Fixed lots of warnings due to missing @Deprecated annotations.

This commit is contained in:
Luc Maisonobe 2014-09-22 18:07:54 +02:00
parent abffaf334c
commit e875e6d598
93 changed files with 165 additions and 276 deletions

View File

@ -267,7 +267,6 @@ public class SingularValueDecomposition {
// Main iteration loop for the singular values.
final int pp = p - 1;
int iter = 0;
while (p > 0) {
int k;
int kase;
@ -429,7 +428,6 @@ public class SingularValueDecomposition {
}
}
e[p - 2] = f;
iter++;
}
break;
// Convergence.
@ -466,7 +464,6 @@ public class SingularValueDecomposition {
}
k++;
}
iter = 0;
p--;
}
break;

View File

@ -38,6 +38,7 @@ import org.apache.commons.math3.optim.PointVectorValuePair;
*
* @since 3.0
*/
@Deprecated
public class MultiStartMultivariateVectorOptimizer
extends BaseMultiStartMultivariateOptimizer<PointVectorValuePair> {
/** Underlying optimizer. */

View File

@ -31,6 +31,7 @@ import org.apache.commons.math3.linear.RealMatrix;
*
* @since 3.1
*/
@Deprecated
public abstract class MultivariateVectorOptimizer
extends BaseMultivariateOptimizer<PointVectorValuePair> {
/** Target values for the model function at optimum. */

View File

@ -87,13 +87,13 @@ public class ValueServer {
private BufferedReader filePointer = null;
/** RandomDataImpl to use for random data generation. */
private final RandomDataImpl randomData;
private final RandomDataGenerator randomData;
// Data generation modes ======================================
/** Creates new ValueServer */
public ValueServer() {
randomData = new RandomDataImpl();
randomData = new RandomDataGenerator();
}
/**
@ -106,7 +106,7 @@ public class ValueServer {
*/
@Deprecated
public ValueServer(RandomDataImpl randomData) {
this.randomData = randomData;
this.randomData = randomData.getDelegate();
}
/**
@ -117,7 +117,7 @@ public class ValueServer {
* @param generator source of random data
*/
public ValueServer(RandomGenerator generator) {
this.randomData = new RandomDataImpl(generator);
this.randomData = new RandomDataGenerator(generator);
}
/**
@ -215,7 +215,7 @@ public class ValueServer {
* @throws ZeroException if URL contains no data
*/
public void computeDistribution(int binCount) throws NullArgumentException, IOException, ZeroException {
empiricalDistribution = new EmpiricalDistribution(binCount, randomData);
empiricalDistribution = new EmpiricalDistribution(binCount, randomData.getRandomGenerator());
empiricalDistribution.load(valuesFileURL);
mu = empiricalDistribution.getSampleStats().getMean();
sigma = empiricalDistribution.getSampleStats().getStandardDeviation();

View File

@ -411,7 +411,7 @@ public class ResizableDoubleArray implements DoubleArray, Serializable {
numElements = 0;
startIndex = 0;
if (data != null) {
if (data != null && data.length > 1) {
addElements(data);
}
}

View File

@ -32,8 +32,6 @@ public class HermiteTest {
public void testNormalDistribution() {
final double oneOverSqrtPi = 1 / FastMath.sqrt(Math.PI);
final double mu = 12345.6789;
final double sigma = 987.654321;
// By defintion, Gauss-Hermite quadrature readily provides the
// integral of the normal distribution density.
final int numPoints = 1;
@ -87,7 +85,6 @@ public class HermiteTest {
public void testNormalVariance() {
final double twoOverSqrtPi = 2 / FastMath.sqrt(Math.PI);
final double mu = 12345.6789;
final double sigma = 987.654321;
final double sigma2 = sigma * sigma;
final int numPoints = 5;

View File

@ -595,7 +595,6 @@ public final class BicubicSplineInterpolatingFunctionTest {
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
final double tol = 224;
double max = 0;
for (int i = 0; i < sz; i++) {
x = distX.sample();
for (int j = 0; j < sz; j++) {

View File

@ -24,6 +24,7 @@ import org.junit.Test;
* Test cases for {@link KolmogorovSmirnovDistribution}.
*
*/
@Deprecated
public class KolmogorovSmirnovDistributionTest {
private static final double TOLERANCE = 10e-10;

View File

@ -58,8 +58,7 @@ public class MultivariateNormalMixtureModelDistributionTest {
{ -1.1, 2.0 } },
{ { 3.5, 1.5 },
{ 1.5, 3.5 } } };
final MultivariateNormalMixtureModelDistribution d
= create(weights, means, covariances);
create(weights, means, covariances);
}
@Test(expected=NotPositiveException.class)
@ -71,8 +70,7 @@ public class MultivariateNormalMixtureModelDistributionTest {
{ -1.1, 2.0 } },
{ { 3.5, 1.5 },
{ 1.5, 3.5 } } };
final MultivariateNormalMixtureModelDistribution d
= create(negativeWeights, means, covariances);
create(negativeWeights, means, covariances);
}
/**

View File

@ -22,6 +22,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class CurveFitterTest {
@Test
public void testMath303() {

View File

@ -210,8 +210,7 @@ public class GaussianCurveFitterTest {
final double[] init = { 3.5e6, 4.2, 0.1 };
GaussianCurveFitter fitter = GaussianCurveFitter.create();
double[] parameters = fitter
.withMaxIterations(maxIter)
fitter.withMaxIterations(maxIter)
.withStartPoint(init)
.fit(createDataset(DATASET1).toList());
}

View File

@ -26,6 +26,7 @@ import org.junit.Test;
*
* @since 2.2
*/
@Deprecated
public class GaussianFitterTest {
/** Good data. */
protected static final double[][] DATASET1 = new double[][] {

View File

@ -16,18 +16,17 @@
*/
package org.apache.commons.math3.fitting;
import java.util.Random;
import java.util.List;
import java.util.ArrayList;
import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer;
import java.util.List;
import java.util.Random;
import org.apache.commons.math3.analysis.function.HarmonicOscillator;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.junit.Test;
import org.junit.Assert;
import org.junit.Test;
public class HarmonicCurveFitterTest {
/**
@ -92,7 +91,7 @@ public class HarmonicCurveFitterTest {
}
final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
final double[] fitted = fitter.fit(points.toList());
fitter.fit(points.toList());
// This test serves to cover the part of the code of "guessAOmega"
// when the algorithm using integrals fails.

View File

@ -17,16 +17,17 @@
package org.apache.commons.math3.fitting;
import java.util.Random;
import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer;
import org.apache.commons.math3.analysis.function.HarmonicOscillator;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class HarmonicFitterTest {
@Test(expected=NumberIsTooSmallException.class)
public void testPreconditions1() {

View File

@ -17,15 +17,15 @@
package org.apache.commons.math3.fitting;
import java.util.Random;
import org.apache.commons.math3.TestUtils;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.apache.commons.math3.TestUtils;
import org.junit.Test;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test for class {@link PolynomialCurveFitter}.

View File

@ -17,6 +17,7 @@
package org.apache.commons.math3.fitting;
import java.util.Random;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction.Parametric;
import org.apache.commons.math3.exception.ConvergenceException;
@ -36,6 +37,7 @@ import org.junit.Assert;
* Test for class {@link CurveFitter} where the function to fit is a
* polynomial.
*/
@Deprecated
public class PolynomialFitterTest {
@Test
public void testFit() {

View File

@ -556,7 +556,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
return true;
}
});
Optimum optimum = optimizer.optimize(builder.build());
optimizer.optimize(builder.build());
Assert.assertThat(checked[0], is(true));
}

View File

@ -295,7 +295,7 @@ public class EvaluationTest {
try {
// Should throw.
final Evaluation eval = p.evaluate(dummy);
p.evaluate(dummy);
Assert.fail("Exception expected");
} catch (RuntimeException e) {
// Expecting exception.

View File

@ -201,7 +201,6 @@ public class EvaluationTestValidation {
// Number of observations.
final int numObs = 10;
// number of parameters.
final int numParams = 2;
// Create a single set of observations.
final Point2D.Double[] obs = lineGenerator.generate(numObs);
@ -218,7 +217,6 @@ public class EvaluationTestValidation {
// Dummy optimizer (to compute the chi-square).
final LeastSquaresProblem lsp = builder(problem).build();
final double[] init = { slope, offset };
// Get chi-square of the best parameters set for the given set of
// observations.
final double bestChi2N = getChi2N(lsp, regress);

View File

@ -288,48 +288,6 @@ public class LevenbergMarquardtOptimizerTest
Assert.assertThat(optimum.getEvaluations(), is(2));
}
//TODO delete or use
private static class QuadraticProblem {
private List<Double> x;
private List<Double> y;
public QuadraticProblem() {
x = new ArrayList<Double>();
y = new ArrayList<Double>();
}
public void addPoint(double x, double y) {
this.x.add(x);
this.y.add(y);
}
public MultivariateVectorFunction getModelFunction() {
return new MultivariateVectorFunction() {
public double[] value(double[] variables) {
double[] values = new double[x.size()];
for (int i = 0; i < values.length; ++i) {
values[i] = (variables[0] * x.get(i) + variables[1]) * x.get(i) + variables[2];
}
return values;
}
};
}
public MultivariateMatrixFunction getModelFunctionJacobian() {
return new MultivariateMatrixFunction() {
public double[][] value(double[] params) {
double[][] jacobian = new double[x.size()][3];
for (int i = 0; i < jacobian.length; ++i) {
jacobian[i][0] = x.get(i) * x.get(i);
jacobian[i][1] = x.get(i);
jacobian[i][2] = 1.0;
}
return jacobian;
}
};
}
}
private static class BevingtonProblem {
private List<Double> time;
private List<Double> count;

View File

@ -610,7 +610,6 @@ public class MinpackTest {
}
private static class LinearFullRankFunction extends MinpackFunction {
private static final long serialVersionUID = -9030323226268039536L;
public LinearFullRankFunction(int m, int n, double x0,
double theoreticalStartCost,
@ -649,7 +648,6 @@ public class MinpackTest {
}
private static class LinearRank1Function extends MinpackFunction {
private static final long serialVersionUID = 8494863245104608300L;
public LinearRank1Function(int m, int n, double x0,
double theoreticalStartCost,
@ -684,7 +682,6 @@ public class MinpackTest {
}
private static class LinearRank1ZeroColsAndRowsFunction extends MinpackFunction {
private static final long serialVersionUID = -3316653043091995018L;
public LinearRank1ZeroColsAndRowsFunction(int m, int n, double x0) {
super(m, buildArray(n, x0),
@ -728,7 +725,6 @@ public class MinpackTest {
}
private static class RosenbrockFunction extends MinpackFunction {
private static final long serialVersionUID = 2893438180956569134L;
public RosenbrockFunction(double[] startParams, double theoreticalStartCost) {
super(2, startParams, 0.0, buildArray(2, 1.0));
}
@ -748,7 +744,6 @@ public class MinpackTest {
}
private static class HelicalValleyFunction extends MinpackFunction {
private static final long serialVersionUID = 220613787843200102L;
public HelicalValleyFunction(double[] startParams,
double theoreticalStartCost) {
super(3, startParams, 0.0, new double[] { 1.0, 0.0, 0.0 });
@ -794,7 +789,6 @@ public class MinpackTest {
}
private static class PowellSingularFunction extends MinpackFunction {
private static final long serialVersionUID = 7298364171208142405L;
public PowellSingularFunction(double[] startParams,
double theoreticalStartCost) {
@ -834,7 +828,6 @@ public class MinpackTest {
}
private static class FreudensteinRothFunction extends MinpackFunction {
private static final long serialVersionUID = 2892404999344244214L;
public FreudensteinRothFunction(double[] startParams,
double theoreticalStartCost,
@ -865,7 +858,6 @@ public class MinpackTest {
}
private static class BardFunction extends MinpackFunction {
private static final long serialVersionUID = 5990442612572087668L;
public BardFunction(double x0,
double theoreticalStartCost,
@ -914,7 +906,6 @@ public class MinpackTest {
}
private static class KowalikOsborneFunction extends MinpackFunction {
private static final long serialVersionUID = -4867445739880495801L;
public KowalikOsborneFunction(double[] startParams,
double theoreticalStartCost,
@ -970,7 +961,6 @@ public class MinpackTest {
}
private static class MeyerFunction extends MinpackFunction {
private static final long serialVersionUID = -838060619150131027L;
public MeyerFunction(double[] startParams,
double theoreticalStartCost,
@ -1021,7 +1011,6 @@ public class MinpackTest {
}
private static class WatsonFunction extends MinpackFunction {
private static final long serialVersionUID = -9034759294980218927L;
public WatsonFunction(int n, double x0,
double theoreticalStartCost,
@ -1092,7 +1081,6 @@ public class MinpackTest {
}
private static class Box3DimensionalFunction extends MinpackFunction {
private static final long serialVersionUID = 5511403858142574493L;
public Box3DimensionalFunction(int m, double[] startParams,
double theoreticalStartCost) {
@ -1132,7 +1120,6 @@ public class MinpackTest {
}
private static class JennrichSampsonFunction extends MinpackFunction {
private static final long serialVersionUID = -2489165190443352947L;
public JennrichSampsonFunction(int m, double[] startParams,
double theoreticalStartCost,
@ -1168,7 +1155,6 @@ public class MinpackTest {
}
private static class BrownDennisFunction extends MinpackFunction {
private static final long serialVersionUID = 8340018645694243910L;
public BrownDennisFunction(int m, double[] startParams,
double theoreticalStartCost,
@ -1216,7 +1202,6 @@ public class MinpackTest {
}
private static class ChebyquadFunction extends MinpackFunction {
private static final long serialVersionUID = -2394877275028008594L;
private static double[] buildChebyquadArray(int n, double factor) {
double[] array = new double[n];
@ -1294,7 +1279,6 @@ public class MinpackTest {
}
private static class BrownAlmostLinearFunction extends MinpackFunction {
private static final long serialVersionUID = 8239594490466964725L;
public BrownAlmostLinearFunction(int m, double factor,
double theoreticalStartCost,
@ -1355,7 +1339,6 @@ public class MinpackTest {
}
private static class Osborne1Function extends MinpackFunction {
private static final long serialVersionUID = 4006743521149849494L;
public Osborne1Function(double[] startParams,
double theoreticalStartCost,
@ -1408,7 +1391,6 @@ public class MinpackTest {
}
private static class Osborne2Function extends MinpackFunction {
private static final long serialVersionUID = -8418268780389858746L;
public Osborne2Function(double[] startParams,
double theoreticalStartCost,

View File

@ -376,7 +376,7 @@ public final class BlockFieldMatrixTest {
public void testOperate() {
FieldMatrix<Fraction> m = new BlockFieldMatrix<Fraction>(id);
TestUtils.assertEquals(testVector, m.operate(testVector));
TestUtils.assertEquals(testVector, m.operate(new ArrayFieldVector<Fraction>(testVector)).getData());
TestUtils.assertEquals(testVector, m.operate(new ArrayFieldVector<Fraction>(testVector)).toArray());
m = new BlockFieldMatrix<Fraction>(bigSingular);
try {
m.operate(testVector);

View File

@ -269,7 +269,7 @@ public final class FieldMatrixImplTest {
public void testOperate() {
FieldMatrix<Fraction> m = new Array2DRowFieldMatrix<Fraction>(id);
TestUtils.assertEquals(testVector, m.operate(testVector));
TestUtils.assertEquals(testVector, m.operate(new ArrayFieldVector<Fraction>(testVector)).getData());
TestUtils.assertEquals(testVector, m.operate(new ArrayFieldVector<Fraction>(testVector)).toArray());
m = new Array2DRowFieldMatrix<Fraction>(bigSingular);
try {
m.operate(testVector);

View File

@ -17,10 +17,6 @@
package org.apache.commons.math3.ml.neuralnet;
import org.junit.Test;
import org.junit.Assert;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well44497b;
/**
* Wraps a given initializer.

View File

@ -17,23 +17,20 @@
package org.apache.commons.math3.ml.neuralnet.oned;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Collection;
import org.junit.Test;
import org.junit.Assert;
import org.junit.Ignore;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ml.neuralnet.FeatureInitializer;
import org.apache.commons.math3.ml.neuralnet.FeatureInitializerFactory;
import org.apache.commons.math3.ml.neuralnet.Network;
import org.apache.commons.math3.ml.neuralnet.Neuron;
import org.apache.commons.math3.random.Well44497b;
import org.junit.Assert;
import org.junit.Test;
/**
* Tests for {@link NeuronString} and {@link Network} functionality for

View File

@ -17,26 +17,22 @@
package org.apache.commons.math3.ml.neuralnet.sofm;
import java.util.Set;
import java.util.HashSet;
import java.util.Collection;
import java.util.List;
import java.util.ArrayList;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.ExecutionException;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.IOException;
import org.junit.Ignore;
import org.junit.Test;
import org.junit.Assert;
import org.junit.runner.RunWith;
import org.apache.commons.math3.RetryRunner;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import org.apache.commons.math3.Retry;
import org.apache.commons.math3.RetryRunner;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;
/**
* Tests for {@link KohonenTrainingTask}
@ -127,24 +123,6 @@ public class KohonenTrainingTaskTest {
Assert.assertEquals(1, ratio, 1e-1); // We do not require the optimal travel.
}
/**
* Creates a map of the travel suggested by the solver.
*
* @param solver Solver.
* @return a 4-columns table: {@code <x (neuron)> <y (neuron)> <x (city)> <y (city)>}.
*/
private String travelCoordinatesTable(TravellingSalesmanSolver solver) {
final StringBuilder s = new StringBuilder();
for (double[] c : solver.getCoordinatesList()) {
s.append(c[0]).append(" ").append(c[1]).append(" ");
final City city = solver.getClosestCity(c[0], c[1]);
final double[] cityCoord = city.getCoordinates();
s.append(cityCoord[0]).append(" ").append(cityCoord[1]).append(" ");
s.append(" # ").append(city.getName()).append("\n");
}
return s.toString();
}
/**
* Compute the distance covered by the salesman, including
* the trip back (from the last to first city).
@ -182,29 +160,4 @@ public class KohonenTrainingTaskTest {
return dist;
}
/**
* Prints a summary of the current state of the solver to the
* given filename.
*
* @param filename File.
* @param solver Solver.
*/
private void printSummary(String filename,
TravellingSalesmanSolver solver) {
PrintWriter out = null;
try {
out = new PrintWriter(filename);
out.println(travelCoordinatesTable(solver));
final City[] result = solver.getCityList();
out.println("# Number of unique cities: " + uniqueCities(result).size());
out.println("# Travel distance: " + computeTravelDistance(result));
} catch (Exception e) {
// Do nothing.
} finally {
if (out != null) {
out.close();
}
}
}
}

