diff --git a/src/site/xdoc/userguide/complex.xml b/src/site/xdoc/userguide/complex.xml index f451ab199..7367dd5b8 100644 --- a/src/site/xdoc/userguide/complex.xml +++ b/src/site/xdoc/userguide/complex.xml @@ -26,118 +26,8 @@

- The complex packages provides a complex number type as well as complex - versions of common transcendental functions and complex number - formatting. -

-
- -

- - Complex provides a complex number type that forms the basis for - the complex functionality found in commons-math. -

-

- Complex functions and arithmetic operations are implemented in - commons-math by applying standard computational formulas and - following the rules for java.lang.Double arithmetic in - handling infinite and NaN values. No attempt is made - to comply with ANSII/IEC C99x Annex G or any other standard for - Complex arithmetic. See the class and method javadocs for the - - Complex and - - ComplexUtils classes for details on computing formulas. -

-

- To create a complex number, simply call the constructor passing in two - floating-point arguments, the first being the real part of the - complex number and the second being the imaginary part: - Complex c = new Complex(1.0, 3.0); // 1 + 3i -

-

- Complex numbers may also be created from polar representations - using the polar2Complex method in - ComplexUtils. -

-

- The Complex class provides basic unary and binary - complex number operations. These operations provide the means to add, - subtract, multiply and divide complex numbers along with other - complex number functions similar to the real number functions found in - java.math.BigDecimal: - Complex lhs = new Complex(1.0, 3.0); -Complex rhs = new Complex(2.0, 5.0); - -Complex answer = lhs.add(rhs); // add two complex numbers - answer = lhs.subtract(rhs); // subtract two complex numbers - answer = lhs.abs(); // absolute value - answer = lhs.conjugate(rhs); // complex conjugate -

-
- -

- - Complex also provides implementations of serveral transcendental - functions involving complex number arguments. - These operations provide the means to compute the log, sine, tangent, - and other complex values : - Complex first = new Complex(1.0, 3.0); -Complex second = new Complex(2.0, 5.0); - -Complex answer = first.log(); // natural logarithm. - answer = first.cos(); // cosine - answer = first.pow(second); // first raised to the power of second -

-
- -

- Complex instances can be converted to and from strings - using the - ComplexFormat class. - ComplexFormat is a java.text.Format - extension and, as such, is used like other formatting objects (e.g. - java.text.SimpleDateFormat): - ComplexFormat format = new ComplexFormat(); // default format -Complex c = new Complex(1.1111, 2.2222); -String s = format.format(c); // s contains "1.11 + 2.22i" -

-

- To customize the formatting output, one or two - java.text.NumberFormat instances can be used to construct - a ComplexFormat. These number formats control the - formatting of the real and imaginary values of the complex number: - NumberFormat nf = NumberFormat.getInstance(); -nf.setMinimumFractionDigits(3); -nf.setMaximumFractionDigits(3); - -// create complex format with custom number format -// when one number format is used, both real and -// imaginary parts are formatted the same -ComplexFormat cf = new ComplexFormat(nf); -Complex c = new Complex(1.11, 2.2222); -String s = format.format(c); // s contains "1.110 + 2.222i" - -NumberFormat nf2 = NumberFormat.getInstance(); -nf.setMinimumFractionDigits(1); -nf.setMaximumFractionDigits(1); - -// create complex format with custom number formats -cf = new ComplexFormat(nf, nf2); -s = format.format(c); // s contains "1.110 + 2.2i" -

-

- Another formatting customization provided by - ComplexFormat is the text used for the imaginary - designation. By default, the imaginary notation is "i" but, it can be - manipulated using the setImaginaryCharacter method. -

-

- Formatting inverse operation, parsing, can also be performed by - ComplexFormat. Parse a complex number from a string, - simply call the parse method: - ComplexFormat cf = new ComplexFormat(); -Complex c = cf.parse("1.110 + 2.222i"); + The concept of "complex number" is implemented in + Commons Numbers.

diff --git a/src/site/xdoc/userguide/index.xml b/src/site/xdoc/userguide/index.xml index 9fbf847fe..8211a881b 100644 --- a/src/site/xdoc/userguide/index.xml +++ b/src/site/xdoc/userguide/index.xml @@ -89,9 +89,6 @@
  • 7. Complex Numbers
  • 8. Probability Distributions