get the number of secondary states.
+ * @return number of secondary states.
+ */
+ public int getNumberOfSecondaryStates() {
+ return secondaryState.length;
+ }
+
+ /** Get secondary state dimension.
+ * @param index index of the secondary set as returned
+ * by {@link FieldExpandableODE#addSecondaryEquations(FieldSecondaryEquations)}
+ * @return secondary state dimension
+ */
+ public int getSecondaryStateDimension(final int index) {
+ return secondaryState[index].length;
+ }
+
/** Get secondary state at time.
* @param index index of the secondary set as returned
* by {@link FieldExpandableODE#addSecondaryEquations(FieldSecondaryEquations)}
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
index 75d4b5149..e928e3b47 100644
--- a/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
@@ -227,7 +227,7 @@ public abstract class AdaptiveStepsizeFieldIntegrator