View File

@ -79,9 +79,6 @@ public class TravellingSalesmanSolver {
long seed) {
random = new Well44497b(seed);
final double[] xRange = {Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY};
final double[] yRange = {Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY};
// Make sure that each city will appear only once in the list.
for (City city : cityList) {
cities.add(city);

View File

@ -17,23 +17,22 @@
package org.apache.commons.math3.ml.neuralnet.twod;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.Collection;
import org.junit.Test;
import org.junit.Assert;
import org.junit.Ignore;
import java.util.HashSet;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ml.neuralnet.FeatureInitializer;
import org.apache.commons.math3.ml.neuralnet.FeatureInitializerFactory;
import org.apache.commons.math3.ml.neuralnet.Network;
import org.apache.commons.math3.ml.neuralnet.Neuron;
import org.apache.commons.math3.ml.neuralnet.SquareNeighbourhood;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.junit.Assert;
import org.junit.Test;
/**
* Tests for {@link NeuronSquareMesh2D} and {@link Network} functionality for

View File

@ -120,9 +120,6 @@ public class DummyStepInterpolatorTest {
}
private static class BadStepInterpolator extends DummyStepInterpolator {
@SuppressWarnings("unused")
public BadStepInterpolator() {
}
public BadStepInterpolator(double[] y, boolean forward) {
super(y, new double[y.length], forward);
}

View File

@ -19,7 +19,6 @@ package org.apache.commons.math3.optim.nonlinear.scalar.gradient;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.solvers.BrentSolver;
import org.apache.commons.math3.exception.MathUnsupportedOperationException;
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
import org.apache.commons.math3.linear.BlockRealMatrix;

View File

@ -96,6 +96,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class MultiStartMultivariateVectorOptimizerTest {
@Test(expected=NullPointerException.class)

View File

@ -18,6 +18,7 @@ package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.io.IOException;
import java.util.Arrays;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.exception.ConvergenceException;
@ -98,6 +99,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public abstract class AbstractLeastSquaresOptimizerAbstractTest {
public abstract AbstractLeastSquaresOptimizer createOptimizer();

View File

@ -15,6 +15,7 @@ package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.io.IOException;
import java.util.Arrays;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.optim.InitialGuess;
import org.apache.commons.math3.optim.MaxEval;
@ -24,6 +25,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class AbstractLeastSquaresOptimizerTest {
public static AbstractLeastSquaresOptimizer createOptimizer() {

View File

@ -17,6 +17,7 @@ import java.util.Arrays;
import java.util.List;
import java.util.ArrayList;
import java.awt.geom.Point2D;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.optim.InitialGuess;
import org.apache.commons.math3.optim.MaxEval;
@ -45,6 +46,7 @@ import org.junit.Assert;
* mvn test -Dtest=AbstractLeastSquaresOptimizerTestValidation -DargLine="-DmcRuns=1234 -server"
* </code></pre>
*/
@Deprecated
public class AbstractLeastSquaresOptimizerTestValidation {
private static final int MONTE_CARLO_RUNS = Integer.parseInt(System.getProperty("mcRuns",
"100"));
@ -208,8 +210,6 @@ public class AbstractLeastSquaresOptimizerTestValidation {
// Number of observations.
final int numObs = 10;
// number of parameters.
final int numParams = 2;
// Create a single set of observations.
final Point2D.Double[] obs = lineGenerator.generate(numObs);
@ -225,7 +225,6 @@ public class AbstractLeastSquaresOptimizerTestValidation {
// Dummy optimizer (to compute the chi-square).
final AbstractLeastSquaresOptimizer optim = new DummyOptimizer();
final double[] init = { slope, offset };
// Get chi-square of the best parameters set for the given set of
// observations.
final double bestChi2N = getChi2N(optim, problem, regress);
@ -316,6 +315,7 @@ public class AbstractLeastSquaresOptimizerTestValidation {
* A dummy optimizer.
* Used for computing the covariance matrix.
*/
@Deprecated
class DummyOptimizer extends AbstractLeastSquaresOptimizer {
public DummyOptimizer() {
super(null);

View File

@ -17,6 +17,7 @@
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.util.ArrayList;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.util.MathUtils;
@ -38,6 +39,7 @@ import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
* corresponding circle.</li>
* </ul>
*/
@Deprecated
class CircleProblem {
/** Cloud of points assumed to be fitted by a circle. */
private final ArrayList<double[]> points;

View File

@ -18,6 +18,7 @@
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.util.ArrayList;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
@ -27,6 +28,7 @@ import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
/**
* Class used in the tests.
*/
@Deprecated
class CircleVectorial {
private ArrayList<Vector2D> points;

View File

@ -18,6 +18,7 @@
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.io.IOException;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.MathUnsupportedOperationException;
@ -91,6 +92,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class GaussNewtonOptimizerTest
extends AbstractLeastSquaresOptimizerAbstractTest {

View File

@ -19,6 +19,7 @@ package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.optim.InitialGuess;
import org.apache.commons.math3.optim.MaxEval;
@ -101,6 +102,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class LevenbergMarquardtOptimizerTest
extends AbstractLeastSquaresOptimizerAbstractTest {
@Override
@ -316,47 +318,6 @@ public class LevenbergMarquardtOptimizerTest
Assert.assertEquals(radius, paramFound[2], asymptoticStandardErrorFound[2]);
}
private static class QuadraticProblem {
private List<Double> x;
private List<Double> y;
public QuadraticProblem() {
x = new ArrayList<Double>();
y = new ArrayList<Double>();
}
public void addPoint(double x, double y) {
this.x.add(x);
this.y.add(y);
}
public ModelFunction getModelFunction() {
return new ModelFunction(new MultivariateVectorFunction() {
public double[] value(double[] variables) {
double[] values = new double[x.size()];
for (int i = 0; i < values.length; ++i) {
values[i] = (variables[0] * x.get(i) + variables[1]) * x.get(i) + variables[2];
}
return values;
}
});
}
public ModelFunctionJacobian getModelFunctionJacobian() {
return new ModelFunctionJacobian(new MultivariateMatrixFunction() {
public double[][] value(double[] params) {
double[][] jacobian = new double[x.size()][3];
for (int i = 0; i < jacobian.length; ++i) {
jacobian[i][0] = x.get(i) * x.get(i);
jacobian[i][1] = x.get(i);
jacobian[i][2] = 1.0;
}
return jacobian;
}
});
}
}
private static class BevingtonProblem {
private List<Double> time;
private List<Double> count;

View File

@ -18,6 +18,7 @@
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.util.Arrays;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
@ -94,6 +95,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class MinpackTest {
@Test

View File

@ -28,6 +28,7 @@ import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
/**
* Factory for generating a cloud of points that approximate a circle.
*/
@Deprecated
public class RandomCirclePointGenerator {
/** RNG for the x-coordinate of the center. */
private final RealDistribution cX;

View File

@ -18,6 +18,7 @@
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.awt.geom.Point2D;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well44497b;
import org.apache.commons.math3.distribution.RealDistribution;
@ -27,6 +28,7 @@ import org.apache.commons.math3.distribution.NormalDistribution;
/**
* Factory for generating a cloud of points that approximate a straight line.
*/
@Deprecated
public class RandomStraightLinePointGenerator {
/** Slope. */
private final double slope;

View File

@ -19,6 +19,7 @@ package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.ArrayList;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
@ -32,6 +33,7 @@ import org.apache.commons.math3.util.MathArrays;
* Instances of this class can be created by invocation of the
* {@link StatisticalReferenceDatasetFactory}.
*/
@Deprecated
public abstract class StatisticalReferenceDataset {
/** The name of this dataset. */

View File

@ -20,12 +20,14 @@ import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import org.apache.commons.math3.util.FastMath;
/**
* A factory to create instances of {@link StatisticalReferenceDataset} from
* available resources.
*/
@Deprecated
public class StatisticalReferenceDatasetFactory {
private StatisticalReferenceDatasetFactory() {

View File

@ -18,6 +18,7 @@
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import java.util.ArrayList;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
@ -37,6 +38,7 @@ import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
* <li>for each pair (a, b), the y-coordinate of the line.</li>
* </ul>
*/
@Deprecated
class StraightLineProblem {
/** Cloud of points assumed to be fitted by a straight line. */
private final ArrayList<double[]> points;

View File

@ -255,7 +255,6 @@ public final class BrentOptimizerTest {
new SearchInterval(minSin - 6.789 * delta,
minSin + 9.876 * delta,
init));
final int numEval = optimizer.getEvaluations();
final double sol = result.getPoint();
final double expected = init;
@ -289,7 +288,6 @@ public final class BrentOptimizerTest {
GoalType.MINIMIZE,
new SearchInterval(minSin - 6.789 * delta,
minSin + 9.876 * delta));
final int numEval = optimizer.getEvaluations();
final double sol = result.getPoint();
final double expected = 4.712389027602411;

View File

@ -30,6 +30,7 @@ import org.apache.commons.math3.random.UncorrelatedRandomVectorGenerator;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class MultivariateDifferentiableMultiStartOptimizerTest {
@Test

View File

@ -93,6 +93,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class MultivariateDifferentiableVectorMultiStartOptimizerTest {
@Test

View File

@ -28,6 +28,7 @@ import org.apache.commons.math3.random.UncorrelatedRandomVectorGenerator;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class MultivariateMultiStartOptimizerTest {
@Test
public void testRosenbrock() {

View File

@ -22,6 +22,7 @@ import org.apache.commons.math3.TestUtils;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class PointValuePairTest {
@Test

View File

@ -22,6 +22,7 @@ import org.apache.commons.math3.TestUtils;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class PointVectorValuePairTest {
@Test

View File

@ -20,6 +20,7 @@ import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class SimplePointCheckerTest {
@Test(expected=NotStrictlyPositiveException.class)
public void testIterationCheckPrecondition() {

View File

@ -20,6 +20,7 @@ import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class SimpleValueCheckerTest {
@Test(expected=NotStrictlyPositiveException.class)
public void testIterationCheckPrecondition() {

View File

@ -20,6 +20,7 @@ import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class SimpleVectorValueCheckerTest {
@Test(expected=NotStrictlyPositiveException.class)
public void testIterationCheckPrecondition() {

View File

@ -36,6 +36,7 @@ import org.junit.Test;
/**
* Test for {@link BOBYQAOptimizer}.
*/
@Deprecated
public class BOBYQAOptimizerTest {
static final int DIM = 13;

View File

@ -40,6 +40,7 @@ import org.junit.runner.RunWith;
/**
* Test for {@link CMAESOptimizer}.
*/
@Deprecated
@RunWith(RetryRunner.class)
public class CMAESOptimizerTest {

View File

@ -24,6 +24,7 @@ import org.apache.commons.math3.optimization.PointValuePair;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class MultivariateFunctionMappingAdapterTest {
@Test

View File

@ -25,6 +25,7 @@ import org.apache.commons.math3.optimization.SimplePointChecker;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class MultivariateFunctionPenaltyAdapterTest {
@Test

View File

@ -28,6 +28,7 @@ import org.junit.Test;
/**
* Test for {@link PowellOptimizer}.
*/
@Deprecated
public class PowellOptimizerTest {
@Test

View File

@ -25,6 +25,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class SimplexOptimizerMultiDirectionalTest {
@Test
public void testMinimize1() {

View File

@ -30,6 +30,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class SimplexOptimizerNelderMeadTest {
@Test
public void testMinimize1() {

View File

@ -23,6 +23,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class CurveFitterTest {
@Test

View File

@ -19,7 +19,6 @@ package org.apache.commons.math3.optimization.fitting;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.optimization.general.LevenbergMarquardtOptimizer;
import org.junit.Assert;
import org.junit.Test;
@ -28,6 +27,7 @@ import org.junit.Test;
*
* @since 2.2
*/
@Deprecated
public class GaussianFitterTest {
/** Good data. */
protected static final double[][] DATASET1 = new double[][] {

View File

@ -25,10 +25,10 @@ import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class HarmonicFitterTest {
@Test(expected=NumberIsTooSmallException.class)
public void testPreconditions1() {

View File

@ -31,7 +31,6 @@ import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.apache.commons.math3.TestUtils;
import org.junit.Test;
import org.junit.Assert;
@ -39,6 +38,7 @@ import org.junit.Assert;
* Test for class {@link CurveFitter} where the function to fit is a
* polynomial.
*/
@Deprecated
public class PolynomialFitterTest {
@Test
public void testFit() {
@ -138,7 +138,7 @@ public class PolynomialFitterTest {
final double[] init = new double[] { 0, 0 };
final int maxEval = 10000; // Trying hard to fit.
final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);
doMath798(new GaussNewtonOptimizer(checker), maxEval, init);
}
/**

View File

@ -95,6 +95,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public abstract class AbstractLeastSquaresOptimizerAbstractTest {
public abstract AbstractLeastSquaresOptimizer createOptimizer();

View File

@ -17,11 +17,11 @@ import java.io.IOException;
import java.util.Arrays;
import org.junit.Assert;
import org.apache.commons.math3.optimization.PointVectorValuePair;
import org.apache.commons.math3.util.FastMath;
import org.junit.Test;
@Deprecated
public class AbstractLeastSquaresOptimizerTest {
public static AbstractLeastSquaresOptimizer createOptimizer() {

View File

@ -17,6 +17,7 @@ import java.util.Arrays;
import java.util.List;
import java.util.ArrayList;
import java.awt.geom.Point2D;
import org.apache.commons.math3.optimization.PointVectorValuePair;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import org.apache.commons.math3.stat.descriptive.StatisticalSummary;
@ -41,6 +42,7 @@ import org.junit.Assert;
* mvn test -Dtest=AbstractLeastSquaresOptimizerTestValidation -DargLine="-DmcRuns=1234 -server"
* </code></pre>
*/
@Deprecated
public class AbstractLeastSquaresOptimizerTestValidation {
private static final int MONTE_CARLO_RUNS = Integer.parseInt(System.getProperty("mcRuns",
"100"));
@ -200,7 +202,6 @@ public class AbstractLeastSquaresOptimizerTestValidation {
// Number of observations.
final int numObs = 10;
// number of parameters.
final int numParams = 2;
// Create a single set of observations.
final Point2D.Double[] obs = lineGenerator.generate(numObs);
@ -216,7 +217,6 @@ public class AbstractLeastSquaresOptimizerTestValidation {
// Dummy optimizer (to compute the chi-square).
final AbstractLeastSquaresOptimizer optim = new DummyOptimizer();
final double[] init = { slope, offset };
// Get chi-square of the best parameters set for the given set of
// observations.
final double bestChi2N = getChi2N(optim, problem, regress);
@ -302,6 +302,7 @@ public class AbstractLeastSquaresOptimizerTestValidation {
* A dummy optimizer.
* Used for computing the covariance matrix.
*/
@Deprecated
class DummyOptimizer extends AbstractLeastSquaresOptimizer {
public DummyOptimizer() {
super(null);

View File

@ -38,6 +38,7 @@ import org.apache.commons.math3.util.FastMath;
* corresponding circle.</li>
* </ul>
*/
@Deprecated
class CircleProblem implements MultivariateDifferentiableVectorFunction {
/** Cloud of points assumed to be fitted by a circle. */
private final ArrayList<Vector2D> points;

View File

@ -26,6 +26,7 @@ import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
/**
* Class used in the tests.
*/
@Deprecated
public class CircleScalar implements MultivariateDifferentiableFunction {
private ArrayList<Vector2D> points;

View File

@ -26,6 +26,7 @@ import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
/**
* Class used in the tests.
*/
@Deprecated
class CircleVectorial implements MultivariateDifferentiableVectorFunction {
private ArrayList<Vector2D> points;

View File

@ -86,6 +86,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class GaussNewtonOptimizerTest
extends AbstractLeastSquaresOptimizerAbstractTest {

View File

@ -97,6 +97,7 @@ import org.junit.Ignore;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class LevenbergMarquardtOptimizerTest extends AbstractLeastSquaresOptimizerAbstractTest {
@Override

View File

@ -20,7 +20,6 @@ package org.apache.commons.math3.optimization.general;
import java.io.Serializable;
import java.util.Arrays;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
@ -91,6 +90,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class MinpackTest {
@Test

View File

@ -93,6 +93,7 @@ import org.junit.Test;
* @author Jorge J. More (original fortran minpack tests)
* @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
*/
@Deprecated
public class NonLinearConjugateGradientOptimizerTest {
@Test
public void testTrivial() {

View File

@ -29,6 +29,7 @@ import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
/**
* Factory for generating a cloud of points that approximate a circle.
*/
@Deprecated
public class RandomCirclePointGenerator {
/** RNG for the x-coordinate of the center. */
private final RealDistribution cX;

View File

@ -18,6 +18,7 @@
package org.apache.commons.math3.optimization.general;
import java.awt.geom.Point2D;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well44497b;
import org.apache.commons.math3.distribution.RealDistribution;
@ -27,6 +28,7 @@ import org.apache.commons.math3.distribution.NormalDistribution;
/**
* Factory for generating a cloud of points that approximate a straight line.
*/
@Deprecated
public class RandomStraightLinePointGenerator {
/** Slope. */
private final double slope;

View File

@ -31,6 +31,7 @@ import org.apache.commons.math3.util.MathArrays;
* Instances of this class can be created by invocation of the
* {@link StatisticalReferenceDatasetFactory}.
*/
@Deprecated
public abstract class StatisticalReferenceDataset {
/** The name of this dataset. */

View File

@ -27,6 +27,7 @@ import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
* A factory to create instances of {@link StatisticalReferenceDataset} from
* available resources.
*/
@Deprecated
public class StatisticalReferenceDatasetFactory {
private StatisticalReferenceDatasetFactory() {

View File

@ -36,6 +36,7 @@ import org.apache.commons.math3.stat.regression.SimpleRegression;
* <li>for each pair (a, b), the y-coordinate of the line.</li>
* </ul>
*/
@Deprecated
class StraightLineProblem implements MultivariateDifferentiableVectorFunction {
/** Cloud of points assumed to be fitted by a straight line. */
private final ArrayList<double[]> points;

View File

@ -28,6 +28,7 @@ import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.util.Precision;
import org.junit.Test;
@Deprecated
public class SimplexSolverTest {
@Test

View File

@ -25,6 +25,7 @@ import org.apache.commons.math3.optimization.GoalType;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class SimplexTableauTest {
@Test

View File

@ -18,13 +18,13 @@ package org.apache.commons.math3.optimization.univariate;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.optimization.GoalType;
import org.junit.Assert;
import org.junit.Test;
/**
* Test for {@link BracketFinder}.
*/
@Deprecated
public class BracketFinderTest {
@Test

View File

@ -34,6 +34,7 @@ import org.junit.Test;
/**
*/
@Deprecated
public final class BrentOptimizerTest {
@Test
@ -207,7 +208,6 @@ public final class BrentOptimizerTest {
minSin - 6.789 * delta,
minSin + 9.876 * delta,
init);
final int numEval = optimizer.getEvaluations();
final double sol = result.getPoint();
final double expected = init;
@ -239,7 +239,6 @@ public final class BrentOptimizerTest {
= optimizer.optimize(200, f, GoalType.MINIMIZE,
minSin - 6.789 * delta,
minSin + 9.876 * delta);
final int numEval = optimizer.getEvaluations();
final double sol = result.getPoint();
final double expected = 4.712389027602411;

View File

@ -20,6 +20,7 @@ import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.junit.Test;
import org.junit.Assert;
@Deprecated
public class SimpleUnivariateValueCheckerTest {
@Test(expected=NotStrictlyPositiveException.class)
public void testIterationCheckPrecondition() {

View File

@ -26,6 +26,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class UnivariateMultiStartOptimizerTest {
@Test

View File

@ -28,14 +28,12 @@ import org.apache.commons.math3.TestUtils;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.integration.BaseAbstractUnivariateIntegrator;
import org.apache.commons.math3.analysis.integration.IterativeLegendreGaussIntegrator;
import org.apache.commons.math3.distribution.AbstractRealDistribution;
import org.apache.commons.math3.distribution.ConstantRealDistribution;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.RealDistributionAbstractTest;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;

View File

@ -147,7 +147,7 @@ public class BetaTest {
final double b = 223;
try {
final double r = Beta.regularizedBeta(x, a, b, 1e-14, 10000);
Beta.regularizedBeta(x, a, b, 1e-14, 10000);
} catch (StackOverflowError error) {
Assert.fail("Infinite recursion");
}

View File

@ -24,6 +24,7 @@ import org.apache.commons.math3.exception.NullArgumentException;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class DBSCANClustererTest {
@Test

View File

@ -24,6 +24,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class EuclideanDoublePointTest {
@Test

View File

@ -26,6 +26,7 @@ import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class EuclideanIntegerPointTest {
@Test

View File

@ -28,6 +28,7 @@ import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class KMeansPlusPlusClustererTest {
@Test

View File

@ -19,7 +19,7 @@ import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomDataImpl;
import org.apache.commons.math3.random.RandomDataGenerator;
import org.junit.Assert;
import org.junit.Test;
@ -94,7 +94,7 @@ public final class MathUtilsTest {
public void testPermutedArrayHash() {
double[] original = new double[10];
double[] permuted = new double[10];
RandomDataImpl random = new RandomDataImpl();
RandomDataGenerator random = new RandomDataGenerator();
// Generate 10 distinct random values
for (int i = 0; i < 10; i++) {

View File

@ -46,14 +46,14 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
@Test
public void testConstructors() {
float defaultExpansionFactor = 2.0f;
float defaultContractionCriteria = 2.5f;
double defaultContractionCriteria = 2.5;
int defaultMode = ResizableDoubleArray.MULTIPLICATIVE_MODE;
ResizableDoubleArray testDa = new ResizableDoubleArray(2);
Assert.assertEquals(0, testDa.getNumElements());
Assert.assertEquals(2, testDa.getCapacity());
Assert.assertEquals(defaultExpansionFactor, testDa.getExpansionFactor(), 0);
Assert.assertEquals(defaultContractionCriteria, testDa.getContractionCriteria(), 0);
Assert.assertEquals(defaultContractionCriteria, testDa.getContractionCriterion(), 0);
Assert.assertEquals(defaultMode, testDa.getExpansionMode());
try {
da = new ResizableDoubleArray(-1);
@ -69,44 +69,44 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
testDa = new ResizableDoubleArray(initialArray);
Assert.assertEquals(3, testDa.getNumElements());
testDa = new ResizableDoubleArray(2, 2.0f);
testDa = new ResizableDoubleArray(2, 2.0);
Assert.assertEquals(0, testDa.getNumElements());
Assert.assertEquals(2, testDa.getCapacity());
Assert.assertEquals(defaultExpansionFactor, testDa.getExpansionFactor(), 0);
Assert.assertEquals(defaultContractionCriteria, testDa.getContractionCriteria(), 0);
Assert.assertEquals(defaultContractionCriteria, testDa.getContractionCriterion(), 0);
Assert.assertEquals(defaultMode, testDa.getExpansionMode());
try {
da = new ResizableDoubleArray(2, 0.5f);
da = new ResizableDoubleArray(2, 0.5);
Assert.fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// expected
}
testDa = new ResizableDoubleArray(2, 3.0f);
testDa = new ResizableDoubleArray(2, 3.0);
Assert.assertEquals(3.0f, testDa.getExpansionFactor(), 0);
Assert.assertEquals(3.5f, testDa.getContractionCriteria(), 0);
Assert.assertEquals(3.5f, testDa.getContractionCriterion(), 0);
testDa = new ResizableDoubleArray(2, 2.0f, 3.0f);
testDa = new ResizableDoubleArray(2, 2.0, 3.0);
Assert.assertEquals(0, testDa.getNumElements());
Assert.assertEquals(2, testDa.getCapacity());
Assert.assertEquals(defaultExpansionFactor, testDa.getExpansionFactor(), 0);
Assert.assertEquals(3.0f, testDa.getContractionCriteria(), 0);
Assert.assertEquals(3.0f, testDa.getContractionCriterion(), 0);
Assert.assertEquals(defaultMode, testDa.getExpansionMode());
try {
da = new ResizableDoubleArray(2, 2.0f, 1.5f);
da = new ResizableDoubleArray(2, 2.0, 1.5);
Assert.fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// expected
}
testDa = new ResizableDoubleArray(2, 2.0f, 3.0f,
ResizableDoubleArray.ADDITIVE_MODE);
testDa = new ResizableDoubleArray(2, 2.0, 3.0,
ResizableDoubleArray.ExpansionMode.ADDITIVE);
Assert.assertEquals(0, testDa.getNumElements());
Assert.assertEquals(2, testDa.getCapacity());
Assert.assertEquals(defaultExpansionFactor, testDa.getExpansionFactor(), 0);
Assert.assertEquals(3.0f, testDa.getContractionCriteria(), 0);
Assert.assertEquals(3.0f, testDa.getContractionCriterion(), 0);
Assert.assertEquals(ResizableDoubleArray.ADDITIVE_MODE,
testDa.getExpansionMode());
@ -118,8 +118,8 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
}
// Copy constructor
testDa = new ResizableDoubleArray(2, 2.0f, 3.0f,
ResizableDoubleArray.ADDITIVE_MODE);
testDa = new ResizableDoubleArray(2, 2.0, 3.0,
ResizableDoubleArray.ExpansionMode.ADDITIVE);
testDa.addElement(2.0);
testDa.addElement(3.2);
ResizableDoubleArray copyDa = new ResizableDoubleArray(testDa);
@ -179,8 +179,8 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
// ADDITIVE_MODE
ResizableDoubleArray testDa = new ResizableDoubleArray(2, 2.0f, 3.0f,
ResizableDoubleArray.ADDITIVE_MODE);
ResizableDoubleArray testDa = new ResizableDoubleArray(2, 2.0, 3.0,
ResizableDoubleArray.ExpansionMode.ADDITIVE);
Assert.assertEquals(2, testDa.getCapacity());
testDa.addElement(1d);
testDa.addElement(1d);
@ -213,8 +213,8 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
Assert.assertEquals(6, testDa.getNumElements());
// ADDITIVE_MODE (x's are occupied storage locations, 0's are open)
testDa = new ResizableDoubleArray(2, 2.0f, 2.5f,
ResizableDoubleArray.ADDITIVE_MODE);
testDa = new ResizableDoubleArray(2, 2.0, 2.5,
ResizableDoubleArray.ExpansionMode.ADDITIVE);
Assert.assertEquals(2, testDa.getCapacity());
testDa.addElements(new double[] { 1d }); // x,0
testDa.addElements(new double[] { 2d }); // x,x
@ -248,8 +248,8 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
Assert.assertEquals(6, da.getElement(2), 0);
// ADDITIVE_MODE (x's are occupied storage locations, 0's are open)
ResizableDoubleArray testDa = new ResizableDoubleArray(2, 2.0f, 2.5f,
ResizableDoubleArray.ADDITIVE_MODE);
ResizableDoubleArray testDa = new ResizableDoubleArray(2, 2.0, 2.5,
ResizableDoubleArray.ExpansionMode.ADDITIVE);
Assert.assertEquals(2, testDa.getCapacity());
testDa.addElement(1d); // x,0
testDa.addElement(2d); // x,x
@ -334,7 +334,7 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
@Test
public void testWithInitialCapacityAndExpansionFactor() {
ResizableDoubleArray eDA3 = new ResizableDoubleArray(3, 3.0f, 3.5f);
ResizableDoubleArray eDA3 = new ResizableDoubleArray(3, 3.0, 3.5);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA3.getNumElements() );
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 3000);
@ -442,7 +442,7 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
@Test
public void testMutators() {
((ResizableDoubleArray)da).setContractionCriteria(10f);
Assert.assertEquals(10f, ((ResizableDoubleArray)da).getContractionCriteria(), 0);
Assert.assertEquals(10f, ((ResizableDoubleArray)da).getContractionCriterion(), 0);
((ResizableDoubleArray)da).setExpansionFactor(8f);
Assert.assertEquals(8f, ((ResizableDoubleArray)da).getExpansionFactor(), 0);
try {
@ -483,10 +483,10 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest {
verifyEquality(first, second);
// Equals iff same data, same properties
ResizableDoubleArray third = new ResizableDoubleArray(3, 2.0f, 2.0f);
ResizableDoubleArray third = new ResizableDoubleArray(3, 2.0, 2.0);
verifyInequality(third, first);
ResizableDoubleArray fourth = new ResizableDoubleArray(3, 2.0f, 2.0f);
ResizableDoubleArray fifth = new ResizableDoubleArray(2, 2.0f, 2.0f);
ResizableDoubleArray fourth = new ResizableDoubleArray(3, 2.0, 2.0);
ResizableDoubleArray fifth = new ResizableDoubleArray(2, 2.0, 2.0);
verifyEquality(third, fourth);
verifyInequality(third, fifth);
third.addElement(4.1);