[MATH-1068] Changed integer calculations with potential overflows to long.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1548907 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
8e5867eda8
commit
e42da5d9d2
|
@ -160,7 +160,7 @@ public class KendallsCorrelation {
|
||||||
}
|
}
|
||||||
|
|
||||||
final int n = xArray.length;
|
final int n = xArray.length;
|
||||||
final long numPairs = n * (n - 1l) / 2l;
|
final long numPairs = sum(n - 1);
|
||||||
|
|
||||||
@SuppressWarnings("unchecked")
|
@SuppressWarnings("unchecked")
|
||||||
Pair<Double, Double>[] pairs = new Pair[n];
|
Pair<Double, Double>[] pairs = new Pair[n];
|
||||||
|
@ -175,10 +175,10 @@ public class KendallsCorrelation {
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
int tiedXPairs = 0;
|
long tiedXPairs = 0;
|
||||||
int tiedXYPairs = 0;
|
long tiedXYPairs = 0;
|
||||||
int consecutiveXTies = 1;
|
long consecutiveXTies = 1;
|
||||||
int consecutiveXYTies = 1;
|
long consecutiveXYTies = 1;
|
||||||
Pair<Double, Double> prev = pairs[0];
|
Pair<Double, Double> prev = pairs[0];
|
||||||
for (int i = 1; i < n; i++) {
|
for (int i = 1; i < n; i++) {
|
||||||
final Pair<Double, Double> curr = pairs[i];
|
final Pair<Double, Double> curr = pairs[i];
|
||||||
|
@ -187,19 +187,19 @@ public class KendallsCorrelation {
|
||||||
if (curr.getSecond().equals(prev.getSecond())) {
|
if (curr.getSecond().equals(prev.getSecond())) {
|
||||||
consecutiveXYTies++;
|
consecutiveXYTies++;
|
||||||
} else {
|
} else {
|
||||||
tiedXYPairs += consecutiveXYTies * (consecutiveXYTies - 1) / 2;
|
tiedXYPairs += sum(consecutiveXYTies - 1);
|
||||||
consecutiveXYTies = 1;
|
consecutiveXYTies = 1;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
tiedXPairs += consecutiveXTies * (consecutiveXTies - 1) / 2;
|
tiedXPairs += sum(consecutiveXTies - 1);
|
||||||
consecutiveXTies = 1;
|
consecutiveXTies = 1;
|
||||||
tiedXYPairs += consecutiveXYTies * (consecutiveXYTies - 1) / 2;
|
tiedXYPairs += sum(consecutiveXYTies - 1);
|
||||||
consecutiveXYTies = 1;
|
consecutiveXYTies = 1;
|
||||||
}
|
}
|
||||||
prev = curr;
|
prev = curr;
|
||||||
}
|
}
|
||||||
tiedXPairs += consecutiveXTies * (consecutiveXTies - 1) / 2;
|
tiedXPairs += sum(consecutiveXTies - 1);
|
||||||
tiedXYPairs += consecutiveXYTies * (consecutiveXYTies - 1) / 2;
|
tiedXYPairs += sum(consecutiveXYTies - 1);
|
||||||
|
|
||||||
int swaps = 0;
|
int swaps = 0;
|
||||||
@SuppressWarnings("unchecked")
|
@SuppressWarnings("unchecked")
|
||||||
|
@ -239,23 +239,34 @@ public class KendallsCorrelation {
|
||||||
pairsDestination = pairsTemp;
|
pairsDestination = pairsTemp;
|
||||||
}
|
}
|
||||||
|
|
||||||
int tiedYPairs = 0;
|
long tiedYPairs = 0;
|
||||||
int consecutiveYTies = 1;
|
long consecutiveYTies = 1;
|
||||||
prev = pairs[0];
|
prev = pairs[0];
|
||||||
for (int i = 1; i < n; i++) {
|
for (int i = 1; i < n; i++) {
|
||||||
final Pair<Double, Double> curr = pairs[i];
|
final Pair<Double, Double> curr = pairs[i];
|
||||||
if (curr.getSecond().equals(prev.getSecond())) {
|
if (curr.getSecond().equals(prev.getSecond())) {
|
||||||
consecutiveYTies++;
|
consecutiveYTies++;
|
||||||
} else {
|
} else {
|
||||||
tiedYPairs += consecutiveYTies * (consecutiveYTies - 1) / 2;
|
tiedYPairs += sum(consecutiveYTies - 1);
|
||||||
consecutiveYTies = 1;
|
consecutiveYTies = 1;
|
||||||
}
|
}
|
||||||
prev = curr;
|
prev = curr;
|
||||||
}
|
}
|
||||||
tiedYPairs += consecutiveYTies * (consecutiveYTies - 1) / 2;
|
tiedYPairs += sum(consecutiveYTies - 1);
|
||||||
|
|
||||||
final long concordantMinusDiscordant = numPairs - tiedXPairs - tiedYPairs + tiedXYPairs - 2 * swaps;
|
final long concordantMinusDiscordant = numPairs - tiedXPairs - tiedYPairs + tiedXYPairs - 2 * swaps;
|
||||||
final double nonTiedPairsMultiplied = (numPairs - tiedXPairs) * (double) (numPairs - tiedYPairs);
|
final double nonTiedPairsMultiplied = (numPairs - tiedXPairs) * (double) (numPairs - tiedYPairs);
|
||||||
return concordantMinusDiscordant / FastMath.sqrt(nonTiedPairsMultiplied);
|
return concordantMinusDiscordant / FastMath.sqrt(nonTiedPairsMultiplied);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the sum of the number from 1 .. n according to Gauss' summation formula:
|
||||||
|
* \[ \sum\limits_{k=1}^n k = \frac{n(n + 1)}{2} \]
|
||||||
|
*
|
||||||
|
* @param n the summation end
|
||||||
|
* @return the sum of the number from 1 to n
|
||||||
|
*/
|
||||||
|
private static long sum(long n) {
|
||||||
|
return n * (n + 1) / 2l;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue