Improved Javadoc.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1393641 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
8eb3bbaca4
commit
e41cea1e33
|
@ -128,9 +128,15 @@ public class CMAESOptimizer
|
||||||
*/
|
*/
|
||||||
private double[][] boundaries;
|
private double[][] boundaries;
|
||||||
/**
|
/**
|
||||||
* Individual sigma values - initial search volume. inputSigma determines
|
* Values in "inputSigma" define the initial coordinate-wise
|
||||||
* the initial coordinate wise standard deviations for the search. Setting
|
* standard deviations for sampling new search points around the
|
||||||
* SIGMA one third of the initial search region is appropriate.
|
* initial guess.
|
||||||
|
* It is appropriate to set "inputSigma" to the estimated distance
|
||||||
|
* from the initial to the desired optimum.
|
||||||
|
* Small values for "inputSigma" induce the search to be more local
|
||||||
|
* (and very small values are more likely to find a local optimum
|
||||||
|
* close to the initial guess).
|
||||||
|
* Too small values might however lead to early termination.
|
||||||
*/
|
*/
|
||||||
private double[] inputSigma;
|
private double[] inputSigma;
|
||||||
/** Number of objective variables/problem dimension */
|
/** Number of objective variables/problem dimension */
|
||||||
|
@ -252,7 +258,8 @@ public class CMAESOptimizer
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @param lambda Population size.
|
* @param lambda Population size.
|
||||||
* @param inputSigma Initial search volume; sigma of offspring objective variables.
|
* @param inputSigma Initial standard deviations to sample new points
|
||||||
|
* around the initial guess.
|
||||||
*/
|
*/
|
||||||
public CMAESOptimizer(int lambda, double[] inputSigma) {
|
public CMAESOptimizer(int lambda, double[] inputSigma) {
|
||||||
this(lambda, inputSigma, DEFAULT_MAXITERATIONS, DEFAULT_STOPFITNESS,
|
this(lambda, inputSigma, DEFAULT_MAXITERATIONS, DEFAULT_STOPFITNESS,
|
||||||
|
@ -262,7 +269,8 @@ public class CMAESOptimizer
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @param lambda Population size.
|
* @param lambda Population size.
|
||||||
* @param inputSigma Initial search volume; sigma of offspring objective variables.
|
* @param inputSigma Initial standard deviations to sample new points
|
||||||
|
* around the initial guess.
|
||||||
* @param maxIterations Maximal number of iterations.
|
* @param maxIterations Maximal number of iterations.
|
||||||
* @param stopFitness Whether to stop if objective function value is smaller than
|
* @param stopFitness Whether to stop if objective function value is smaller than
|
||||||
* {@code stopFitness}.
|
* {@code stopFitness}.
|
||||||
|
@ -287,7 +295,8 @@ public class CMAESOptimizer
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @param lambda Population size.
|
* @param lambda Population size.
|
||||||
* @param inputSigma Initial search volume; sigma of offspring objective variables.
|
* @param inputSigma Initial standard deviations to sample new points
|
||||||
|
* around the initial guess.
|
||||||
* @param maxIterations Maximal number of iterations.
|
* @param maxIterations Maximal number of iterations.
|
||||||
* @param stopFitness Whether to stop if objective function value is smaller than
|
* @param stopFitness Whether to stop if objective function value is smaller than
|
||||||
* {@code stopFitness}.
|
* {@code stopFitness}.
|
||||||
|
|
Loading…
Reference in New Issue