Create module "commons-math-legacy-core" for holding functionality needed by many "legacy" modules.

"FastMath" (renamed "AccurateMath") and related classes moved to "o.a.c.m.legacy.core.jdkmath".
This commit is contained in:
Gilles Sadowski 2021-06-01 00:26:35 +02:00
parent ce65e6ba3f
commit e85e8b53f2
489 changed files with 19511 additions and 3249 deletions

View File

@ -27,7 +27,7 @@
<artifactId>commons-math-examples</artifactId>
<version>4.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>Apache Commons Math Examples</name>
<name>Example applications</name>
<description>Examples of use of the "Commons Math" library.
Codes in this module and its sub-modules are not part of the public API.

View File

@ -0,0 +1,457 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Apache Commons Math includes the following code provided to the ASF under the
Apache License 2.0:
- The inverse error function implementation in the Erf class is based on CUDA
code developed by Mike Giles, Oxford-Man Institute of Quantitative Finance,
and published in GPU Computing Gems, volume 2, 2010 (grant received on
March 23th 2013)
- The LinearConstraint, LinearObjectiveFunction, LinearOptimizer,
RelationShip, SimplexSolver and SimplexTableau classes in package
org.apache.commons.math3.optimization.linear include software developed by
Benjamin McCann (http://www.benmccann.com) and distributed with
the following copyright: Copyright 2009 Google Inc. (grant received on
March 16th 2009)
- The class "org.apache.commons.math3.exception.util.LocalizedFormatsTest" which
is an adapted version of "OrekitMessagesTest" test class for the Orekit library
- The "org.apache.commons.math3.analysis.interpolation.HermiteInterpolator"
has been imported from the Orekit space flight dynamics library.
===============================================================================
APACHE COMMONS MATH DERIVATIVE WORKS:
The Apache commons-math library includes a number of subcomponents
whose implementation is derived from original sources written
in C or Fortran. License terms of the original sources
are reproduced below.
===============================================================================
For the lmder, lmpar and qrsolv Fortran routine from minpack and translated in
the LevenbergMarquardtOptimizer class in package
org.apache.commons.math3.optimization.general
Original source copyright and license statement:
Minpack Copyright Notice (1999) University of Chicago. All rights reserved
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
3. The end-user documentation included with the
redistribution, if any, must include the following
acknowledgment:
"This product includes software developed by the
University of Chicago, as Operator of Argonne National
Laboratory.
Alternately, this acknowledgment may appear in the software
itself, if and wherever such third-party acknowledgments
normally appear.
4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
BE CORRECTED.
5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGES.
===============================================================================
Copyright and license statement for the odex Fortran routine developed by
E. Hairer and G. Wanner and translated in GraggBulirschStoerIntegrator class
in package org.apache.commons.math3.ode.nonstiff:
Copyright (c) 2004, Ernst Hairer
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
===============================================================================
Copyright and license statement for the original Mersenne twister C
routines translated in MersenneTwister class in package
org.apache.commons.math3.random:
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
===============================================================================
The initial code for shuffling an array (originally in class
"org.apache.commons.math3.random.RandomDataGenerator", now replaced by
a method in class "org.apache.commons.math3.util.MathArrays") was
inspired from the algorithm description provided in
"Algorithms", by Ian Craw and John Pulham (University of Aberdeen 1999).
The textbook (containing a proof that the shuffle is uniformly random) is
available here:
http://citeseerx.ist.psu.edu/viewdoc/download;?doi=10.1.1.173.1898&rep=rep1&type=pdf
===============================================================================
License statement for the direction numbers in the resource files for Sobol sequences.
-----------------------------------------------------------------------------
Licence pertaining to sobol.cc and the accompanying sets of direction numbers
-----------------------------------------------------------------------------
Copyright (c) 2008, Frances Y. Kuo and Stephen Joe
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the
University of New South Wales and the University of Waikato
and its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
===============================================================================
The initial commit of package "org.apache.commons.math3.ml.neuralnet" is
an adapted version of code developed in the context of the Data Processing
and Analysis Consortium (DPAC) of the "Gaia" project of the European Space
Agency (ESA).
===============================================================================
The initial commit of the class "org.apache.commons.math3.special.BesselJ" is
an adapted version of code translated from the netlib Fortran program, rjbesl
http://www.netlib.org/specfun/rjbesl by R.J. Cody at Argonne National
Laboratory (USA). There is no license or copyright statement included with the
original Fortran sources.
===============================================================================
The BracketFinder (package org.apache.commons.math3.optimization.univariate)
and PowellOptimizer (package org.apache.commons.math3.optimization.general)
classes are based on the Python code in module "optimize.py" (version 0.5)
developed by Travis E. Oliphant for the SciPy library (http://www.scipy.org/)
Copyright © 2003-2009 SciPy Developers.
SciPy license
Copyright © 2001, 2002 Enthought, Inc.
All rights reserved.
Copyright © 2003-2013 SciPy Developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Enthought nor the names of the SciPy Developers may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
===============================================================================

View File

@ -0,0 +1,9 @@
Apache Commons Math
Copyright 2001-2020 The Apache Software Foundation
This product includes software developed at
The Apache Software Foundation (http://www.apache.org/).
This product includes software developed for Orekit by
CS Systèmes d'Information (http://www.c-s.fr/)
Copyright 2010-2012 CS Systèmes d'Information

View File

@ -0,0 +1,74 @@
<?xml version="1.0"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math-parent</artifactId>
<version>4.0-SNAPSHOT</version>
</parent>
<artifactId>commons-math4-legacy-core</artifactId>
<name>Miscellaneous core classes (Legacy)</name>
<description>Field, Dfp, ...</description>
<properties>
<!-- The Java Module System Name -->
<commons.module.name>org.apache.commons.math4.legacy.core</commons.module.name>
<!-- This value must reflect the current name of the base package. -->
<commons.osgi.symbolicName>org.apache.commons.math4.legacy.core</commons.osgi.symbolicName>
<!-- OSGi -->
<commons.osgi.export>org.apache.commons.math4.legacy.core</commons.osgi.export>
<!-- Workaround to avoid duplicating config files. -->
<math.parent.dir>${basedir}/..</math.parent.dir>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math4-legacy-exception</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-numbers-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-numbers-arrays</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-rng-client-api</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-rng-simple</artifactId>
</dependency>
</dependencies>
</project>

View File

@ -14,7 +14,7 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy;
package org.apache.commons.math4.legacy.core;
/**
* Interface representing a <a href="http://mathworld.wolfram.com/Field.html">field</a>.

View File

@ -14,7 +14,7 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy;
package org.apache.commons.math4.legacy.core;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;

View File

@ -15,7 +15,7 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.util;
package org.apache.commons.math4.legacy.core;
import java.lang.reflect.Array;
import java.util.ArrayList;
@ -27,7 +27,6 @@ import java.util.List;
import java.util.TreeSet;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.legacy.Field;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
@ -40,6 +39,7 @@ import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Arrays utilities.
@ -196,7 +196,7 @@ public class MathArrays {
checkEqualLength(p1, p2);
double sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += FastMath.abs(p1[i] - p2[i]);
sum += AccurateMath.abs(p1[i] - p2[i]);
}
return sum;
}
@ -213,7 +213,7 @@ public class MathArrays {
checkEqualLength(p1, p2);
int sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += FastMath.abs(p1[i] - p2[i]);
sum += AccurateMath.abs(p1[i] - p2[i]);
}
return sum;
}
@ -233,7 +233,7 @@ public class MathArrays {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return FastMath.sqrt(sum);
return AccurateMath.sqrt(sum);
}
/**
@ -251,7 +251,7 @@ public class MathArrays {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return FastMath.sqrt(sum);
return AccurateMath.sqrt(sum);
}
/**
@ -266,7 +266,7 @@ public class MathArrays {
checkEqualLength(p1, p2);
double max = 0;
for (int i = 0; i < p1.length; i++) {
max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
max = AccurateMath.max(max, AccurateMath.abs(p1[i] - p2[i]));
}
return max;
}
@ -283,7 +283,7 @@ public class MathArrays {
checkEqualLength(p1, p2);
int max = 0;
for (int i = 0; i < p1.length; i++) {
max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
max = AccurateMath.max(max, AccurateMath.abs(p1[i] - p2[i]));
}
return max;
}
@ -990,7 +990,7 @@ public class MathArrays {
// straightforward implementation of the convolution sum
for (int n = 0; n < totalLength; n++) {
double yn = 0;
int k = FastMath.max(0, n + 1 - xLen);
int k = AccurateMath.max(0, n + 1 - xLen);
int j = n - k;
while (k < hLen && j >= 0) {
yn += x[j--] * h[k++];

View File

@ -14,7 +14,7 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy;
package org.apache.commons.math4.legacy.core;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;

View File

@ -15,13 +15,12 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
import java.util.Arrays;
import org.apache.commons.math4.legacy.RealFieldElement;
import org.apache.commons.math4.legacy.core.RealFieldElement;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.util.FastMath;
/**
* Decimal floating point library for Java
@ -625,12 +624,12 @@ public class Dfp implements RealFieldElement<Dfp> {
return field.newDfp(sig, code);
}
/** Get the {@link org.apache.commons.math4.legacy.Field Field} (really a {@link DfpField}) to which the instance belongs.
/** Get the {@link org.apache.commons.math4.legacy.core.Field Field} (really a {@link DfpField}) to which the instance belongs.
* <p>
* The field is linked to the number of digits and acts as a factory
* for {@link Dfp} instances.
* </p>
* @return {@link org.apache.commons.math4.legacy.Field Field} (really a {@link DfpField}) to which the instance belongs
* @return {@link org.apache.commons.math4.legacy.core.Field Field} (really a {@link DfpField}) to which the instance belongs
*/
@Override
public DfpField getField() {
@ -2579,7 +2578,7 @@ public class Dfp implements RealFieldElement<Dfp> {
*/
@Override
public long round() {
return FastMath.round(toDouble());
return Math.round(toDouble());
}
/** {@inheritDoc}
@ -2782,7 +2781,7 @@ public class Dfp implements RealFieldElement<Dfp> {
// compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
final Dfp tmp = getTwo().multiply(divide(r.subtract(x)).atan());
final Dfp pmPi = newInstance((tmp.sign <= 0) ? -FastMath.PI : FastMath.PI);
final Dfp pmPi = newInstance((tmp.sign <= 0) ? -Math.PI : Math.PI);
return pmPi.subtract(tmp);
}

View File

@ -15,7 +15,7 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
/** Subclass of {@link Dfp} which hides the radix-10000 artifacts of the superclass.
* This should give outward appearances of being a decimal number with DIGITS*4-3

View File

@ -15,10 +15,10 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
import org.apache.commons.math4.legacy.Field;
import org.apache.commons.math4.legacy.FieldElement;
import org.apache.commons.math4.legacy.core.Field;
import org.apache.commons.math4.legacy.core.FieldElement;
/** Field for Decimal floating point instances.
* @since 2.2

View File

@ -15,7 +15,7 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
/** Mathematical routines for use with {@link Dfp}.
* The constants are defined in {@link DfpField}

View File

@ -0,0 +1,88 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* Decimal floating point library for Java
*
* <p>Another floating point class. This one is built using radix 10000
* which is 10<sup>4</sup>, so its almost decimal.</p>
*
* <p>The design goals here are:
* <ol>
* <li>Decimal math, or close to it</li>
* <li>Settable precision (but no mix between numbers using different settings)</li>
* <li>Portability. Code should be keep as portable as possible.</li>
* <li>Performance</li>
* <li>Accuracy - Results should always be +/- 1 ULP for basic
* algebraic operation</li>
* <li>Comply with IEEE 854-1987 as much as possible.
* (See IEEE 854-1987 notes below)</li>
* </ol>
*
* <p>Trade offs:
* <ol>
* <li>Memory foot print. I'm using more memory than necessary to
* represent numbers to get better performance.</li>
* <li>Digits are bigger, so rounding is a greater loss. So, if you
* really need 12 decimal digits, better use 4 base 10000 digits
* there can be one partially filled.</li>
* </ol>
*
* <p>Numbers are represented in the following form:
* <div style="white-space: pre"><code>
* n = sign &times; mant &times; (radix)<sup>exp</sup>;
* </code></div>
* where sign is &plusmn;1, mantissa represents a fractional number between
* zero and one. mant[0] is the least significant digit.
* exp is in the range of -32767 to 32768
*
* <p>IEEE 854-1987 Notes and differences</p>
*
* <p>IEEE 854 requires the radix to be either 2 or 10. The radix here is
* 10000, so that requirement is not met, but it is possible that a
* subclassed can be made to make it behave as a radix 10
* number. It is my opinion that if it looks and behaves as a radix
* 10 number then it is one and that requirement would be met.</p>
*
* <p>The radix of 10000 was chosen because it should be faster to operate
* on 4 decimal digits at once instead of one at a time. Radix 10 behavior
* can be realized by add an additional rounding step to ensure that
* the number of decimal digits represented is constant.</p>
*
* <p>The IEEE standard specifically leaves out internal data encoding,
* so it is reasonable to conclude that such a subclass of this radix
* 10000 system is merely an encoding of a radix 10 system.</p>
*
* <p>IEEE 854 also specifies the existence of "sub-normal" numbers. This
* class does not contain any such entities. The most significant radix
* 10000 digit is always non-zero. Instead, we support "gradual underflow"
* by raising the underflow flag for numbers less with exponent less than
* expMin, but don't flush to zero until the exponent reaches MIN_EXP-digits.
* Thus the smallest number we can represent would be:
* 1E(-(MIN_EXP-digits-1)&lowast;4), eg, for digits=5, MIN_EXP=-32767, that would
* be 1e-131092.</p>
*
* <p>IEEE 854 defines that the implied radix point lies just to the right
* of the most significant digit and to the left of the remaining digits.
* This implementation puts the implied radix point to the left of all
* digits including the most significant one. The most significant digit
* here is the one just to the right of the radix point. This is a fine
* detail and is really only a matter of definition. Any side effects of
* this can be rendered invisible by a subclass.</p>
*
*/
package org.apache.commons.math4.legacy.core.dfp;

View File

@ -25,36 +25,36 @@ import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
/**
* Portable alternative to {@link Math} and {@link StrictMath}.
* <p>
* Caveat: At the time of implementation, the {@code FastMath} functions
* Caveat: At the time of implementation, the {@code AccurateMath} functions
* were often faster and/or more accurate than their JDK equivalent.
* Nowadays, it would not be surprising that they are always slower (due
* to the various JVM optimizations that have appeared since Java 5).
* However, any change to this class should ensure that the current
* accuracy is not lost.
* <p>
* FastMath is a drop-in replacement for both Math and StrictMath. This
* AccurateMath is a drop-in replacement for both Math and StrictMath. This
* means that for any method in Math (say {@code Math.sin(x)} or
* {@code Math.cbrt(y)}), user can directly change the class and use the
* methods as is (using {@code FastMath.sin(x)} or {@code FastMath.cbrt(y)}
* methods as is (using {@code AccurateMath.sin(x)} or {@code AccurateMath.cbrt(y)}
* in the previous example).
* </p>
* <p>
* FastMath speed is achieved by relying heavily on optimizing compilers
* AccurateMath speed is achieved by relying heavily on optimizing compilers
* to native code present in many JVMs today and use of large tables.
* The larger tables are lazily initialized on first use, so that the setup
* time does not penalize methods that don't need them.
* </p>
* <p>
* Note that FastMath is
* Note that AccurateMath is
* extensively used inside Apache Commons Math, so by calling some algorithms,
* the overhead when the tables need to be initialized will occur
* regardless of the end-user calling FastMath methods directly or not.
* regardless of the end-user calling AccurateMath methods directly or not.
* Performance figures for a specific JVM and hardware can be evaluated by
* running the FastMathTestPerformance tests in the test directory of the source
* running the AccurateMathTestPerformance tests in the test directory of the source
* distribution.
* </p>
* <p>
* FastMath accuracy should be mostly independent of the JVM as it relies only
* AccurateMath accuracy should be mostly independent of the JVM as it relies only
* on IEEE-754 basic operations and on embedded tables. Almost all operations
* are accurate to about 0.5 ulp throughout the domain range. This statement,
* of course is only a rough global observed behavior, it is <em>not</em> a
@ -63,14 +63,14 @@ import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
* Maker's Dilemma</a>).
* </p>
* <p>
* FastMath additionally implements the following methods not found in Math/StrictMath:
* AccurateMath additionally implements the following methods not found in Math/StrictMath:
* <ul>
* <li>{@link #asinh(double)}</li>
* <li>{@link #acosh(double)}</li>
* <li>{@link #atanh(double)}</li>
* </ul>
* The following methods are found in Math/StrictMath since 1.6 only, they are provided
* by FastMath even in 1.5 Java virtual machines
* by AccurateMath even in 1.5 Java virtual machines
* <ul>
* <li>{@link #copySign(double, double)}</li>
* <li>{@link #getExponent(double)}</li>
@ -85,7 +85,7 @@ import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
* </ul>
* @since 2.2
*/
public class FastMath {
public class AccurateMath {
/** Archimede's constant PI, ratio of circle circumference to diameter. */
public static final double PI = 105414357.0 / 33554432.0 + 1.984187159361080883e-9;
@ -371,7 +371,7 @@ public class FastMath {
/**
* Private Constructor
*/
private FastMath() {}
private AccurateMath() {}
// Generic helper methods
@ -723,7 +723,7 @@ public class FastMath {
* @return inverse hyperbolic cosine of a
*/
public static double acosh(final double a) {
return FastMath.log(a + FastMath.sqrt(a * a - 1));
return AccurateMath.log(a + AccurateMath.sqrt(a * a - 1));
}
/** Compute the inverse hyperbolic sine of a number.
@ -739,7 +739,7 @@ public class FastMath {
double absAsinh;
if (a > 0.167) {
absAsinh = FastMath.log(FastMath.sqrt(a * a + 1) + a);
absAsinh = AccurateMath.log(AccurateMath.sqrt(a * a + 1) + a);
} else {
final double a2 = a * a;
if (a > 0.097) {
@ -769,7 +769,7 @@ public class FastMath {
double absAtanh;
if (a > 0.15) {
absAtanh = 0.5 * FastMath.log((1 + a) / (1 - a));
absAtanh = 0.5 * AccurateMath.log((1 + a) / (1 - a));
} else {
final double a2 = a * a;
if (a > 0.087) {
@ -1536,13 +1536,13 @@ public class FastMath {
if ((yFullMantissa & integralMask) == yFullMantissa) {
// all fractional bits are 0, the number is really integral
final long l = yFullMantissa >> (1075 - yRawExp);
return FastMath.pow(x, (y < 0) ? -l : l);
return AccurateMath.pow(x, (y < 0) ? -l : l);
}
} else {
// normal number with positive shift, always an integral value
// we know it fits in a primitive long because yRawExp > 1085 has been handled above
final long l = yFullMantissa << (yRawExp - 1075);
return FastMath.pow(x, (y < 0) ? -l : l);
return AccurateMath.pow(x, (y < 0) ? -l : l);
}
}
@ -1754,8 +1754,8 @@ public class FastMath {
} else {
// some intermediate numbers exceeded capacity,
// and the low order bits became NaN (because infinity - infinity = NaN)
if (FastMath.abs(full) < 1) {
return new Split(FastMath.copySign(0.0, full), 0.0);
if (AccurateMath.abs(full) < 1) {
return new Split(AccurateMath.copySign(0.0, full), 0.0);
} else if (full < 0 && (e & 0x1) == 1) {
return Split.NEGATIVE_INFINITY;
} else {
@ -3778,9 +3778,9 @@ public class FastMath {
}
} else {
// we are in the general case
final double n = FastMath.rint(dividend / divisor);
final double n = AccurateMath.rint(dividend / divisor);
final double remainder = Double.isInfinite(n) ? 0.0 : dividend - divisor * n;
return (remainder == 0) ? FastMath.copySign(remainder, dividend) : remainder;
return (remainder == 0) ? AccurateMath.copySign(remainder, dividend) : remainder;
}
}
@ -4174,17 +4174,17 @@ public class FastMath {
*/
public static void main(String[] a) {
PrintStream out = System.out;
FastMathCalc.printarray(out, "EXP_INT_TABLE_A", EXP_INT_TABLE_LEN, ExpIntTable.EXP_INT_TABLE_A);
FastMathCalc.printarray(out, "EXP_INT_TABLE_B", EXP_INT_TABLE_LEN, ExpIntTable.EXP_INT_TABLE_B);
FastMathCalc.printarray(out, "EXP_FRAC_TABLE_A", EXP_FRAC_TABLE_LEN, ExpFracTable.EXP_FRAC_TABLE_A);
FastMathCalc.printarray(out, "EXP_FRAC_TABLE_B", EXP_FRAC_TABLE_LEN, ExpFracTable.EXP_FRAC_TABLE_B);
FastMathCalc.printarray(out, "LN_MANT",LN_MANT_LEN, lnMant.LN_MANT);
FastMathCalc.printarray(out, "SINE_TABLE_A", SINE_TABLE_LEN, SINE_TABLE_A);
FastMathCalc.printarray(out, "SINE_TABLE_B", SINE_TABLE_LEN, SINE_TABLE_B);
FastMathCalc.printarray(out, "COSINE_TABLE_A", SINE_TABLE_LEN, COSINE_TABLE_A);
FastMathCalc.printarray(out, "COSINE_TABLE_B", SINE_TABLE_LEN, COSINE_TABLE_B);
FastMathCalc.printarray(out, "TANGENT_TABLE_A", SINE_TABLE_LEN, TANGENT_TABLE_A);
FastMathCalc.printarray(out, "TANGENT_TABLE_B", SINE_TABLE_LEN, TANGENT_TABLE_B);
AccurateMathCalc.printarray(out, "EXP_INT_TABLE_A", EXP_INT_TABLE_LEN, ExpIntTable.EXP_INT_TABLE_A);
AccurateMathCalc.printarray(out, "EXP_INT_TABLE_B", EXP_INT_TABLE_LEN, ExpIntTable.EXP_INT_TABLE_B);
AccurateMathCalc.printarray(out, "EXP_FRAC_TABLE_A", EXP_FRAC_TABLE_LEN, ExpFracTable.EXP_FRAC_TABLE_A);
AccurateMathCalc.printarray(out, "EXP_FRAC_TABLE_B", EXP_FRAC_TABLE_LEN, ExpFracTable.EXP_FRAC_TABLE_B);
AccurateMathCalc.printarray(out, "LN_MANT",LN_MANT_LEN, lnMant.LN_MANT);
AccurateMathCalc.printarray(out, "SINE_TABLE_A", SINE_TABLE_LEN, SINE_TABLE_A);
AccurateMathCalc.printarray(out, "SINE_TABLE_B", SINE_TABLE_LEN, SINE_TABLE_B);
AccurateMathCalc.printarray(out, "COSINE_TABLE_A", SINE_TABLE_LEN, COSINE_TABLE_A);
AccurateMathCalc.printarray(out, "COSINE_TABLE_B", SINE_TABLE_LEN, COSINE_TABLE_B);
AccurateMathCalc.printarray(out, "TANGENT_TABLE_A", SINE_TABLE_LEN, TANGENT_TABLE_A);
AccurateMathCalc.printarray(out, "TANGENT_TABLE_B", SINE_TABLE_LEN, TANGENT_TABLE_B);
}
/** Enclose large data table in nested static class so it's only loaded on first access. */
@ -4200,28 +4200,28 @@ public class FastMath {
static {
if (RECOMPUTE_TABLES_AT_RUNTIME) {
EXP_INT_TABLE_A = new double[FastMath.EXP_INT_TABLE_LEN];
EXP_INT_TABLE_B = new double[FastMath.EXP_INT_TABLE_LEN];
EXP_INT_TABLE_A = new double[AccurateMath.EXP_INT_TABLE_LEN];
EXP_INT_TABLE_B = new double[AccurateMath.EXP_INT_TABLE_LEN];
final double tmp[] = new double[2];
final double recip[] = new double[2];
// Populate expIntTable
for (int i = 0; i < FastMath.EXP_INT_TABLE_MAX_INDEX; i++) {
FastMathCalc.expint(i, tmp);
EXP_INT_TABLE_A[i + FastMath.EXP_INT_TABLE_MAX_INDEX] = tmp[0];
EXP_INT_TABLE_B[i + FastMath.EXP_INT_TABLE_MAX_INDEX] = tmp[1];
for (int i = 0; i < AccurateMath.EXP_INT_TABLE_MAX_INDEX; i++) {
AccurateMathCalc.expint(i, tmp);
EXP_INT_TABLE_A[i + AccurateMath.EXP_INT_TABLE_MAX_INDEX] = tmp[0];
EXP_INT_TABLE_B[i + AccurateMath.EXP_INT_TABLE_MAX_INDEX] = tmp[1];
if (i != 0) {
// Negative integer powers
FastMathCalc.splitReciprocal(tmp, recip);
EXP_INT_TABLE_A[FastMath.EXP_INT_TABLE_MAX_INDEX - i] = recip[0];
EXP_INT_TABLE_B[FastMath.EXP_INT_TABLE_MAX_INDEX - i] = recip[1];
AccurateMathCalc.splitReciprocal(tmp, recip);
EXP_INT_TABLE_A[AccurateMath.EXP_INT_TABLE_MAX_INDEX - i] = recip[0];
EXP_INT_TABLE_B[AccurateMath.EXP_INT_TABLE_MAX_INDEX - i] = recip[1];
}
}
} else {
EXP_INT_TABLE_A = FastMathLiteralArrays.loadExpIntA();
EXP_INT_TABLE_B = FastMathLiteralArrays.loadExpIntB();
EXP_INT_TABLE_A = AccurateMathLiteralArrays.loadExpIntA();
EXP_INT_TABLE_B = AccurateMathLiteralArrays.loadExpIntB();
}
}
}
@ -4240,21 +4240,21 @@ public class FastMath {
static {
if (RECOMPUTE_TABLES_AT_RUNTIME) {
EXP_FRAC_TABLE_A = new double[FastMath.EXP_FRAC_TABLE_LEN];
EXP_FRAC_TABLE_B = new double[FastMath.EXP_FRAC_TABLE_LEN];
EXP_FRAC_TABLE_A = new double[AccurateMath.EXP_FRAC_TABLE_LEN];
EXP_FRAC_TABLE_B = new double[AccurateMath.EXP_FRAC_TABLE_LEN];
final double tmp[] = new double[2];
// Populate expFracTable
final double factor = 1d / (EXP_FRAC_TABLE_LEN - 1);
for (int i = 0; i < EXP_FRAC_TABLE_A.length; i++) {
FastMathCalc.slowexp(i * factor, tmp);
AccurateMathCalc.slowexp(i * factor, tmp);
EXP_FRAC_TABLE_A[i] = tmp[0];
EXP_FRAC_TABLE_B[i] = tmp[1];
}
} else {
EXP_FRAC_TABLE_A = FastMathLiteralArrays.loadExpFracA();
EXP_FRAC_TABLE_B = FastMathLiteralArrays.loadExpFracB();
EXP_FRAC_TABLE_A = AccurateMathLiteralArrays.loadExpFracA();
EXP_FRAC_TABLE_B = AccurateMathLiteralArrays.loadExpFracB();
}
}
}
@ -4266,15 +4266,15 @@ public class FastMath {
static {
if (RECOMPUTE_TABLES_AT_RUNTIME) {
LN_MANT = new double[FastMath.LN_MANT_LEN][];
LN_MANT = new double[AccurateMath.LN_MANT_LEN][];
// Populate lnMant table
for (int i = 0; i < LN_MANT.length; i++) {
final double d = Double.longBitsToDouble( (((long) i) << 42) | 0x3ff0000000000000L );
LN_MANT[i] = FastMathCalc.slowLog(d);
LN_MANT[i] = AccurateMathCalc.slowLog(d);
}
} else {
LN_MANT = FastMathLiteralArrays.loadLnMant();
LN_MANT = AccurateMathLiteralArrays.loadLnMant();
}
}
}

View File

@ -0,0 +1,658 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.core.jdkmath;
import java.io.PrintStream;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
/** Class used to compute the classical functions tables.
* @since 3.0
*/
class AccurateMathCalc {
/**
* 0x40000000 - used to split a double into two parts, both with the low order bits cleared.
* Equivalent to 2^30.
*/
private static final long HEX_40000000 = 0x40000000L; // 1073741824L
/** Factorial table, for Taylor series expansions. 0!, 1!, 2!, ... 19! */
private static final double FACT[] = new double[]
{
+1.0d, // 0
+1.0d, // 1
+2.0d, // 2
+6.0d, // 3
+24.0d, // 4
+120.0d, // 5
+720.0d, // 6
+5040.0d, // 7
+40320.0d, // 8
+362880.0d, // 9
+3628800.0d, // 10
+39916800.0d, // 11
+479001600.0d, // 12
+6227020800.0d, // 13
+87178291200.0d, // 14
+1307674368000.0d, // 15
+20922789888000.0d, // 16
+355687428096000.0d, // 17
+6402373705728000.0d, // 18
+121645100408832000.0d, // 19
};
/** Coefficients for slowLog. */
private static final double LN_SPLIT_COEF[][] = {
{2.0, 0.0},
{0.6666666269302368, 3.9736429850260626E-8},
{0.3999999761581421, 2.3841857910019882E-8},
{0.2857142686843872, 1.7029898543501842E-8},
{0.2222222089767456, 1.3245471311735498E-8},
{0.1818181574344635, 2.4384203044354907E-8},
{0.1538461446762085, 9.140260083262505E-9},
{0.13333332538604736, 9.220590270857665E-9},
{0.11764700710773468, 1.2393345855018391E-8},
{0.10526403784751892, 8.251545029714408E-9},
{0.0952233225107193, 1.2675934823758863E-8},
{0.08713622391223907, 1.1430250008909141E-8},
{0.07842259109020233, 2.404307984052299E-9},
{0.08371849358081818, 1.176342548272881E-8},
{0.030589580535888672, 1.2958646899018938E-9},
{0.14982303977012634, 1.225743062930824E-8},
};
/** Table start declaration. */
private static final String TABLE_START_DECL = " {";
/** Table end declaration. */
private static final String TABLE_END_DECL = " };";
/**
* Private Constructor.
*/
private AccurateMathCalc() {
}
/** Build the sine and cosine tables.
* @param SINE_TABLE_A table of the most significant part of the sines
* @param SINE_TABLE_B table of the least significant part of the sines
* @param COSINE_TABLE_A table of the most significant part of the cosines
* @param COSINE_TABLE_B table of the most significant part of the cosines
* @param SINE_TABLE_LEN length of the tables
* @param TANGENT_TABLE_A table of the most significant part of the tangents
* @param TANGENT_TABLE_B table of the most significant part of the tangents
*/
@SuppressWarnings("unused")
private static void buildSinCosTables(double[] SINE_TABLE_A, double[] SINE_TABLE_B,
double[] COSINE_TABLE_A, double[] COSINE_TABLE_B,
int SINE_TABLE_LEN, double[] TANGENT_TABLE_A, double[] TANGENT_TABLE_B) {
final double result[] = new double[2];
/* Use taylor series for 0 <= x <= 6/8 */
for (int i = 0; i < 7; i++) {
double x = i / 8.0;
slowSin(x, result);
SINE_TABLE_A[i] = result[0];
SINE_TABLE_B[i] = result[1];
slowCos(x, result);
COSINE_TABLE_A[i] = result[0];
COSINE_TABLE_B[i] = result[1];
}
/* Use angle addition formula to complete table to 13/8, just beyond pi/2 */
for (int i = 7; i < SINE_TABLE_LEN; i++) {
double xs[] = new double[2];
double ys[] = new double[2];
double as[] = new double[2];
double bs[] = new double[2];
double temps[] = new double[2];
if ( (i & 1) == 0) {
// Even, use double angle
xs[0] = SINE_TABLE_A[i/2];
xs[1] = SINE_TABLE_B[i/2];
ys[0] = COSINE_TABLE_A[i/2];
ys[1] = COSINE_TABLE_B[i/2];
/* compute sine */
splitMult(xs, ys, result);
SINE_TABLE_A[i] = result[0] * 2.0;
SINE_TABLE_B[i] = result[1] * 2.0;
/* Compute cosine */
splitMult(ys, ys, as);
splitMult(xs, xs, temps);
temps[0] = -temps[0];
temps[1] = -temps[1];
splitAdd(as, temps, result);
COSINE_TABLE_A[i] = result[0];
COSINE_TABLE_B[i] = result[1];
} else {
xs[0] = SINE_TABLE_A[i/2];
xs[1] = SINE_TABLE_B[i/2];
ys[0] = COSINE_TABLE_A[i/2];
ys[1] = COSINE_TABLE_B[i/2];
as[0] = SINE_TABLE_A[i/2+1];
as[1] = SINE_TABLE_B[i/2+1];
bs[0] = COSINE_TABLE_A[i/2+1];
bs[1] = COSINE_TABLE_B[i/2+1];
/* compute sine */
splitMult(xs, bs, temps);
splitMult(ys, as, result);
splitAdd(result, temps, result);
SINE_TABLE_A[i] = result[0];
SINE_TABLE_B[i] = result[1];
/* Compute cosine */
splitMult(ys, bs, result);
splitMult(xs, as, temps);
temps[0] = -temps[0];
temps[1] = -temps[1];
splitAdd(result, temps, result);
COSINE_TABLE_A[i] = result[0];
COSINE_TABLE_B[i] = result[1];
}
}
/* Compute tangent = sine/cosine */
for (int i = 0; i < SINE_TABLE_LEN; i++) {
double xs[] = new double[2];
double ys[] = new double[2];
double as[] = new double[2];
as[0] = COSINE_TABLE_A[i];
as[1] = COSINE_TABLE_B[i];
splitReciprocal(as, ys);
xs[0] = SINE_TABLE_A[i];
xs[1] = SINE_TABLE_B[i];
splitMult(xs, ys, as);
TANGENT_TABLE_A[i] = as[0];
TANGENT_TABLE_B[i] = as[1];
}
}
/**
* For x between 0 and pi/4 compute cosine using Talor series
* cos(x) = 1 - x^2/2! + x^4/4! ...
* @param x number from which cosine is requested
* @param result placeholder where to put the result in extended precision
* (may be null)
* @return cos(x)
*/
static double slowCos(final double x, final double result[]) {
final double xs[] = new double[2];
final double ys[] = new double[2];
final double facts[] = new double[2];
final double as[] = new double[2];
split(x, xs);
ys[0] = ys[1] = 0.0;
for (int i = FACT.length-1; i >= 0; i--) {
splitMult(xs, ys, as);
ys[0] = as[0]; ys[1] = as[1];
if ( (i & 1) != 0) { // skip odd entries
continue;
}
split(FACT[i], as);
splitReciprocal(as, facts);
if ( (i & 2) != 0 ) { // alternate terms are negative
facts[0] = -facts[0];
facts[1] = -facts[1];
}
splitAdd(ys, facts, as);
ys[0] = as[0]; ys[1] = as[1];
}
if (result != null) {
result[0] = ys[0];
result[1] = ys[1];
}
return ys[0] + ys[1];
}
/**
* For x between 0 and pi/4 compute sine using Taylor expansion:
* sin(x) = x - x^3/3! + x^5/5! - x^7/7! ...
* @param x number from which sine is requested
* @param result placeholder where to put the result in extended precision
* (may be null)
* @return sin(x)
*/
static double slowSin(final double x, final double result[]) {
final double xs[] = new double[2];
final double ys[] = new double[2];
final double facts[] = new double[2];
final double as[] = new double[2];
split(x, xs);
ys[0] = ys[1] = 0.0;
for (int i = FACT.length-1; i >= 0; i--) {
splitMult(xs, ys, as);
ys[0] = as[0]; ys[1] = as[1];
if ( (i & 1) == 0) { // Ignore even numbers
continue;
}
split(FACT[i], as);
splitReciprocal(as, facts);
if ( (i & 2) != 0 ) { // alternate terms are negative
facts[0] = -facts[0];
facts[1] = -facts[1];
}
splitAdd(ys, facts, as);
ys[0] = as[0]; ys[1] = as[1];
}
if (result != null) {
result[0] = ys[0];
result[1] = ys[1];
}
return ys[0] + ys[1];
}
/**
* For x between 0 and 1, returns exp(x), uses extended precision
* @param x argument of exponential
* @param result placeholder where to place exp(x) split in two terms
* for extra precision (i.e. exp(x) = result[0] + result[1]
* @return exp(x)
*/
static double slowexp(final double x, final double result[]) {
final double xs[] = new double[2];
final double ys[] = new double[2];
final double facts[] = new double[2];
final double as[] = new double[2];
split(x, xs);
ys[0] = ys[1] = 0.0;
for (int i = FACT.length-1; i >= 0; i--) {
splitMult(xs, ys, as);
ys[0] = as[0];
ys[1] = as[1];
split(FACT[i], as);
splitReciprocal(as, facts);
splitAdd(ys, facts, as);
ys[0] = as[0];
ys[1] = as[1];
}
if (result != null) {
result[0] = ys[0];
result[1] = ys[1];
}
return ys[0] + ys[1];
}
/** Compute split[0], split[1] such that their sum is equal to d,
* and split[0] has its 30 least significant bits as zero.
* @param d number to split
* @param split placeholder where to place the result
*/
private static void split(final double d, final double split[]) {
if (d < 8e298 && d > -8e298) {
final double a = d * HEX_40000000;
split[0] = (d + a) - a;
split[1] = d - split[0];
} else {
final double a = d * 9.31322574615478515625E-10;
split[0] = (d + a - d) * HEX_40000000;
split[1] = d - split[0];
}
}
/** Recompute a split.
* @param a input/out array containing the split, changed
* on output
*/
private static void resplit(final double a[]) {
final double c = a[0] + a[1];
final double d = -(c - a[0] - a[1]);
if (c < 8e298 && c > -8e298) { // MAGIC NUMBER
double z = c * HEX_40000000;
a[0] = (c + z) - z;
a[1] = c - a[0] + d;
} else {
double z = c * 9.31322574615478515625E-10;
a[0] = (c + z - c) * HEX_40000000;
a[1] = c - a[0] + d;
}
}
/** Multiply two numbers in split form.
* @param a first term of multiplication
* @param b second term of multiplication
* @param ans placeholder where to put the result
*/
private static void splitMult(double a[], double b[], double ans[]) {
ans[0] = a[0] * b[0];
ans[1] = a[0] * b[1] + a[1] * b[0] + a[1] * b[1];
/* Resplit */
resplit(ans);
}
/** Add two numbers in split form.
* @param a first term of addition
* @param b second term of addition
* @param ans placeholder where to put the result
*/
private static void splitAdd(final double a[], final double b[], final double ans[]) {
ans[0] = a[0] + b[0];
ans[1] = a[1] + b[1];
resplit(ans);
}
/** Compute the reciprocal of in. Use the following algorithm.
* in = c + d.
* want to find x + y such that x+y = 1/(c+d) and x is much
* larger than y and x has several zero bits on the right.
*
* Set b = 1/(2^22), a = 1 - b. Thus (a+b) = 1.
* Use following identity to compute (a+b)/(c+d)
*
* (a+b)/(c+d) = a/c + (bc - ad) / (c^2 + cd)
* set x = a/c and y = (bc - ad) / (c^2 + cd)
* This will be close to the right answer, but there will be
* some rounding in the calculation of X. So by carefully
* computing 1 - (c+d)(x+y) we can compute an error and
* add that back in. This is done carefully so that terms
* of similar size are subtracted first.
* @param in initial number, in split form
* @param result placeholder where to put the result
*/
static void splitReciprocal(final double in[], final double result[]) {
final double b = 1.0/4194304.0;
final double a = 1.0 - b;
if (in[0] == 0.0) {
in[0] = in[1];
in[1] = 0.0;
}
result[0] = a / in[0];
result[1] = (b*in[0]-a*in[1]) / (in[0]*in[0] + in[0]*in[1]);
if (result[1] != result[1]) { // can happen if result[1] is NAN
result[1] = 0.0;
}
/* Resplit */
resplit(result);
for (int i = 0; i < 2; i++) {
/* this may be overkill, probably once is enough */
double err = 1.0 - result[0] * in[0] - result[0] * in[1] -
result[1] * in[0] - result[1] * in[1];
/*err = 1.0 - err; */
err *= result[0] + result[1];
/*printf("err = %16e\n", err); */
result[1] += err;
}
}
/** Compute (a[0] + a[1]) * (b[0] + b[1]) in extended precision.
* @param a first term of the multiplication
* @param b second term of the multiplication
* @param result placeholder where to put the result
*/
private static void quadMult(final double a[], final double b[], final double result[]) {
final double xs[] = new double[2];
final double ys[] = new double[2];
final double zs[] = new double[2];
/* a[0] * b[0] */
split(a[0], xs);
split(b[0], ys);
splitMult(xs, ys, zs);
result[0] = zs[0];
result[1] = zs[1];
/* a[0] * b[1] */
split(b[1], ys);
splitMult(xs, ys, zs);
double tmp = result[0] + zs[0];
result[1] -= tmp - result[0] - zs[0];
result[0] = tmp;
tmp = result[0] + zs[1];
result[1] -= tmp - result[0] - zs[1];
result[0] = tmp;
/* a[1] * b[0] */
split(a[1], xs);
split(b[0], ys);
splitMult(xs, ys, zs);
tmp = result[0] + zs[0];
result[1] -= tmp - result[0] - zs[0];
result[0] = tmp;
tmp = result[0] + zs[1];
result[1] -= tmp - result[0] - zs[1];
result[0] = tmp;
/* a[1] * b[0] */
split(a[1], xs);
split(b[1], ys);
splitMult(xs, ys, zs);
tmp = result[0] + zs[0];
result[1] -= tmp - result[0] - zs[0];
result[0] = tmp;
tmp = result[0] + zs[1];
result[1] -= tmp - result[0] - zs[1];
result[0] = tmp;
}
/** Compute exp(p) for a integer p in extended precision.
* @param p integer whose exponential is requested
* @param result placeholder where to put the result in extended precision
* @return exp(p) in standard precision (equal to result[0] + result[1])
*/
static double expint(int p, final double result[]) {
//double x = M_E;
final double xs[] = new double[2];
final double as[] = new double[2];
final double ys[] = new double[2];
//split(x, xs);
//xs[1] = (double)(2.7182818284590452353602874713526625L - xs[0]);
//xs[0] = 2.71827697753906250000;
//xs[1] = 4.85091998273542816811e-06;
//xs[0] = Double.longBitsToDouble(0x4005bf0800000000L);
//xs[1] = Double.longBitsToDouble(0x3ed458a2bb4a9b00L);
/* E */
xs[0] = 2.718281828459045;
xs[1] = 1.4456468917292502E-16;
split(1.0, ys);
while (p > 0) {
if ((p & 1) != 0) {
quadMult(ys, xs, as);
ys[0] = as[0]; ys[1] = as[1];
}
quadMult(xs, xs, as);
xs[0] = as[0]; xs[1] = as[1];
p >>= 1;
}
if (result != null) {
result[0] = ys[0];
result[1] = ys[1];
resplit(result);
}
return ys[0] + ys[1];
}
/** xi in the range of [1, 2].
* 3 5 7
* x+1 / x x x \
* ln ----- = 2 * | x + ---- + ---- + ---- + ... |
* 1-x \ 3 5 7 /
*
* So, compute a Remez approximation of the following function
*
* ln ((sqrt(x)+1)/(1-sqrt(x))) / x
*
* This will be an even function with only positive coefficents.
* x is in the range [0 - 1/3].
*
* Transform xi for input to the above function by setting
* x = (xi-1)/(xi+1). Input to the polynomial is x^2, then
* the result is multiplied by x.
* @param xi number from which log is requested
* @return log(xi)
*/
static double[] slowLog(double xi) {
double x[] = new double[2];
double x2[] = new double[2];
double y[] = new double[2];
double a[] = new double[2];
split(xi, x);
/* Set X = (x-1)/(x+1) */
x[0] += 1.0;
resplit(x);
splitReciprocal(x, a);
x[0] -= 2.0;
resplit(x);
splitMult(x, a, y);
x[0] = y[0];
x[1] = y[1];
/* Square X -> X2*/
splitMult(x, x, x2);
//x[0] -= 1.0;
//resplit(x);
y[0] = LN_SPLIT_COEF[LN_SPLIT_COEF.length-1][0];
y[1] = LN_SPLIT_COEF[LN_SPLIT_COEF.length-1][1];
for (int i = LN_SPLIT_COEF.length-2; i >= 0; i--) {
splitMult(y, x2, a);
y[0] = a[0];
y[1] = a[1];
splitAdd(y, LN_SPLIT_COEF[i], a);
y[0] = a[0];
y[1] = a[1];
}
splitMult(y, x, a);
y[0] = a[0];
y[1] = a[1];
return y;
}
/**
* Print an array.
* @param out text output stream where output should be printed
* @param name array name
* @param expectedLen expected length of the array
* @param array2d array data
*/
static void printarray(PrintStream out, String name, int expectedLen, double[][] array2d) {
out.println(name);
checkLen(expectedLen, array2d.length);
out.println(TABLE_START_DECL + " ");
int i = 0;
for(double[] array : array2d) { // "double array[]" causes PMD parsing error
out.print(" {");
for(double d : array) { // assume inner array has very few entries
out.printf("%-25.25s", format(d)); // multiple entries per line
}
out.println("}, // " + i++);
}
out.println(TABLE_END_DECL);
}
/**
* Print an array.
* @param out text output stream where output should be printed
* @param name array name
* @param expectedLen expected length of the array
* @param array array data
*/
static void printarray(PrintStream out, String name, int expectedLen, double[] array) {
out.println(name + "=");
checkLen(expectedLen, array.length);
out.println(TABLE_START_DECL);
for(double d : array){
out.printf(" %s%n", format(d)); // one entry per line
}
out.println(TABLE_END_DECL);
}
/** Format a double.
* @param d double number to format
* @return formatted number
*/
static String format(double d) {
if (d != d) {
return "Double.NaN,";
} else {
return ((d >= 0) ? "+" : "") + Double.toString(d) + "d,";
}
}
/**
* Check two lengths are equal.
* @param expectedLen expected length
* @param actual actual length
* @exception DimensionMismatchException if the two lengths are not equal
*/
private static void checkLen(int expectedLen, int actual)
throws DimensionMismatchException {
if (expectedLen != actual) {
throw new DimensionMismatchException(actual, expectedLen);
}
}
}

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
/** Class used to compute the classical functions tables.
* @since 3.0
*/
class FastMathCalc {
class AccurateMathCalc {
/**
* 0x40000000 - used to split a double into two parts, both with the low order bits cleared.
@ -85,7 +85,7 @@ class FastMathCalc {
/**
* Private Constructor.
*/
private FastMathCalc() {
private AccurateMathCalc() {
}
/** Build the sine and cosine tables.

View File

@ -18,10 +18,10 @@
package org.apache.commons.math4.legacy.util;
/**
* Utility class for loading tabulated data used by {@link FastMath}.
* Utility class for loading tabulated data used by {@link AccurateMath}.
*
*/
class FastMathLiteralArrays {
class AccurateMathLiteralArrays {
/** Exponential evaluated at integer values,
* exp(x) = expIntTableA[x + EXP_INT_TABLE_MAX_INDEX] + expIntTableB[x+EXP_INT_TABLE_MAX_INDEX].
*/
@ -6130,7 +6130,7 @@ class FastMathLiteralArrays {
/**
* Class contains only static methods.
*/
private FastMathLiteralArrays() {}
private AccurateMathLiteralArrays() {}
/**
* Load "EXP_INT_A".

View File

@ -14,15 +14,15 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy;
package org.apache.commons.math4.legacy.core;
import org.junit.Assert;
import org.junit.Test;
import org.apache.commons.numbers.arrays.LinearCombination;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.junit.Assert;
import org.junit.Test;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElement<T>> {
@ -113,7 +113,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testRemainderField() {
for (double x = -3; x < 3; x += 0.2) {
for (double y = -3; y < 3; y += 0.2) {
checkRelative(FastMath.IEEEremainder(x, y), build(x).remainder(build(y)));
checkRelative(AccurateMath.IEEEremainder(x, y), build(x).remainder(build(y)));
}
}
}
@ -122,7 +122,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testRemainderDouble() {
for (double x = -3; x < 3; x += 0.2) {
for (double y = -3.2; y < 3.2; y += 0.25) {
checkRelative(FastMath.IEEEremainder(x, y), build(x).remainder(y));
checkRelative(AccurateMath.IEEEremainder(x, y), build(x).remainder(y));
}
}
}
@ -130,42 +130,42 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
@Test
public void testCos() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.cos(x), build(x).cos());
checkRelative(AccurateMath.cos(x), build(x).cos());
}
}
@Test
public void testAcos() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.acos(x), build(x).acos());
checkRelative(AccurateMath.acos(x), build(x).acos());
}
}
@Test
public void testSin() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.sin(x), build(x).sin());
checkRelative(AccurateMath.sin(x), build(x).sin());
}
}
@Test
public void testAsin() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.asin(x), build(x).asin());
checkRelative(AccurateMath.asin(x), build(x).asin());
}
}
@Test
public void testTan() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.tan(x), build(x).tan());
checkRelative(AccurateMath.tan(x), build(x).tan());
}
}
@Test
public void testAtan() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.atan(x), build(x).atan());
checkRelative(AccurateMath.atan(x), build(x).atan());
}
}
@ -173,7 +173,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testAtan2() {
for (double x = -3; x < 3; x += 0.2) {
for (double y = -3; y < 3; y += 0.2) {
checkRelative(FastMath.atan2(x, y), build(x).atan2(build(y)));
checkRelative(AccurateMath.atan2(x, y), build(x).atan2(build(y)));
}
}
}
@ -181,56 +181,56 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
@Test
public void testCosh() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.cosh(x), build(x).cosh());
checkRelative(AccurateMath.cosh(x), build(x).cosh());
}
}
@Test
public void testAcosh() {
for (double x = 1.1; x < 5.0; x += 0.05) {
checkRelative(FastMath.acosh(x), build(x).acosh());
checkRelative(AccurateMath.acosh(x), build(x).acosh());
}
}
@Test
public void testSinh() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.sinh(x), build(x).sinh());
checkRelative(AccurateMath.sinh(x), build(x).sinh());
}
}
@Test
public void testAsinh() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.asinh(x), build(x).asinh());
checkRelative(AccurateMath.asinh(x), build(x).asinh());
}
}
@Test
public void testTanh() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.tanh(x), build(x).tanh());
checkRelative(AccurateMath.tanh(x), build(x).tanh());
}
}
@Test
public void testAtanh() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.atanh(x), build(x).atanh());
checkRelative(AccurateMath.atanh(x), build(x).atanh());
}
}
@Test
public void testSqrt() {
for (double x = 0.01; x < 0.9; x += 0.05) {
checkRelative(FastMath.sqrt(x), build(x).sqrt());
checkRelative(AccurateMath.sqrt(x), build(x).sqrt());
}
}
@Test
public void testCbrt() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.cbrt(x), build(x).cbrt());
checkRelative(AccurateMath.cbrt(x), build(x).cbrt());
}
}
@ -238,7 +238,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testHypot() {
for (double x = -3; x < 3; x += 0.2) {
for (double y = -3; y < 3; y += 0.2) {
checkRelative(FastMath.hypot(x, y), build(x).hypot(build(y)));
checkRelative(AccurateMath.hypot(x, y), build(x).hypot(build(y)));
}
}
}
@ -249,10 +249,10 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
for (int n = 1; n < 5; ++n) {
if (x < 0) {
if (n % 2 == 1) {
checkRelative(-FastMath.pow(-x, 1.0 / n), build(x).rootN(n));
checkRelative(-AccurateMath.pow(-x, 1.0 / n), build(x).rootN(n));
}
} else {
checkRelative(FastMath.pow(x, 1.0 / n), build(x).rootN(n));
checkRelative(AccurateMath.pow(x, 1.0 / n), build(x).rootN(n));
}
}
}
@ -262,7 +262,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testPowField() {
for (double x = -0.9; x < 0.9; x += 0.05) {
for (double y = 0.1; y < 4; y += 0.2) {
checkRelative(FastMath.pow(x, y), build(x).pow(build(y)));
checkRelative(AccurateMath.pow(x, y), build(x).pow(build(y)));
}
}
}
@ -271,7 +271,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testPowDouble() {
for (double x = -0.9; x < 0.9; x += 0.05) {
for (double y = 0.1; y < 4; y += 0.2) {
checkRelative(FastMath.pow(x, y), build(x).pow(y));
checkRelative(AccurateMath.pow(x, y), build(x).pow(y));
}
}
}
@ -280,7 +280,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testPowInt() {
for (double x = -0.9; x < 0.9; x += 0.05) {
for (int n = 0; n < 5; ++n) {
checkRelative(FastMath.pow(x, n), build(x).pow(n));
checkRelative(AccurateMath.pow(x, n), build(x).pow(n));
}
}
}
@ -288,28 +288,28 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
@Test
public void testExp() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.exp(x), build(x).exp());
checkRelative(AccurateMath.exp(x), build(x).exp());
}
}
@Test
public void testExpm1() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.expm1(x), build(x).expm1());
checkRelative(AccurateMath.expm1(x), build(x).expm1());
}
}
@Test
public void testLog() {
for (double x = 0.01; x < 0.9; x += 0.05) {
checkRelative(FastMath.log(x), build(x).log());
checkRelative(AccurateMath.log(x), build(x).log());
}
}
@Test
public void testLog1p() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.log1p(x), build(x).log1p());
checkRelative(AccurateMath.log1p(x), build(x).log1p());
}
}
@ -318,49 +318,49 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
// @Test
// public void testLog10() {
// for (double x = -0.9; x < 0.9; x += 0.05) {
// checkRelative(FastMath.log10(x), build(x).log10());
// checkRelative(AccurateMath.log10(x), build(x).log10());
// }
// }
@Test
public void testAbs() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.abs(x), build(x).abs());
checkRelative(AccurateMath.abs(x), build(x).abs());
}
}
@Test
public void testCeil() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.ceil(x), build(x).ceil());
checkRelative(AccurateMath.ceil(x), build(x).ceil());
}
}
@Test
public void testFloor() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.floor(x), build(x).floor());
checkRelative(AccurateMath.floor(x), build(x).floor());
}
}
@Test
public void testRint() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.rint(x), build(x).rint());
checkRelative(AccurateMath.rint(x), build(x).rint());
}
}
@Test
public void testRound() {
for (double x = -0.9; x < 0.9; x += 0.05) {
Assert.assertEquals(FastMath.round(x), build(x).round());
Assert.assertEquals(AccurateMath.round(x), build(x).round());
}
}
@Test
public void testSignum() {
for (double x = -0.9; x < 0.9; x += 0.05) {
checkRelative(FastMath.signum(x), build(x).signum());
checkRelative(AccurateMath.signum(x), build(x).signum());
}
}
@ -368,7 +368,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testCopySignField() {
for (double x = -3; x < 3; x += 0.2) {
for (double y = -3; y < 3; y += 0.2) {
checkRelative(FastMath.copySign(x, y), build(x).copySign(build(y)));
checkRelative(AccurateMath.copySign(x, y), build(x).copySign(build(y)));
}
}
}
@ -377,7 +377,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testCopySignDouble() {
for (double x = -3; x < 3; x += 0.2) {
for (double y = -3; y < 3; y += 0.2) {
checkRelative(FastMath.copySign(x, y), build(x).copySign(y));
checkRelative(AccurateMath.copySign(x, y), build(x).copySign(y));
}
}
}
@ -386,7 +386,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
public void testScalb() {
for (double x = -0.9; x < 0.9; x += 0.05) {
for (int n = -100; n < 100; ++n) {
checkRelative(FastMath.scalb(x, n), build(x).scalb(n));
checkRelative(AccurateMath.scalb(x, n), build(x).scalb(n));
}
}
}
@ -498,7 +498,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
}
private void checkRelative(double expected, T obtained) {
Assert.assertEquals(expected, obtained.getReal(), 1.0e-15 * (1 + FastMath.abs(expected)));
Assert.assertEquals(expected, obtained.getReal(), 1.0e-15 * (1 + AccurateMath.abs(expected)));
}
@Test

View File

@ -11,11 +11,14 @@
* KIND, either express or implied. See the License for the specific language
* governing permissions and limitations under the License.
*/
package org.apache.commons.math4.legacy.util;
package org.apache.commons.math4.legacy.core;
import java.util.Arrays;
import org.apache.commons.math4.legacy.TestUtils;
import org.junit.Assert;
import org.junit.Test;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
@ -25,13 +28,10 @@ import org.apache.commons.math4.legacy.exception.NotANumberException;
import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Test cases for the {@link MathArrays} class.
*
*/
public class MathArraysTest {
@ -390,7 +390,7 @@ public class MathArraysTest {
-Double.MAX_VALUE,
-1, 0,
Double.MIN_VALUE,
FastMath.ulp(1d),
AccurateMath.ulp(1d),
1, 3, 113, 4769,
Double.MAX_VALUE,
Double.POSITIVE_INFINITY };
@ -399,7 +399,7 @@ public class MathArraysTest {
-Double.MAX_VALUE,
-1, 0,
Double.MIN_VALUE,
FastMath.ulp(1d),
AccurateMath.ulp(1d),
1, 3, 113, 4769,
Double.MAX_VALUE,
Double.POSITIVE_INFINITY,
@ -445,25 +445,25 @@ public class MathArraysTest {
MathArrays.sortInPlace(x1, x2, x3);
Assert.assertEquals(-3, x1[0], FastMath.ulp(1d));
Assert.assertEquals(9, x2[0], FastMath.ulp(1d));
Assert.assertEquals(-27, x3[0], FastMath.ulp(1d));
Assert.assertEquals(-3, x1[0], AccurateMath.ulp(1d));
Assert.assertEquals(9, x2[0], AccurateMath.ulp(1d));
Assert.assertEquals(-27, x3[0], AccurateMath.ulp(1d));
Assert.assertEquals(1, x1[1], FastMath.ulp(1d));
Assert.assertEquals(1, x2[1], FastMath.ulp(1d));
Assert.assertEquals(1, x3[1], FastMath.ulp(1d));
Assert.assertEquals(1, x1[1], AccurateMath.ulp(1d));
Assert.assertEquals(1, x2[1], AccurateMath.ulp(1d));
Assert.assertEquals(1, x3[1], AccurateMath.ulp(1d));
Assert.assertEquals(2, x1[2], FastMath.ulp(1d));
Assert.assertEquals(4, x2[2], FastMath.ulp(1d));
Assert.assertEquals(8, x3[2], FastMath.ulp(1d));
Assert.assertEquals(2, x1[2], AccurateMath.ulp(1d));
Assert.assertEquals(4, x2[2], AccurateMath.ulp(1d));
Assert.assertEquals(8, x3[2], AccurateMath.ulp(1d));
Assert.assertEquals(4, x1[3], FastMath.ulp(1d));
Assert.assertEquals(16, x2[3], FastMath.ulp(1d));
Assert.assertEquals(64, x3[3], FastMath.ulp(1d));
Assert.assertEquals(4, x1[3], AccurateMath.ulp(1d));
Assert.assertEquals(16, x2[3], AccurateMath.ulp(1d));
Assert.assertEquals(64, x3[3], AccurateMath.ulp(1d));
Assert.assertEquals(5, x1[4], FastMath.ulp(1d));
Assert.assertEquals(25, x2[4], FastMath.ulp(1d));
Assert.assertEquals(125, x3[4], FastMath.ulp(1d));
Assert.assertEquals(5, x1[4], AccurateMath.ulp(1d));
Assert.assertEquals(25, x2[4], AccurateMath.ulp(1d));
Assert.assertEquals(125, x3[4], AccurateMath.ulp(1d));
}
@Test
@ -476,25 +476,25 @@ public class MathArraysTest {
MathArrays.OrderDirection.DECREASING,
x2, x3);
Assert.assertEquals(-3, x1[4], FastMath.ulp(1d));
Assert.assertEquals(9, x2[4], FastMath.ulp(1d));
Assert.assertEquals(-27, x3[4], FastMath.ulp(1d));
Assert.assertEquals(-3, x1[4], AccurateMath.ulp(1d));
Assert.assertEquals(9, x2[4], AccurateMath.ulp(1d));
Assert.assertEquals(-27, x3[4], AccurateMath.ulp(1d));
Assert.assertEquals(1, x1[3], FastMath.ulp(1d));
Assert.assertEquals(1, x2[3], FastMath.ulp(1d));
Assert.assertEquals(1, x3[3], FastMath.ulp(1d));
Assert.assertEquals(1, x1[3], AccurateMath.ulp(1d));
Assert.assertEquals(1, x2[3], AccurateMath.ulp(1d));
Assert.assertEquals(1, x3[3], AccurateMath.ulp(1d));
Assert.assertEquals(2, x1[2], FastMath.ulp(1d));
Assert.assertEquals(4, x2[2], FastMath.ulp(1d));
Assert.assertEquals(8, x3[2], FastMath.ulp(1d));
Assert.assertEquals(2, x1[2], AccurateMath.ulp(1d));
Assert.assertEquals(4, x2[2], AccurateMath.ulp(1d));
Assert.assertEquals(8, x3[2], AccurateMath.ulp(1d));
Assert.assertEquals(4, x1[1], FastMath.ulp(1d));
Assert.assertEquals(16, x2[1], FastMath.ulp(1d));
Assert.assertEquals(64, x3[1], FastMath.ulp(1d));
Assert.assertEquals(4, x1[1], AccurateMath.ulp(1d));
Assert.assertEquals(16, x2[1], AccurateMath.ulp(1d));
Assert.assertEquals(64, x3[1], AccurateMath.ulp(1d));
Assert.assertEquals(5, x1[0], FastMath.ulp(1d));
Assert.assertEquals(25, x2[0], FastMath.ulp(1d));
Assert.assertEquals(125, x3[0], FastMath.ulp(1d));
Assert.assertEquals(5, x1[0], AccurateMath.ulp(1d));
Assert.assertEquals(25, x2[0], AccurateMath.ulp(1d));
Assert.assertEquals(125, x3[0], AccurateMath.ulp(1d));
}
/** Example in javadoc */
@ -555,7 +555,7 @@ public class MathArraysTest {
Assert.assertFalse(MathArrays.equals(new double[] { Double.POSITIVE_INFINITY },
new double[] { Double.NEGATIVE_INFINITY }));
Assert.assertFalse(MathArrays.equals(new double[] { 1d },
new double[] { FastMath.nextAfter(FastMath.nextAfter(1d, 2d), 2d) }));
new double[] { AccurateMath.nextAfter(AccurateMath.nextAfter(1d, 2d), 2d) }));
}
@ -574,24 +574,24 @@ public class MathArraysTest {
Assert.assertFalse(MathArrays.equalsIncludingNaN(new double[] { Double.POSITIVE_INFINITY },
new double[] { Double.NEGATIVE_INFINITY }));
Assert.assertFalse(MathArrays.equalsIncludingNaN(new double[] { 1d },
new double[] { FastMath.nextAfter(FastMath.nextAfter(1d, 2d), 2d) }));
new double[] { AccurateMath.nextAfter(AccurateMath.nextAfter(1d, 2d), 2d) }));
}
@Test
public void testNormalizeArray() {
double[] testValues1 = new double[] {1, 1, 2};
TestUtils.assertEquals( new double[] {.25, .25, .5},
Assert.assertArrayEquals(new double[] {.25, .25, .5},
MathArrays.normalizeArray(testValues1, 1),
Double.MIN_VALUE);
double[] testValues2 = new double[] {-1, -1, 1};
TestUtils.assertEquals( new double[] {1, 1, -1},
Assert.assertArrayEquals(new double[] {1, 1, -1},
MathArrays.normalizeArray(testValues2, 1),
Double.MIN_VALUE);
// Ignore NaNs
double[] testValues3 = new double[] {-1, -1, Double.NaN, 1, Double.NaN};
TestUtils.assertEquals( new double[] {1, 1,Double.NaN, -1, Double.NaN},
Assert.assertArrayEquals(new double[] {1, 1,Double.NaN, -1, Double.NaN},
MathArrays.normalizeArray(testValues3, 1),
Double.MIN_VALUE);

View File

@ -15,7 +15,7 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
public class Decimal10 extends DfpDec {

View File

@ -15,7 +15,7 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
import org.junit.After;
import org.junit.Assert;

View File

@ -15,7 +15,7 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
import org.junit.After;
import org.junit.Assert;

View File

@ -15,10 +15,10 @@
* limitations under the License.
*/
package org.apache.commons.math4.legacy.dfp;
package org.apache.commons.math4.legacy.core.dfp;
import org.apache.commons.math4.legacy.ExtendedFieldElementAbstractTest;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.ExtendedFieldElementAbstractTest;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.numbers.core.Precision;
import org.junit.After;
import org.junit.Assert;
@ -1566,8 +1566,8 @@ public class DfpTest extends ExtendedFieldElementAbstractTest<Dfp> {
DfpField field = new DfpField(100);
Assert.assertEquals(0.0, field.getZero().toDouble(), Precision.SAFE_MIN);
Assert.assertEquals(0.0, field.newDfp(0.0).toDouble(), Precision.SAFE_MIN);
Assert.assertEquals(-1, FastMath.copySign(1, field.newDfp(-0.0).toDouble()), Precision.EPSILON);
Assert.assertEquals(+1, FastMath.copySign(1, field.newDfp(+0.0).toDouble()), Precision.EPSILON);
Assert.assertEquals(-1, AccurateMath.copySign(1, field.newDfp(-0.0).toDouble()), Precision.EPSILON);
Assert.assertEquals(+1, AccurateMath.copySign(1, field.newDfp(+0.0).toDouble()), Precision.EPSILON);
}
@Test

View File

@ -0,0 +1,262 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.core.jdkmath;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Type;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.numbers.core.Precision;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
/**
* Test to compare AccurateMath results against StrictMath results for boundary values.
* <p>
* Running all tests independently: <br>
* {@code mvn test -Dtest=AccurateMathStrictComparisonTest}<br>
* or just run tests against a single method (e.g. scalb):<br>
* {@code mvn test -Dtest=AccurateMathStrictComparisonTest -DargLine="-DtestMethod=scalb"}
*/
@SuppressWarnings("boxing")
@RunWith(Parameterized.class)
public class AccurateMathStrictComparisonTest {
// Values which often need special handling
private static final Double[] DOUBLE_SPECIAL_VALUES = {
-0.0, +0.0, // 1,2
Double.NaN, // 3
Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, // 4,5
-Double.MAX_VALUE, Double.MAX_VALUE, // 6,7
// decreasing order of absolute value to help catch first failure
-Precision.EPSILON, Precision.EPSILON, // 8,9
-Precision.SAFE_MIN, Precision.SAFE_MIN, // 10,11
-Double.MIN_VALUE, Double.MIN_VALUE, // 12,13
};
private static final Float [] FLOAT_SPECIAL_VALUES = {
-0.0f, +0.0f, // 1,2
Float.NaN, // 3
Float.NEGATIVE_INFINITY, Float.POSITIVE_INFINITY, // 4,5
Float.MIN_VALUE, Float.MAX_VALUE, // 6,7
-Float.MIN_VALUE, -Float.MAX_VALUE, // 8,9
};
private static final Object [] LONG_SPECIAL_VALUES = {
-1,0,1, // 1,2,3
Long.MIN_VALUE, Long.MAX_VALUE, // 4,5
};
private static final Object[] INT_SPECIAL_VALUES = {
-1,0,1, // 1,2,3
Integer.MIN_VALUE, Integer.MAX_VALUE, // 4,5
};
private final Method mathMethod;
private final Method fastMethod;
private final Type[] types;
private final Object[][] valueArrays;
public AccurateMathStrictComparisonTest(Method m, Method f, Type[] types, Object[][] data) throws Exception{
this.mathMethod=m;
this.fastMethod=f;
this.types=types;
this.valueArrays=data;
}
@Test
public void test1() throws Exception{
setupMethodCall(mathMethod, fastMethod, types, valueArrays);
}
private static boolean isNumber(Double d) {
return !(d.isInfinite() || d.isNaN());
}
private static boolean isNumber(Float f) {
return !(f.isInfinite() || f.isNaN());
}
private static void reportFailedResults(Method mathMethod, Object[] params, Object expected, Object actual, int[] entries){
final String methodName = mathMethod.getName();
String format = null;
long actL=0;
long expL=0;
if (expected instanceof Double) {
Double exp = (Double) expected;
Double act = (Double) actual;
if (isNumber(exp) && isNumber(act) && exp != 0) { // show difference as hex
actL = Double.doubleToLongBits(act);
expL = Double.doubleToLongBits(exp);
if (Math.abs(actL-expL)==1) {
// Not 100% sure off-by-one errors are allowed everywhere, so only allow for these methods
if (methodName.equals("toRadians") || methodName.equals("atan2")) {
return;
}
}
format = "%016x";
}
} else if (expected instanceof Float ){
Float exp = (Float) expected;
Float act = (Float) actual;
if (isNumber(exp) && isNumber(act) && exp != 0) { // show difference as hex
actL = Float.floatToIntBits(act);
expL = Float.floatToIntBits(exp);
format = "%08x";
}
}
StringBuilder sb = new StringBuilder();
sb.append(mathMethod.getReturnType().getSimpleName());
sb.append(" ");
sb.append(methodName);
sb.append("(");
String sep = "";
for(Object o : params){
sb.append(sep);
sb.append(o);
sep=", ";
}
sb.append(") expected ");
if (format != null){
sb.append(String.format(format, expL));
} else {
sb.append(expected);
}
sb.append(" actual ");
if (format != null){
sb.append(String.format(format, actL));
} else {
sb.append(actual);
}
sb.append(" entries ");
sb.append(Arrays.toString(entries));
String message = sb.toString();
final boolean fatal = true;
if (fatal) {
Assert.fail(message);
} else {
System.out.println(message);
}
}
private static void callMethods(Method mathMethod, Method fastMethod,
Object[] params, int[] entries) throws IllegalAccessException {
try {
Object expected;
try {
expected = mathMethod.invoke(mathMethod, params);
} catch (InvocationTargetException ite) {
expected = ite.getCause();
}
Object actual;
try {
actual = fastMethod.invoke(mathMethod, params);
} catch (InvocationTargetException ite) {
actual = ite.getCause();
}
if (expected instanceof ArithmeticException) {
Assert.assertEquals(MathArithmeticException.class, actual.getClass());
} else if (!expected.equals(actual)) {
reportFailedResults(mathMethod, params, expected, actual, entries);
}
} catch (IllegalArgumentException e) {
Assert.fail(mathMethod+" "+e);
}
}
private static void setupMethodCall(Method mathMethod, Method fastMethod,
Type[] types, Object[][] valueArrays) throws Exception {
Object[] params = new Object[types.length];
int entry1 = 0;
int[] entries = new int[types.length];
for(Object d : valueArrays[0]) {
entry1++;
params[0] = d;
entries[0] = entry1;
if (params.length > 1){
int entry2 = 0;
for(Object d1 : valueArrays[1]) {
entry2++;
params[1] = d1;
entries[1] = entry2;
callMethods(mathMethod, fastMethod, params, entries);
}
} else {
callMethods(mathMethod, fastMethod, params, entries);
}
}
}
@Parameters
public static List<Object[]> data() throws Exception {
String singleMethod = System.getProperty("testMethod");
List<Object[]> list = new ArrayList<>();
for(Method mathMethod : StrictMath.class.getDeclaredMethods()) {
method:
if (Modifier.isPublic(mathMethod.getModifiers())){// Only test public methods
Type []types = mathMethod.getGenericParameterTypes();
if (types.length >=1) { // Only check methods with at least one parameter
try {
// Get the corresponding AccurateMath method
Method fastMethod = AccurateMath.class.getDeclaredMethod(mathMethod.getName(), (Class[]) types);
if (Modifier.isPublic(fastMethod.getModifiers())) { // It must be public too
if (singleMethod != null && !fastMethod.getName().equals(singleMethod)) {
break method;
}
Object [][] values = new Object[types.length][];
int index = 0;
for(Type t : types) {
if (t.equals(double.class)){
values[index]=DOUBLE_SPECIAL_VALUES;
} else if (t.equals(float.class)) {
values[index]=FLOAT_SPECIAL_VALUES;
} else if (t.equals(long.class)) {
values[index]=LONG_SPECIAL_VALUES;
} else if (t.equals(int.class)) {
values[index]=INT_SPECIAL_VALUES;
} else {
System.out.println("Cannot handle class "+t+" for "+mathMethod);
break method;
}
index++;
}
// System.out.println(fastMethod);
/*
* The current implementation runs each method as a separate test.
* Could be amended to run each value as a separate test
*/
list.add(new Object[]{mathMethod, fastMethod, types, values});
// setupMethodCall(mathMethod, fastMethod, params, data);
} else {
System.out.println("Cannot find public AccurateMath method corresponding to: "+mathMethod);
}
} catch (NoSuchMethodException e) {
System.out.println("Cannot find AccurateMath method corresponding to: "+mathMethod);
}
}
}
}
return list;
}
}

View File

@ -33,16 +33,16 @@ import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
/**
* Test to compare FastMath results against StrictMath results for boundary values.
* Test to compare AccurateMath results against StrictMath results for boundary values.
* <p>
* Running all tests independently: <br>
* {@code mvn test -Dtest=FastMathStrictComparisonTest}<br>
* {@code mvn test -Dtest=AccurateMathStrictComparisonTest}<br>
* or just run tests against a single method (e.g. scalb):<br>
* {@code mvn test -Dtest=FastMathStrictComparisonTest -DargLine="-DtestMethod=scalb"}
* {@code mvn test -Dtest=AccurateMathStrictComparisonTest -DargLine="-DtestMethod=scalb"}
*/
@SuppressWarnings("boxing")
@RunWith(Parameterized.class)
public class FastMathStrictComparisonTest {
public class AccurateMathStrictComparisonTest {
// Values which often need special handling
private static final Double[] DOUBLE_SPECIAL_VALUES = {
@ -79,7 +79,7 @@ public class FastMathStrictComparisonTest {
private final Type[] types;
private final Object[][] valueArrays;
public FastMathStrictComparisonTest(Method m, Method f, Type[] types, Object[][] data) throws Exception{
public AccurateMathStrictComparisonTest(Method m, Method f, Type[] types, Object[][] data) throws Exception{
this.mathMethod=m;
this.fastMethod=f;
this.types=types;
@ -218,8 +218,8 @@ public class FastMathStrictComparisonTest {
Type []types = mathMethod.getGenericParameterTypes();
if (types.length >=1) { // Only check methods with at least one parameter
try {
// Get the corresponding FastMath method
Method fastMethod = FastMath.class.getDeclaredMethod(mathMethod.getName(), (Class[]) types);
// Get the corresponding AccurateMath method
Method fastMethod = AccurateMath.class.getDeclaredMethod(mathMethod.getName(), (Class[]) types);
if (Modifier.isPublic(fastMethod.getModifiers())) { // It must be public too
if (singleMethod != null && !fastMethod.getName().equals(singleMethod)) {
break method;
@ -249,10 +249,10 @@ public class FastMathStrictComparisonTest {
list.add(new Object[]{mathMethod, fastMethod, types, values});
// setupMethodCall(mathMethod, fastMethod, params, data);
} else {
System.out.println("Cannot find public FastMath method corresponding to: "+mathMethod);
System.out.println("Cannot find public AccurateMath method corresponding to: "+mathMethod);
}
} catch (NoSuchMethodException e) {
System.out.println("Cannot find FastMath method corresponding to: "+mathMethod);
System.out.println("Cannot find AccurateMath method corresponding to: "+mathMethod);
}
}
}

View File

@ -116,12 +116,12 @@
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-rng-sampling</artifactId>
<artifactId>commons-math4-legacy-exception</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math4-legacy-exception</artifactId>
<artifactId>commons-math4-legacy-core</artifactId>
</dependency>
<dependency>

View File

@ -16,7 +16,7 @@
*/
package org.apache.commons.math4.legacy.analysis;
import org.apache.commons.math4.legacy.RealFieldElement;
import org.apache.commons.math4.legacy.core.RealFieldElement;
/**
* An interface representing a univariate real function.

View File

@ -28,7 +28,7 @@ import org.apache.commons.math4.legacy.exception.MathInternalError;
import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.numbers.combinatorics.FactorialDouble;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/** Class holding "compiled" computation rules for derivative structures.
* <p>This class implements the computation rules described in Dan Kalman's paper <a
@ -199,8 +199,8 @@ public class DSCompiler {
}
// we need to create more compilers
final int maxParameters = FastMath.max(parameters, cache == null ? 0 : cache.length);
final int maxOrder = FastMath.max(order, cache == null ? 0 : cache[0].length);
final int maxParameters = AccurateMath.max(parameters, cache == null ? 0 : cache.length);
final int maxOrder = AccurateMath.max(order, cache == null ? 0 : cache[0].length);
final DSCompiler[][] newCache = new DSCompiler[maxParameters + 1][maxOrder + 1];
if (cache != null) {
@ -212,7 +212,7 @@ public class DSCompiler {
// create the array in increasing diagonal order
for (int diag = 0; diag <= parameters + order; ++diag) {
for (int o = FastMath.max(0, diag - parameters); o <= FastMath.min(order, diag); ++o) {
for (int o = AccurateMath.max(0, diag - parameters); o <= AccurateMath.min(order, diag); ++o) {
final int p = diag - o;
if (newCache[p][o] == null) {
final DSCompiler valueCompiler = (p == 0) ? null : newCache[p - 1][o];
@ -610,7 +610,7 @@ public class DSCompiler {
final int destP, final int destO, final int[][] destSizes)
throws NumberIsTooLargeException {
int[] orders = new int[destP];
System.arraycopy(srcDerivativesIndirection[index], 0, orders, 0, FastMath.min(srcP, destP));
System.arraycopy(srcDerivativesIndirection[index], 0, orders, 0, AccurateMath.min(srcP, destP));
return getPartialDerivativeIndex(destP, destO, destSizes, orders);
}
@ -821,8 +821,8 @@ public class DSCompiler {
final double[] result, final int resultOffset) {
// compute k such that lhs % rhs = lhs - k rhs
final double rem = FastMath.IEEEremainder(lhs[lhsOffset], rhs[rhsOffset]);
final double k = FastMath.rint((lhs[lhsOffset] - rem) / rhs[rhsOffset]);
final double rem = AccurateMath.IEEEremainder(lhs[lhsOffset], rhs[rhsOffset]);
final double k = AccurateMath.rint((lhs[lhsOffset] - rem) / rhs[rhsOffset]);
// set up value
result[resultOffset] = rem;
@ -863,8 +863,8 @@ public class DSCompiler {
Arrays.fill(function, Double.NaN);
}
} else {
function[0] = FastMath.pow(a, operand[operandOffset]);
final double lnA = FastMath.log(a);
function[0] = AccurateMath.pow(a, operand[operandOffset]);
final double lnA = AccurateMath.log(a);
for (int i = 1; i < function.length; ++i) {
function[i] = lnA * function[i - 1];
}
@ -904,7 +904,7 @@ public class DSCompiler {
// create the function value and derivatives
// [x^p, px^(p-1), p(p-1)x^(p-2), ... ]
double[] function = new double[1 + order];
double xk = FastMath.pow(operand[operandOffset], p - order);
double xk = AccurateMath.pow(operand[operandOffset], p - order);
for (int i = order; i > 0; --i) {
function[i] = xk;
xk *= operand[operandOffset];
@ -946,8 +946,8 @@ public class DSCompiler {
if (n > 0) {
// strictly positive power
final int maxOrder = FastMath.min(order, n);
double xk = FastMath.pow(operand[operandOffset], n - maxOrder);
final int maxOrder = AccurateMath.min(order, n);
double xk = AccurateMath.pow(operand[operandOffset], n - maxOrder);
for (int i = maxOrder; i > 0; --i) {
function[i] = xk;
xk *= operand[operandOffset];
@ -956,7 +956,7 @@ public class DSCompiler {
} else {
// strictly negative power
final double inv = 1.0 / operand[operandOffset];
double xk = FastMath.pow(inv, -n);
double xk = AccurateMath.pow(inv, -n);
for (int i = 0; i <= order; ++i) {
function[i] = xk;
xk *= inv;
@ -1011,14 +1011,14 @@ public class DSCompiler {
double[] function = new double[1 + order];
double xk;
if (n == 2) {
function[0] = FastMath.sqrt(operand[operandOffset]);
function[0] = AccurateMath.sqrt(operand[operandOffset]);
xk = 0.5 / function[0];
} else if (n == 3) {
function[0] = FastMath.cbrt(operand[operandOffset]);
function[0] = AccurateMath.cbrt(operand[operandOffset]);
xk = 1.0 / (3.0 * function[0] * function[0]);
} else {
function[0] = FastMath.pow(operand[operandOffset], 1.0 / n);
xk = 1.0 / (n * FastMath.pow(function[0], n - 1));
function[0] = AccurateMath.pow(operand[operandOffset], 1.0 / n);
xk = 1.0 / (n * AccurateMath.pow(function[0], n - 1));
}
final double nReciprocal = 1.0 / n;
final double xReciprocal = 1.0 / operand[operandOffset];
@ -1045,7 +1045,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
Arrays.fill(function, FastMath.exp(operand[operandOffset]));
Arrays.fill(function, AccurateMath.exp(operand[operandOffset]));
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
@ -1065,8 +1065,8 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.expm1(operand[operandOffset]);
Arrays.fill(function, 1, 1 + order, FastMath.exp(operand[operandOffset]));
function[0] = AccurateMath.expm1(operand[operandOffset]);
Arrays.fill(function, 1, 1 + order, AccurateMath.exp(operand[operandOffset]));
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
@ -1086,7 +1086,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.log(operand[operandOffset]);
function[0] = AccurateMath.log(operand[operandOffset]);
if (order > 0) {
double inv = 1.0 / operand[operandOffset];
double xk = inv;
@ -1113,7 +1113,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.log1p(operand[operandOffset]);
function[0] = AccurateMath.log1p(operand[operandOffset]);
if (order > 0) {
double inv = 1.0 / (1.0 + operand[operandOffset]);
double xk = inv;
@ -1140,10 +1140,10 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.log10(operand[operandOffset]);
function[0] = AccurateMath.log10(operand[operandOffset]);
if (order > 0) {
double inv = 1.0 / operand[operandOffset];
double xk = inv / FastMath.log(10.0);
double xk = inv / AccurateMath.log(10.0);
for (int i = 1; i <= order; ++i) {
function[i] = xk;
xk *= -i * inv;
@ -1168,9 +1168,9 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.cos(operand[operandOffset]);
function[0] = AccurateMath.cos(operand[operandOffset]);
if (order > 0) {
function[1] = -FastMath.sin(operand[operandOffset]);
function[1] = -AccurateMath.sin(operand[operandOffset]);
for (int i = 2; i <= order; ++i) {
function[i] = -function[i - 2];
}
@ -1194,9 +1194,9 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.sin(operand[operandOffset]);
function[0] = AccurateMath.sin(operand[operandOffset]);
if (order > 0) {
function[1] = FastMath.cos(operand[operandOffset]);
function[1] = AccurateMath.cos(operand[operandOffset]);
for (int i = 2; i <= order; ++i) {
function[i] = -function[i - 2];
}
@ -1220,7 +1220,7 @@ public class DSCompiler {
// create the function value and derivatives
final double[] function = new double[1 + order];
final double t = FastMath.tan(operand[operandOffset]);
final double t = AccurateMath.tan(operand[operandOffset]);
function[0] = t;
if (order > 0) {
@ -1276,7 +1276,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
final double x = operand[operandOffset];
function[0] = FastMath.acos(x);
function[0] = AccurateMath.acos(x);
if (order > 0) {
// the nth order derivative of acos has the form:
// dn(acos(x)/dxn = P_n(x) / [1 - x^2]^((2n-1)/2)
@ -1289,7 +1289,7 @@ public class DSCompiler {
p[0] = -1;
final double x2 = x * x;
final double f = 1.0 / (1 - x2);
double coeff = FastMath.sqrt(f);
double coeff = AccurateMath.sqrt(f);
function[1] = coeff * p[0];
for (int n = 2; n <= order; ++n) {
@ -1333,7 +1333,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
final double x = operand[operandOffset];
function[0] = FastMath.asin(x);
function[0] = AccurateMath.asin(x);
if (order > 0) {
// the nth order derivative of asin has the form:
// dn(asin(x)/dxn = P_n(x) / [1 - x^2]^((2n-1)/2)
@ -1346,7 +1346,7 @@ public class DSCompiler {
p[0] = 1;
final double x2 = x * x;
final double f = 1.0 / (1 - x2);
double coeff = FastMath.sqrt(f);
double coeff = AccurateMath.sqrt(f);
function[1] = coeff * p[0];
for (int n = 2; n <= order; ++n) {
@ -1390,7 +1390,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
final double x = operand[operandOffset];
function[0] = FastMath.atan(x);
function[0] = AccurateMath.atan(x);
if (order > 0) {
// the nth order derivative of atan has the form:
// dn(atan(x)/dxn = Q_n(x) / (1 + x^2)^n
@ -1472,7 +1472,7 @@ public class DSCompiler {
divide(y, yOffset, tmp2, 0, tmp1, 0); // y /(r - x)
atan(tmp1, 0, tmp2, 0); // atan(y / (r - x))
result[resultOffset] =
((tmp2[0] <= 0) ? -FastMath.PI : FastMath.PI) - 2 * tmp2[0]; // +/-pi - 2 * atan(y / (r - x))
((tmp2[0] <= 0) ? -AccurateMath.PI : AccurateMath.PI) - 2 * tmp2[0]; // +/-pi - 2 * atan(y / (r - x))
for (int i = 1; i < tmp2.length; ++i) {
result[resultOffset + i] = -2 * tmp2[i]; // +/-pi - 2 * atan(y / (r - x))
}
@ -1480,7 +1480,7 @@ public class DSCompiler {
}
// fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
result[resultOffset] = FastMath.atan2(y[yOffset], x[xOffset]);
result[resultOffset] = AccurateMath.atan2(y[yOffset], x[xOffset]);
}
@ -1497,9 +1497,9 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.cosh(operand[operandOffset]);
function[0] = AccurateMath.cosh(operand[operandOffset]);
if (order > 0) {
function[1] = FastMath.sinh(operand[operandOffset]);
function[1] = AccurateMath.sinh(operand[operandOffset]);
for (int i = 2; i <= order; ++i) {
function[i] = function[i - 2];
}
@ -1523,9 +1523,9 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.sinh(operand[operandOffset]);
function[0] = AccurateMath.sinh(operand[operandOffset]);
if (order > 0) {
function[1] = FastMath.cosh(operand[operandOffset]);
function[1] = AccurateMath.cosh(operand[operandOffset]);
for (int i = 2; i <= order; ++i) {
function[i] = function[i - 2];
}
@ -1549,7 +1549,7 @@ public class DSCompiler {
// create the function value and derivatives
final double[] function = new double[1 + order];
final double t = FastMath.tanh(operand[operandOffset]);
final double t = AccurateMath.tanh(operand[operandOffset]);
function[0] = t;
if (order > 0) {
@ -1605,7 +1605,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
final double x = operand[operandOffset];
function[0] = FastMath.acosh(x);
function[0] = AccurateMath.acosh(x);
if (order > 0) {
// the nth order derivative of acosh has the form:
// dn(acosh(x)/dxn = P_n(x) / [x^2 - 1]^((2n-1)/2)
@ -1618,7 +1618,7 @@ public class DSCompiler {
p[0] = 1;
final double x2 = x * x;
final double f = 1.0 / (x2 - 1);
double coeff = FastMath.sqrt(f);
double coeff = AccurateMath.sqrt(f);
function[1] = coeff * p[0];
for (int n = 2; n <= order; ++n) {
@ -1662,7 +1662,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
final double x = operand[operandOffset];
function[0] = FastMath.asinh(x);
function[0] = AccurateMath.asinh(x);
if (order > 0) {
// the nth order derivative of asinh has the form:
// dn(asinh(x)/dxn = P_n(x) / [x^2 + 1]^((2n-1)/2)
@ -1675,7 +1675,7 @@ public class DSCompiler {
p[0] = 1;
final double x2 = x * x;
final double f = 1.0 / (1 + x2);
double coeff = FastMath.sqrt(f);
double coeff = AccurateMath.sqrt(f);
function[1] = coeff * p[0];
for (int n = 2; n <= order; ++n) {
@ -1719,7 +1719,7 @@ public class DSCompiler {
// create the function value and derivatives
double[] function = new double[1 + order];
final double x = operand[operandOffset];
function[0] = FastMath.atanh(x);
function[0] = AccurateMath.atanh(x);
if (order > 0) {
// the nth order derivative of atanh has the form:
// dn(atanh(x)/dxn = Q_n(x) / (1 - x^2)^n
@ -1805,7 +1805,7 @@ public class DSCompiler {
for (int k = 0; k < orders.length; ++k) {
if (orders[k] > 0) {
try {
term *= FastMath.pow(delta[k], orders[k]) / FACTORIAL.value(orders[k]);
term *= AccurateMath.pow(delta[k], orders[k]) / FACTORIAL.value(orders[k]);
} catch (NotPositiveException e) {
// this cannot happen
throw new MathInternalError(e);

View File

@ -20,14 +20,14 @@ import java.util.Arrays;
import java.io.Serializable;
import org.apache.commons.numbers.arrays.LinearCombination;
import org.apache.commons.math4.legacy.Field;
import org.apache.commons.math4.legacy.FieldElement;
import org.apache.commons.math4.legacy.RealFieldElement;
import org.apache.commons.math4.legacy.core.Field;
import org.apache.commons.math4.legacy.core.FieldElement;
import org.apache.commons.math4.legacy.core.RealFieldElement;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.math4.legacy.core.MathArrays;
/** Class representing both the value and the differentials of a function.
* <p>This class is the workhorse of the differentiation package.</p>
@ -389,7 +389,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
@Override
public DerivativeStructure remainder(final double a) {
final DerivativeStructure ds = new DerivativeStructure(this);
ds.data[0] = FastMath.IEEEremainder(ds.data[0], a);
ds.data[0] = AccurateMath.IEEEremainder(ds.data[0], a);
return ds;
}
@ -437,7 +437,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure ceil() {
return new DerivativeStructure(compiler.getFreeParameters(),
compiler.getOrder(),
FastMath.ceil(data[0]));
AccurateMath.ceil(data[0]));
}
/** {@inheritDoc}
@ -447,7 +447,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure floor() {
return new DerivativeStructure(compiler.getFreeParameters(),
compiler.getOrder(),
FastMath.floor(data[0]));
AccurateMath.floor(data[0]));
}
/** {@inheritDoc}
@ -457,13 +457,13 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure rint() {
return new DerivativeStructure(compiler.getFreeParameters(),
compiler.getOrder(),
FastMath.rint(data[0]));
AccurateMath.rint(data[0]));
}
/** {@inheritDoc} */
@Override
public long round() {
return FastMath.round(data[0]);
return AccurateMath.round(data[0]);
}
/** {@inheritDoc}
@ -473,7 +473,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure signum() {
return new DerivativeStructure(compiler.getFreeParameters(),
compiler.getOrder(),
FastMath.signum(data[0]));
AccurateMath.signum(data[0]));
}
/** {@inheritDoc}
@ -511,7 +511,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
* @return exponent for instance in IEEE754 representation, without bias
*/
public int getExponent() {
return FastMath.getExponent(data[0]);
return AccurateMath.getExponent(data[0]);
}
/** {@inheritDoc}
@ -521,7 +521,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure scalb(final int n) {
final DerivativeStructure ds = new DerivativeStructure(compiler);
for (int i = 0; i < ds.data.length; ++i) {
ds.data[i] = FastMath.scalb(data[i], n);
ds.data[i] = AccurateMath.scalb(data[i], n);
}
return ds;
}
@ -923,7 +923,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure toDegrees() {
final DerivativeStructure ds = new DerivativeStructure(compiler);
for (int i = 0; i < ds.data.length; ++i) {
ds.data[i] = FastMath.toDegrees(data[i]);
ds.data[i] = AccurateMath.toDegrees(data[i]);
}
return ds;
}
@ -934,7 +934,7 @@ public class DerivativeStructure implements RealFieldElement<DerivativeStructure
public DerivativeStructure toRadians() {
final DerivativeStructure ds = new DerivativeStructure(compiler);
for (int i = 0; i < ds.data.length; ++i) {
ds.data[i] = FastMath.toRadians(data[i]);
ds.data[i] = AccurateMath.toRadians(data[i]);
}
return ds;
}

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/** Univariate functions differentiator using finite differences.
* <p>
@ -156,7 +156,7 @@ public class FiniteDifferencesDifferentiator
if (2 * halfSampleSpan >= tUpper - tLower) {
throw new NumberIsTooLargeException(2 * halfSampleSpan, tUpper - tLower, false);
}
final double safety = FastMath.ulp(halfSampleSpan);
final double safety = AccurateMath.ulp(halfSampleSpan);
this.tMin = tLower + halfSampleSpan + safety;
this.tMax = tUpper - halfSampleSpan - safety;
@ -262,7 +262,7 @@ public class FiniteDifferencesDifferentiator
}
// compute sample position, trying to be centered if possible
final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
final double t0 = AccurateMath.max(AccurateMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
// compute sample points
final double[] y = new double[nbPoints];
@ -305,7 +305,7 @@ public class FiniteDifferencesDifferentiator
}
// compute sample position, trying to be centered if possible
final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
final double t0 = AccurateMath.max(AccurateMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
// compute sample points
double[][] y = null;
@ -359,7 +359,7 @@ public class FiniteDifferencesDifferentiator
}
// compute sample position, trying to be centered if possible
final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
final double t0 = AccurateMath.max(AccurateMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
// compute sample points
double[][][] y = null;

View File

@ -23,11 +23,11 @@ import java.util.Map;
import org.apache.commons.numbers.arrays.LinearCombination;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.math4.legacy.Field;
import org.apache.commons.math4.legacy.FieldElement;
import org.apache.commons.math4.legacy.RealFieldElement;
import org.apache.commons.math4.legacy.core.Field;
import org.apache.commons.math4.legacy.core.FieldElement;
import org.apache.commons.math4.legacy.core.RealFieldElement;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* First derivative computation with large number of variables.
@ -330,7 +330,7 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
/** {@inheritDoc} */
@Override
public SparseGradient remainder(final double a) {
return new SparseGradient(FastMath.IEEEremainder(value, a), derivatives);
return new SparseGradient(AccurateMath.IEEEremainder(value, a), derivatives);
}
/** {@inheritDoc} */
@ -338,8 +338,8 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
public SparseGradient remainder(final SparseGradient a) {
// compute k such that lhs % rhs = lhs - k rhs
final double rem = FastMath.IEEEremainder(value, a.value);
final double k = FastMath.rint((value - rem) / a.value);
final double rem = AccurateMath.IEEEremainder(value, a.value);
final double k = AccurateMath.rint((value - rem) / a.value);
return subtract(a.multiply(k));
@ -359,31 +359,31 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
/** {@inheritDoc} */
@Override
public SparseGradient ceil() {
return createConstant(FastMath.ceil(value));
return createConstant(AccurateMath.ceil(value));
}
/** {@inheritDoc} */
@Override
public SparseGradient floor() {
return createConstant(FastMath.floor(value));
return createConstant(AccurateMath.floor(value));
}
/** {@inheritDoc} */
@Override
public SparseGradient rint() {
return createConstant(FastMath.rint(value));
return createConstant(AccurateMath.rint(value));
}
/** {@inheritDoc} */
@Override
public long round() {
return FastMath.round(value);
return AccurateMath.round(value);
}
/** {@inheritDoc} */
@Override
public SparseGradient signum() {
return createConstant(FastMath.signum(value));
return createConstant(AccurateMath.signum(value));
}
/** {@inheritDoc} */
@ -411,9 +411,9 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
/** {@inheritDoc} */
@Override
public SparseGradient scalb(final int n) {
final SparseGradient out = new SparseGradient(FastMath.scalb(value, n), Collections.<Integer, Double> emptyMap());
final SparseGradient out = new SparseGradient(AccurateMath.scalb(value, n), Collections.<Integer, Double> emptyMap());
for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
out.derivatives.put(entry.getKey(), FastMath.scalb(entry.getValue(), n));
out.derivatives.put(entry.getKey(), AccurateMath.scalb(entry.getValue(), n));
}
return out;
}
@ -427,8 +427,8 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
return createConstant(Double.NaN);
} else {
final int expX = FastMath.getExponent(value);
final int expY = FastMath.getExponent(y.value);
final int expX = AccurateMath.getExponent(value);
final int expY = AccurateMath.getExponent(y.value);
if (expX > expY + 27) {
// y is negligible with respect to x
return abs();
@ -483,14 +483,14 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
/** {@inheritDoc} */
@Override
public SparseGradient sqrt() {
final double sqrt = FastMath.sqrt(value);
final double sqrt = AccurateMath.sqrt(value);
return new SparseGradient(sqrt, 0.5 / sqrt, derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient cbrt() {
final double cbrt = FastMath.cbrt(value);
final double cbrt = AccurateMath.cbrt(value);
return new SparseGradient(cbrt, 1.0 / (3 * cbrt * cbrt), derivatives);
}
@ -502,15 +502,15 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
} else if (n == 3) {
return cbrt();
} else {
final double root = FastMath.pow(value, 1.0 / n);
return new SparseGradient(root, 1.0 / (n * FastMath.pow(root, n - 1)), derivatives);
final double root = AccurateMath.pow(value, 1.0 / n);
return new SparseGradient(root, 1.0 / (n * AccurateMath.pow(root, n - 1)), derivatives);
}
}
/** {@inheritDoc} */
@Override
public SparseGradient pow(final double p) {
return new SparseGradient(FastMath.pow(value, p), p * FastMath.pow(value, p - 1), derivatives);
return new SparseGradient(AccurateMath.pow(value, p), p * AccurateMath.pow(value, p - 1), derivatives);
}
/** {@inheritDoc} */
@ -519,7 +519,7 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
if (n == 0) {
return getField().getOne();
} else {
final double valueNm1 = FastMath.pow(value, n - 1);
final double valueNm1 = AccurateMath.pow(value, n - 1);
return new SparseGradient(value * valueNm1, n * valueNm1, derivatives);
}
}
@ -545,28 +545,28 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
return x.getField().getZero();
}
} else {
final double ax = FastMath.pow(a, x.value);
return new SparseGradient(ax, ax * FastMath.log(a), x.derivatives);
final double ax = AccurateMath.pow(a, x.value);
return new SparseGradient(ax, ax * AccurateMath.log(a), x.derivatives);
}
}
/** {@inheritDoc} */
@Override
public SparseGradient exp() {
final double e = FastMath.exp(value);
final double e = AccurateMath.exp(value);
return new SparseGradient(e, e, derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient expm1() {
return new SparseGradient(FastMath.expm1(value), FastMath.exp(value), derivatives);
return new SparseGradient(AccurateMath.expm1(value), AccurateMath.exp(value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient log() {
return new SparseGradient(FastMath.log(value), 1.0 / value, derivatives);
return new SparseGradient(AccurateMath.log(value), 1.0 / value, derivatives);
}
/** Base 10 logarithm.
@ -574,50 +574,50 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
*/
@Override
public SparseGradient log10() {
return new SparseGradient(FastMath.log10(value), 1.0 / (FastMath.log(10.0) * value), derivatives);
return new SparseGradient(AccurateMath.log10(value), 1.0 / (AccurateMath.log(10.0) * value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient log1p() {
return new SparseGradient(FastMath.log1p(value), 1.0 / (1.0 + value), derivatives);
return new SparseGradient(AccurateMath.log1p(value), 1.0 / (1.0 + value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient cos() {
return new SparseGradient(FastMath.cos(value), -FastMath.sin(value), derivatives);
return new SparseGradient(AccurateMath.cos(value), -AccurateMath.sin(value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient sin() {
return new SparseGradient(FastMath.sin(value), FastMath.cos(value), derivatives);
return new SparseGradient(AccurateMath.sin(value), AccurateMath.cos(value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient tan() {
final double t = FastMath.tan(value);
final double t = AccurateMath.tan(value);
return new SparseGradient(t, 1 + t * t, derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient acos() {
return new SparseGradient(FastMath.acos(value), -1.0 / FastMath.sqrt(1 - value * value), derivatives);
return new SparseGradient(AccurateMath.acos(value), -1.0 / AccurateMath.sqrt(1 - value * value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient asin() {
return new SparseGradient(FastMath.asin(value), 1.0 / FastMath.sqrt(1 - value * value), derivatives);
return new SparseGradient(AccurateMath.asin(value), 1.0 / AccurateMath.sqrt(1 - value * value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient atan() {
return new SparseGradient(FastMath.atan(value), 1.0 / (1 + value * value), derivatives);
return new SparseGradient(AccurateMath.atan(value), 1.0 / (1 + value * value), derivatives);
}
/** {@inheritDoc} */
@ -637,12 +637,12 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
// compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
final SparseGradient tmp = divide(r.subtract(x)).atan().multiply(-2);
a = tmp.add(tmp.value <= 0 ? -FastMath.PI : FastMath.PI);
a = tmp.add(tmp.value <= 0 ? -AccurateMath.PI : AccurateMath.PI);
}
// fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
a.value = FastMath.atan2(value, x.value);
a.value = AccurateMath.atan2(value, x.value);
return a;
@ -660,52 +660,52 @@ public class SparseGradient implements RealFieldElement<SparseGradient>, Seriali
/** {@inheritDoc} */
@Override
public SparseGradient cosh() {
return new SparseGradient(FastMath.cosh(value), FastMath.sinh(value), derivatives);
return new SparseGradient(AccurateMath.cosh(value), AccurateMath.sinh(value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient sinh() {
return new SparseGradient(FastMath.sinh(value), FastMath.cosh(value), derivatives);
return new SparseGradient(AccurateMath.sinh(value), AccurateMath.cosh(value), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient tanh() {
final double t = FastMath.tanh(value);
final double t = AccurateMath.tanh(value);
return new SparseGradient(t, 1 - t * t, derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient acosh() {
return new SparseGradient(FastMath.acosh(value), 1.0 / FastMath.sqrt(value * value - 1.0), derivatives);
return new SparseGradient(AccurateMath.acosh(value), 1.0 / AccurateMath.sqrt(value * value - 1.0), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient asinh() {
return new SparseGradient(FastMath.asinh(value), 1.0 / FastMath.sqrt(value * value + 1.0), derivatives);
return new SparseGradient(AccurateMath.asinh(value), 1.0 / AccurateMath.sqrt(value * value + 1.0), derivatives);
}
/** {@inheritDoc} */
@Override
public SparseGradient atanh() {
return new SparseGradient(FastMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
return new SparseGradient(AccurateMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
}
/** Convert radians to degrees, with error of less than 0.5 ULP
* @return instance converted into degrees
*/
public SparseGradient toDegrees() {
return new SparseGradient(FastMath.toDegrees(value), FastMath.toDegrees(1.0), derivatives);
return new SparseGradient(AccurateMath.toDegrees(value), AccurateMath.toDegrees(1.0), derivatives);
}
/** Convert degrees to radians, with error of less than 0.5 ULP
* @return instance converted into radians
*/
public SparseGradient toRadians() {
return new SparseGradient(FastMath.toRadians(value), FastMath.toRadians(1.0), derivatives);
return new SparseGradient(AccurateMath.toRadians(value), AccurateMath.toRadians(1.0), derivatives);
}
/** Evaluate Taylor expansion of a sparse gradient.

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Absolute value function.
@ -29,6 +29,6 @@ public class Abs implements UnivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.abs(x);
return AccurateMath.abs(x);
}
}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Arc-cosine function.
@ -30,7 +30,7 @@ public class Acos implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.acos(x);
return AccurateMath.acos(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Hyperbolic arc-cosine function.
@ -30,7 +30,7 @@ public class Acosh implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.acosh(x);
return AccurateMath.acosh(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Arc-sine function.
@ -30,7 +30,7 @@ public class Asin implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.asin(x);
return AccurateMath.asin(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Hyperbolic arc-sine function.
@ -30,7 +30,7 @@ public class Asinh implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.asinh(x);
return AccurateMath.asinh(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Arc-tangent function.
@ -30,7 +30,7 @@ public class Atan implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.atan(x);
return AccurateMath.atan(x);
}
/** {@inheritDoc}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.BivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Arc-tangent function.
@ -29,6 +29,6 @@ public class Atan2 implements BivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double y, double x) {
return FastMath.atan2(y, x);
return AccurateMath.atan2(y, x);
}
}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Hyperbolic arc-tangent function.
@ -30,7 +30,7 @@ public class Atanh implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.atanh(x);
return AccurateMath.atanh(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Cube root function.
@ -30,7 +30,7 @@ public class Cbrt implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.cbrt(x);
return AccurateMath.cbrt(x);
}
/** {@inheritDoc}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* {@code ceil} function.
@ -29,6 +29,6 @@ public class Ceil implements UnivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.ceil(x);
return AccurateMath.ceil(x);
}
}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Cosine function.
@ -30,7 +30,7 @@ public class Cos implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.cos(x);
return AccurateMath.cos(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Hyperbolic cosine function.
@ -30,7 +30,7 @@ public class Cosh implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.cosh(x);
return AccurateMath.cosh(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Exponential function.
@ -30,7 +30,7 @@ public class Exp implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.exp(x);
return AccurateMath.exp(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <code>e<sup>x</sup>-1</code> function.
@ -30,7 +30,7 @@ public class Expm1 implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.expm1(x);
return AccurateMath.expm1(x);
}
/** {@inheritDoc}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* {@code floor} function.
@ -29,6 +29,6 @@ public class Floor implements UnivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.floor(x);
return AccurateMath.floor(x);
}
}

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDiffer
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.numbers.core.Precision;
/**
@ -76,7 +76,7 @@ public class Gaussian implements UnivariateDifferentiableFunction {
public Gaussian(double mean,
double sigma)
throws NotStrictlyPositiveException {
this(1 / (sigma * FastMath.sqrt(2 * Math.PI)), mean, sigma);
this(1 / (sigma * AccurateMath.sqrt(2 * Math.PI)), mean, sigma);
}
/**
@ -194,7 +194,7 @@ public class Gaussian implements UnivariateDifferentiableFunction {
private static double value(double xMinusMean,
double norm,
double i2s2) {
return norm * FastMath.exp(-xMinusMean * xMinusMean * i2s2);
return norm * AccurateMath.exp(-xMinusMean * xMinusMean * i2s2);
}
/** {@inheritDoc}
@ -217,7 +217,7 @@ public class Gaussian implements UnivariateDifferentiableFunction {
final double[] p = new double[f.length];
p[0] = 1;
final double u2 = u * u;
double coeff = norm * FastMath.exp(-0.5 * u2);
double coeff = norm * AccurateMath.exp(-0.5 * u2);
if (coeff <= Precision.SAFE_MIN) {
Arrays.fill(f, 0.0);
} else {

View File

@ -22,7 +22,7 @@ import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStruct
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <a href="http://en.wikipedia.org/wiki/Harmonic_oscillator">
@ -112,7 +112,7 @@ public class HarmonicOscillator implements UnivariateDifferentiableFunction {
final double xTimesOmegaPlusPhase = omega * x + phase;
final double a = HarmonicOscillator.value(xTimesOmegaPlusPhase, 1);
final double p = -amplitude * FastMath.sin(xTimesOmegaPlusPhase);
final double p = -amplitude * AccurateMath.sin(xTimesOmegaPlusPhase);
final double w = p * x;
return new double[] { a, w, p };
@ -147,7 +147,7 @@ public class HarmonicOscillator implements UnivariateDifferentiableFunction {
*/
private static double value(double xTimesOmegaPlusPhase,
double amplitude) {
return amplitude * FastMath.cos(xTimesOmegaPlusPhase);
return amplitude * AccurateMath.cos(xTimesOmegaPlusPhase);
}
/** {@inheritDoc}
@ -160,9 +160,9 @@ public class HarmonicOscillator implements UnivariateDifferentiableFunction {
double[] f = new double[t.getOrder() + 1];
final double alpha = omega * x + phase;
f[0] = amplitude * FastMath.cos(alpha);
f[0] = amplitude * AccurateMath.cos(alpha);
if (f.length > 1) {
f[1] = -amplitude * omega * FastMath.sin(alpha);
f[1] = -amplitude * omega * AccurateMath.sin(alpha);
final double mo2 = - omega * omega;
for (int i = 2; i < f.length; ++i) {
f[i] = mo2 * f[i - 2];

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Natural logarithm function.
@ -30,7 +30,7 @@ public class Log implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.log(x);
return AccurateMath.log(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Base 10 logarithm function.
@ -31,7 +31,7 @@ public class Log10 implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.log10(x);
return AccurateMath.log10(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <code>log(1 + p)</code> function.
@ -30,7 +30,7 @@ public class Log1p implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.log1p(x);
return AccurateMath.log1p(x);
}
/** {@inheritDoc}

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDiffer
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <a href="http://en.wikipedia.org/wiki/Generalised_logistic_function">
@ -147,10 +147,10 @@ public class Logistic implements UnivariateDifferentiableFunction {
final double mMinusX = param[1] - x;
final double oneOverN = 1 / param[5];
final double exp = FastMath.exp(b * mMinusX);
final double exp = AccurateMath.exp(b * mMinusX);
final double qExp = q * exp;
final double qExp1 = qExp + 1;
final double factor1 = (param[0] - param[4]) * oneOverN / FastMath.pow(qExp1, oneOverN);
final double factor1 = (param[0] - param[4]) * oneOverN / AccurateMath.pow(qExp1, oneOverN);
final double factor2 = -factor1 / qExp1;
// Components of the gradient.
@ -159,7 +159,7 @@ public class Logistic implements UnivariateDifferentiableFunction {
final double gb = factor2 * mMinusX * qExp;
final double gq = factor2 * exp;
final double ga = Logistic.value(mMinusX, 0, b, q, 1, oneOverN);
final double gn = factor1 * FastMath.log(qExp1) * oneOverN;
final double gn = factor1 * AccurateMath.log(qExp1) * oneOverN;
return new double[] { gk, gm, gb, gq, ga, gn };
}
@ -207,7 +207,7 @@ public class Logistic implements UnivariateDifferentiableFunction {
double q,
double a,
double oneOverN) {
return a + (k - a) / FastMath.pow(1 + q * FastMath.exp(b * mMinusX), oneOverN);
return a + (k - a) / AccurateMath.pow(1 + q * AccurateMath.exp(b * mMinusX), oneOverN);
}
/** {@inheritDoc}

View File

@ -23,7 +23,7 @@ import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDiffer
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <a href="http://en.wikipedia.org/wiki/Logit">
@ -153,7 +153,7 @@ public class Logit implements UnivariateDifferentiableFunction {
if (x < lo || x > hi) {
throw new OutOfRangeException(x, lo, hi);
}
return FastMath.log((x - lo) / (hi - x));
return AccurateMath.log((x - lo) / (hi - x));
}
/** {@inheritDoc}
@ -170,7 +170,7 @@ public class Logit implements UnivariateDifferentiableFunction {
double[] f = new double[t.getOrder() + 1];
// function value
f[0] = FastMath.log((x - lo) / (hi - x));
f[0] = AccurateMath.log((x - lo) / (hi - x));
if (Double.isInfinite(f[0])) {

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.BivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Maximum function.
@ -29,6 +29,6 @@ public class Max implements BivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x, double y) {
return FastMath.max(x, y);
return AccurateMath.max(x, y);
}
}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.BivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Minimum function.
@ -29,6 +29,6 @@ public class Min implements BivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x, double y) {
return FastMath.min(x, y);
return AccurateMath.min(x, y);
}
}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.BivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Power function.
@ -29,6 +29,6 @@ public class Pow implements BivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x, double y) {
return FastMath.pow(x, y);
return AccurateMath.pow(x, y);
}
}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Power function.
@ -40,7 +40,7 @@ public class Power implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.pow(x, p);
return AccurateMath.pow(x, p);
}
/** {@inheritDoc}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* {@code rint} function.
@ -29,6 +29,6 @@ public class Rint implements UnivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.rint(x);
return AccurateMath.rint(x);
}
}

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStruct
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <a href="http://en.wikipedia.org/wiki/Sigmoid_function">
@ -114,7 +114,7 @@ public class Sigmoid implements UnivariateDifferentiableFunction {
DimensionMismatchException {
validateParameters(param);
final double invExp1 = 1 / (1 + FastMath.exp(-x));
final double invExp1 = 1 / (1 + AccurateMath.exp(-x));
return new double[] { 1 - invExp1, invExp1 };
}
@ -150,7 +150,7 @@ public class Sigmoid implements UnivariateDifferentiableFunction {
private static double value(double x,
double lo,
double hi) {
return lo + (hi - lo) / (1 + FastMath.exp(-x));
return lo + (hi - lo) / (1 + AccurateMath.exp(-x));
}
/** {@inheritDoc}
@ -161,7 +161,7 @@ public class Sigmoid implements UnivariateDifferentiableFunction {
throws DimensionMismatchException {
double[] f = new double[t.getOrder() + 1];
final double exp = FastMath.exp(-t.getValue());
final double exp = AccurateMath.exp(-t.getValue());
if (Double.isInfinite(exp)) {
// special handling near lower boundary, to avoid NaN

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* {@code signum} function.
@ -29,6 +29,6 @@ public class Signum implements UnivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.signum(x);
return AccurateMath.signum(x);
}
}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Sine function.
@ -30,7 +30,7 @@ public class Sin implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.sin(x);
return AccurateMath.sin(x);
}
/** {@inheritDoc}

View File

@ -20,7 +20,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* <a href="http://en.wikipedia.org/wiki/Sinc_function">Sinc</a> function,
@ -81,14 +81,14 @@ public class Sinc implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(final double x) {
final double scaledX = normalized ? FastMath.PI * x : x;
if (FastMath.abs(scaledX) <= SHORTCUT) {
final double scaledX = normalized ? AccurateMath.PI * x : x;
if (AccurateMath.abs(scaledX) <= SHORTCUT) {
// use Taylor series
final double scaledX2 = scaledX * scaledX;
return ((scaledX2 - 20) * scaledX2 + 120) / 120;
} else {
// use definition expression
return FastMath.sin(scaledX) / scaledX;
return AccurateMath.sin(scaledX) / scaledX;
}
}
@ -99,12 +99,12 @@ public class Sinc implements UnivariateDifferentiableFunction {
public DerivativeStructure value(final DerivativeStructure t)
throws DimensionMismatchException {
final double scaledX = (normalized ? FastMath.PI : 1) * t.getValue();
final double scaledX = (normalized ? AccurateMath.PI : 1) * t.getValue();
final double scaledX2 = scaledX * scaledX;
double[] f = new double[t.getOrder() + 1];
if (FastMath.abs(scaledX) <= SHORTCUT) {
if (AccurateMath.abs(scaledX) <= SHORTCUT) {
for (int i = 0; i < f.length; ++i) {
final int k = i / 2;
@ -122,8 +122,8 @@ public class Sinc implements UnivariateDifferentiableFunction {
} else {
final double inv = 1 / scaledX;
final double cos = FastMath.cos(scaledX);
final double sin = FastMath.sin(scaledX);
final double cos = AccurateMath.cos(scaledX);
final double sin = AccurateMath.sin(scaledX);
f[0] = inv * sin;
@ -182,10 +182,10 @@ public class Sinc implements UnivariateDifferentiableFunction {
}
if (normalized) {
double scale = FastMath.PI;
double scale = AccurateMath.PI;
for (int i = 1; i < f.length; ++i) {
f[i] *= scale;
scale *= FastMath.PI;
scale *= AccurateMath.PI;
}
}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Hyperbolic sine function.
@ -30,7 +30,7 @@ public class Sinh implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.sinh(x);
return AccurateMath.sinh(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Square-root function.
@ -30,7 +30,7 @@ public class Sqrt implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.sqrt(x);
return AccurateMath.sqrt(x);
}
/** {@inheritDoc}

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* <a href="http://en.wikipedia.org/wiki/Step_function">

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Tangent function.
@ -30,7 +30,7 @@ public class Tan implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.tan(x);
return AccurateMath.tan(x);
}
/** {@inheritDoc}

View File

@ -19,7 +19,7 @@ package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Hyperbolic tangent function.
@ -30,7 +30,7 @@ public class Tanh implements UnivariateDifferentiableFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.tanh(x);
return AccurateMath.tanh(x);
}
/** {@inheritDoc}

View File

@ -18,7 +18,7 @@
package org.apache.commons.math4.legacy.analysis.function;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* {@code ulp} function.
@ -29,6 +29,6 @@ public class Ulp implements UnivariateFunction {
/** {@inheritDoc} */
@Override
public double value(double x) {
return FastMath.ulp(x);
return AccurateMath.ulp(x);
}
}

View File

@ -22,7 +22,7 @@ import org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrato
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.TooManyEvaluationsException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* This algorithm divides the integration interval into equally-sized
@ -122,10 +122,10 @@ public class IterativeLegendreGaussIntegrator
final double t = stage(n);
// Estimate the error.
final double delta = FastMath.abs(t - oldt);
final double delta = AccurateMath.abs(t - oldt);
final double limit =
FastMath.max(getAbsoluteAccuracy(),
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5);
AccurateMath.max(getAbsoluteAccuracy(),
getRelativeAccuracy() * (AccurateMath.abs(oldt) + AccurateMath.abs(t)) * 0.5);
// check convergence
if (iterations.getCount() + 1 >= getMinimalIterationCount() &&
@ -134,8 +134,8 @@ public class IterativeLegendreGaussIntegrator
}
// Prepare next iteration.
final double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / numberOfPoints));
n = FastMath.max((int) (ratio * n), n + 1);
final double ratio = AccurateMath.min(4, AccurateMath.pow(delta / limit, 0.5 / numberOfPoints));
n = AccurateMath.max((int) (ratio * n), n + 1);
oldt = t;
iterations.increment();
}

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.legacy.analysis.integration;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Implements the <a href="https://en.wikipedia.org/wiki/Riemann_sum#Midpoint_rule">
@ -113,7 +113,7 @@ public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator {
double diffMaxMin) {
// number of points in the previous stage. This stage will contribute
// 2*3^{n-1} more points.
final long np = (long) FastMath.pow(3, n - 1);
final long np = (long) AccurateMath.pow(3, n - 1);
double sum = 0;
// spacing between adjacent new points
@ -151,9 +151,9 @@ public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator {
final int i = iterations.getCount();
final double t = stage(i, oldt, min, diff);
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(t - oldt);
final double delta = AccurateMath.abs(t - oldt);
final double rLimit =
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5;
getRelativeAccuracy() * (AccurateMath.abs(oldt) + AccurateMath.abs(t)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return t;
}

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.legacy.analysis.integration;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/RombergIntegration.html">
@ -120,8 +120,8 @@ public class RombergIntegrator extends BaseAbstractUnivariateIntegrator {
}
final double s = currentRow[i];
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(s - olds);
final double rLimit = getRelativeAccuracy() * (FastMath.abs(olds) + FastMath.abs(s)) * 0.5;
final double delta = AccurateMath.abs(s - olds);
final double rLimit = getRelativeAccuracy() * (AccurateMath.abs(olds) + AccurateMath.abs(s)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return s;
}

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.legacy.analysis.integration;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Implements <a href="http://mathworld.wolfram.com/SimpsonsRule.html">
@ -106,8 +106,8 @@ public class SimpsonIntegrator extends BaseAbstractUnivariateIntegrator {
final double t = qtrap.stage(this, i + 1); // 1-stage ahead of the iteration
final double s = (4 * t - oldt) / 3.0;
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(s - olds);
final double rLimit = getRelativeAccuracy() * (FastMath.abs(olds) + FastMath.abs(s)) * 0.5;
final double delta = AccurateMath.abs(s - olds);
final double rLimit = getRelativeAccuracy() * (AccurateMath.abs(olds) + AccurateMath.abs(s)) * 0.5;
if (delta <= rLimit ||
delta <= getAbsoluteAccuracy()) {
return s;

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.legacy.analysis.integration;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/TrapezoidalRule.html">
@ -139,9 +139,9 @@ public class TrapezoidIntegrator extends BaseAbstractUnivariateIntegrator {
final int i = iterations.getCount();
final double t = stage(this, i);
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(t - oldt);
final double delta = AccurateMath.abs(t - oldt);
final double rLimit =
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5;
getRelativeAccuracy() * (AccurateMath.abs(oldt) + AccurateMath.abs(t)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return t;
}

View File

@ -18,7 +18,7 @@ package org.apache.commons.math4.legacy.analysis.integration.gauss;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
import org.apache.commons.math4.legacy.util.Pair;
/**

View File

@ -16,7 +16,7 @@
*/
package org.apache.commons.math4.legacy.analysis.integration.gauss;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.math4.legacy.util.Pair;
/**
@ -74,8 +74,8 @@ public class HermiteRuleFactory extends BaseRuleFactory<Double> {
final Double[] points = new Double[numberOfPoints];
final Double[] weights = new Double[numberOfPoints];
final double sqrtTwoTimesLastNumPoints = FastMath.sqrt(2 * lastNumPoints);
final double sqrtTwoTimesNumPoints = FastMath.sqrt(2 * numberOfPoints);
final double sqrtTwoTimesLastNumPoints = AccurateMath.sqrt(2 * lastNumPoints);
final double sqrtTwoTimesNumPoints = AccurateMath.sqrt(2 * numberOfPoints);
// Find i-th root of H[n+1] by bracketing.
final int iMax = numberOfPoints / 2;
@ -96,8 +96,8 @@ public class HermiteRuleFactory extends BaseRuleFactory<Double> {
for (int j = 1; j < numberOfPoints; j++) {
// Compute H[j+1](a) and H[j+1](b)
final double jp1 = j + 1;
final double s = FastMath.sqrt(2 / jp1);
final double sm = FastMath.sqrt(j / jp1);
final double s = AccurateMath.sqrt(2 / jp1);
final double sm = AccurateMath.sqrt(j / jp1);
final double hpa = s * a * ha - sm * hma;
final double hpb = s * b * hb - sm * hmb;
hma = ha;
@ -121,8 +121,8 @@ public class HermiteRuleFactory extends BaseRuleFactory<Double> {
for (int j = 1; j < numberOfPoints; j++) {
// Compute H[j+1](c)
final double jp1 = j + 1;
final double s = FastMath.sqrt(2 / jp1);
final double sm = FastMath.sqrt(j / jp1);
final double s = AccurateMath.sqrt(2 / jp1);
final double sm = AccurateMath.sqrt(j / jp1);
final double hpc = s * c * hc - sm * hmc;
hmc = hc;
hc = hpc;
@ -160,7 +160,7 @@ public class HermiteRuleFactory extends BaseRuleFactory<Double> {
double hm = H0;
for (int j = 1; j < numberOfPoints; j += 2) {
final double jp1 = j + 1;
hm = -FastMath.sqrt(j / jp1) * hm;
hm = -AccurateMath.sqrt(j / jp1) * hm;
}
final double d = sqrtTwoTimesNumPoints * hm;
final double w = 2 / (d * d);

View File

@ -23,8 +23,8 @@ import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.math4.legacy.core.MathArrays;
import org.apache.commons.numbers.core.Precision;
/**
@ -123,11 +123,11 @@ public class AkimaSplineInterpolator
for (int i = 1; i < weights.length; i++) {
final double a = differences[i];
final double b = differences[i - 1];
weights[i] = FastMath.abs(a - b) + 0.5 * FastMath.abs(a + b);
weights[i] = AccurateMath.abs(a - b) + 0.5 * AccurateMath.abs(a + b);
}
} else {
for (int i = 1; i < weights.length; i++) {
weights[i] = FastMath.abs(differences[i] - differences[i - 1]);
weights[i] = AccurateMath.abs(differences[i] - differences[i - 1]);
}
}

View File

@ -24,7 +24,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Function that implements the

View File

@ -20,7 +20,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Generates a {@link BicubicInterpolatingFunction bicubic interpolating

View File

@ -19,14 +19,14 @@ package org.apache.commons.math4.legacy.analysis.interpolation;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math4.legacy.FieldElement;
import org.apache.commons.math4.legacy.core.FieldElement;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.ZeroException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/** Polynomial interpolator using both sample values and sample derivatives.
* <p>

View File

@ -26,8 +26,8 @@ import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Utility class for the {@link MicrosphereProjectionInterpolator} algorithm.
@ -224,13 +224,13 @@ public class InterpolatingMicrosphere {
final double[] diff = MathArrays.ebeSubtract(samplePoints[i], point);
final double diffNorm = SafeNorm.value(diff);
if (FastMath.abs(diffNorm) < noInterpolationTolerance) {
if (AccurateMath.abs(diffNorm) < noInterpolationTolerance) {
// No need to interpolate, as the interpolation point is
// actually (very close to) one of the sampled points.
return sampleValues[i];
}
final double weight = FastMath.pow(diffNorm, -exponent);
final double weight = AccurateMath.pow(diffNorm, -exponent);
illuminate(diff, sampleValues[i], weight);
}

View File

@ -16,7 +16,7 @@
*/
package org.apache.commons.math4.legacy.analysis.interpolation;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.numbers.angle.PlaneAngleRadians;
/**
@ -60,8 +60,8 @@ public class InterpolatingMicrosphere2D extends InterpolatingMicrosphere {
for (int i = 0; i < size; i++) {
final double angle = i * PlaneAngleRadians.TWO_PI / size;
add(new double[] { FastMath.cos(angle),
FastMath.sin(angle) },
add(new double[] { AccurateMath.cos(angle),
AccurateMath.sin(angle) },
false);
}
}

View File

@ -22,7 +22,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Implements a linear function for interpolation of real univariate functions.

View File

@ -28,8 +28,8 @@ import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Implements the <a href="http://en.wikipedia.org/wiki/Local_regression">
@ -296,7 +296,7 @@ public class LoessInterpolator
double sumXSquared = 0;
double sumY = 0;
double sumXY = 0;
double denom = FastMath.abs(1.0 / (xval[edge] - x));
double denom = AccurateMath.abs(1.0 / (xval[edge] - x));
for (int k = ileft; k <= iright; ++k) {
final double xk = xval[k];
final double yk = yval[k];
@ -316,7 +316,7 @@ public class LoessInterpolator
final double meanXSquared = sumXSquared / sumWeights;
final double beta;
if (FastMath.sqrt(FastMath.abs(meanXSquared - meanX * meanX)) < accuracy) {
if (AccurateMath.sqrt(AccurateMath.abs(meanXSquared - meanX * meanX)) < accuracy) {
beta = 0;
} else {
beta = (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX);
@ -325,7 +325,7 @@ public class LoessInterpolator
final double alpha = meanY - beta * meanX;
res[i] = beta * x + alpha;
residuals[i] = FastMath.abs(yval[i] - res[i]);
residuals[i] = AccurateMath.abs(yval[i] - res[i]);
}
// No need to recompute the robustness weights at the last
@ -343,7 +343,7 @@ public class LoessInterpolator
Arrays.sort(sortedResiduals);
final double medianResidual = sortedResiduals[n / 2];
if (FastMath.abs(medianResidual) < accuracy) {
if (AccurateMath.abs(medianResidual) < accuracy) {
break;
}
@ -450,7 +450,7 @@ public class LoessInterpolator
* @return <code>(1 - |x|<sup>3</sup>)<sup>3</sup></code> for |x| &lt; 1, 0 otherwise.
*/
private static double tricube(final double x) {
final double absX = FastMath.abs(x);
final double absX = AccurateMath.abs(x);
if (absX >= 1.0) {
return 0.0;
}

View File

@ -26,7 +26,7 @@ import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Function that implements the

View File

@ -20,7 +20,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Generates a piecewise-bicubic interpolating function.

View File

@ -22,7 +22,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.

View File

@ -21,7 +21,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Function that implements the

View File

@ -20,7 +20,7 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Generates a tricubic interpolating function.

View File

@ -22,7 +22,7 @@ import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Adapter for classes implementing the {@link UnivariateInterpolator}

View File

@ -25,7 +25,7 @@ import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDiffer
import org.apache.commons.math4.legacy.exception.NoDataException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Immutable representation of a real polynomial function with real coefficients.
@ -167,8 +167,8 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction, Ser
*/
public PolynomialFunction add(final PolynomialFunction p) {
// identify the lowest degree polynomial
final int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
final int highLength = FastMath.max(coefficients.length, p.coefficients.length);
final int lowLength = AccurateMath.min(coefficients.length, p.coefficients.length);
final int highLength = AccurateMath.max(coefficients.length, p.coefficients.length);
// build the coefficients array
double[] newCoefficients = new double[highLength];
@ -192,8 +192,8 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction, Ser
*/
public PolynomialFunction subtract(final PolynomialFunction p) {
// identify the lowest degree polynomial
int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
int highLength = FastMath.max(coefficients.length, p.coefficients.length);
int lowLength = AccurateMath.min(coefficients.length, p.coefficients.length);
int highLength = AccurateMath.max(coefficients.length, p.coefficients.length);
// build the coefficients array
double[] newCoefficients = new double[highLength];
@ -236,8 +236,8 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction, Ser
for (int i = 0; i < newCoefficients.length; ++i) {
newCoefficients[i] = 0.0;
for (int j = FastMath.max(0, i + 1 - p.coefficients.length);
j < FastMath.min(coefficients.length, i + 1);
for (int j = AccurateMath.max(0, i + 1 - p.coefficients.length);
j < AccurateMath.min(coefficients.length, i + 1);
++j) {
newCoefficients[i] += coefficients[j] * p.coefficients[i-j];
}
@ -320,7 +320,7 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction, Ser
}
}
double absAi = FastMath.abs(coefficients[i]);
double absAi = AccurateMath.abs(coefficients[i]);
if ((absAi - 1) != 0) {
s.append(toString(absAi));
s.append(' ');

View File

@ -21,8 +21,8 @@ import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Implements the representation of a real polynomial function in
@ -215,7 +215,7 @@ public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
c[i] = y[i];
d[i] = y[i];
// find out the abscissa closest to z
final double dist = FastMath.abs(z - x[i]);
final double dist = AccurateMath.abs(z - x[i]);
if (dist < min_dist) {
nearest = i;
min_dist = dist;

View File

@ -26,7 +26,7 @@ import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.util.MathArrays;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* Represents a polynomial spline function.

View File

@ -23,7 +23,7 @@ import java.util.Map;
import org.apache.commons.numbers.fraction.BigFraction;
import org.apache.commons.numbers.combinatorics.BinomialCoefficient;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* A collection of static methods that operate on or return polynomials.
@ -341,7 +341,7 @@ public class PolynomialsUtils {
// First polynomial coefficient.
for (int i = 0; i < dp1; i++){
newCoefficients[0] += coefficients[i] * FastMath.pow(shift, i);
newCoefficients[0] += coefficients[i] * AccurateMath.pow(shift, i);
}
// Superior order.
@ -349,7 +349,7 @@ public class PolynomialsUtils {
for (int i = 0; i < d; i++) {
for (int j = i; j < d; j++){
newCoefficients[i + 1] += coeff[j + 1][j - i] *
coefficients[j + 1] * FastMath.pow(shift, j - i);
coefficients[j + 1] * AccurateMath.pow(shift, j - i);
}
}
@ -368,7 +368,7 @@ public class PolynomialsUtils {
final RecurrenceCoefficientsGenerator generator) {
synchronized (coefficients) {
final int maxDegree = (int) FastMath.floor(FastMath.sqrt(2 * coefficients.size())) - 1;
final int maxDegree = (int) AccurateMath.floor(AccurateMath.sqrt(2 * coefficients.size())) - 1;
if (degree > maxDegree) {
computeUpToDegree(degree, maxDegree, generator, coefficients);
}

View File

@ -20,7 +20,7 @@ package org.apache.commons.math4.legacy.analysis.solvers;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.exception.ConvergenceException;
import org.apache.commons.math4.legacy.exception.MathInternalError;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Base class for all bracketing <em>Secant</em>-based methods for root-finding
@ -210,7 +210,7 @@ public abstract class BaseSecantSolver
// If the function value of the last approximation is too small,
// given the function value accuracy, then we can't get closer to
// the root than we already are.
if (FastMath.abs(f1) <= ftol) {
if (AccurateMath.abs(f1) <= ftol) {
switch (allowed) {
case ANY_SIDE:
return x1;
@ -241,7 +241,7 @@ public abstract class BaseSecantSolver
// If the current interval is within the given accuracies, we
// are satisfied with the current approximation.
if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1),
if (AccurateMath.abs(x1 - x0) < AccurateMath.max(rtol * AccurateMath.abs(x1),
atol)) {
switch (allowed) {
case ANY_SIDE:

View File

@ -17,7 +17,7 @@
package org.apache.commons.math4.legacy.analysis.solvers;
import org.apache.commons.math4.legacy.exception.TooManyEvaluationsException;
import org.apache.commons.math4.legacy.util.FastMath;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/Bisection.html">
@ -82,7 +82,7 @@ public class BisectionSolver extends AbstractUnivariateSolver {
max = m;
}
if (FastMath.abs(max - min) <= absoluteAccuracy) {
if (AccurateMath.abs(max - min) <= absoluteAccuracy) {
m = UnivariateSolverUtils.midpoint(min, max);
return m;
}

Some files were not shown because too many files have changed in this diff Show More