Added Hermite interpolator.

This class implements the Hermite polynomial interpolation method, which
can match function derivatives in addition to function value at sampling
points. The implementation is done for vector-valued functions.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1351257 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2012-06-18 10:01:12 +00:00
parent 5f00c9b777
commit e8a6708cfd
7 changed files with 537 additions and 5 deletions

View File

@ -54,7 +54,13 @@ All rights reserved
The LocalizedFormatsTest class in the unit tests is an adapted version of
the OrekitMessagesTest class from the orekit library distributed under the
terms of the Apache 2 licence. Original source copyright:
Copyright 2010 CS Communication & Systèmes
Copyright 2010 CS Systèmes d'Information
===============================================================================
The HermiteInterpolator class and its corresponding test have been imported from
the orekit library distributed under the terms of the Apache 2 licence. Original
source copyright:
Copyright 2010-2012 CS Systèmes d'Information
===============================================================================
The complete text of licenses and disclaimers associated with the the original

View File

@ -52,6 +52,11 @@ If the output is not quite correct, check for invisible trailing spaces!
<body>
<release version="3.1" date="TBD" description="
">
<action dev="luc" type="add">
A new HermiteInterpolator class allow interpolation of vector-valued
functions using both values and derivatives of the function at sample
points.
</action>
<action dev="erans" type="fix" issue="MATH-804">
Parameterized "CurveFitter" class (package "o.a.c.m.optimization.fitting")
with the type of the fitting function. Updated subclasses "PolynomialFitter",

View File

@ -0,0 +1,254 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.analysis.DifferentiableUnivariateVectorFunction;
import org.apache.commons.math3.analysis.UnivariateVectorFunction;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.ArithmeticUtils;
/** Polynomial interpolator using both sample values and sample derivatives.
* <p>
* The interpolation polynomials match all sample points, including both values
* and provided derivatives. There is one polynomial for each component of
* the values vector. All polynomial have the same degree. The degree of the
* polynomials depends on the number of points and number of derivatives at each
* point. For example the interpolation polynomials for n sample points without
* any derivatives all have degree n-1. The interpolation polynomials for n
* sample points with the two extreme points having value and first derivative
* and the remaining points having value only all have degree n+1. The
* interpolation polynomial for n sample points with value, first and second
* derivative for all points all have degree 3n-1.
* </p>
* <p>
* This class has been imported from the Orekit space flight dynamics library
* also distributed under the terms of the Apache License V2. Original copyright
* is: Copyright 2002-2012 CS Systèmes d'Information.
* </p>
* @version $Id$
* @since 3.1
*/
public class HermiteInterpolator implements DifferentiableUnivariateVectorFunction {
/** Sample abscissae. */
private final List<Double> abscissae;
/** Top diagonal of the divided differences array. */
private final List<double[]> topDiagonal;
/** Bottom diagonal of the divided differences array. */
private final List<double[]> bottomDiagonal;
/** Create an empty interpolator.
*/
public HermiteInterpolator() {
this.abscissae = new ArrayList<Double>();
this.topDiagonal = new ArrayList<double[]>();
this.bottomDiagonal = new ArrayList<double[]>();
}
/** Add a sample point.
* <p>
* This method must be called once for each sample point. It is allowed to
* mix some calls with values only with calls with values and first
* derivatives.
* </p>
* <p>
* The point abscissae for all calls <em>must</em> be different.
* </p>
* @param x abscissa of the sample point
* @param value value and derivatives of the sample point
* (if only one row is passed, it is the value, if two rows are
* passed the first one is the value and the second the derivative
* and so on)
* @exception MathIllegalArgumentException if the abscissa is equals to a previously
* added sample point
*/
public void addSamplePoint(final double x, final double[] ... value)
throws MathIllegalArgumentException {
for (int i = 0; i < value.length; ++i) {
final double[] y = value[i].clone();
if (i > 1) {
double inv = 1.0 / ArithmeticUtils.factorial(i);
for (int j = 0; j < y.length; ++j) {
y[j] *= inv;
}
}
// update the bottom diagonal of the divided differences array
final int n = abscissae.size();
bottomDiagonal.add(n - i, y);
double[] bottom0 = y;
for (int j = i; j < n; ++j) {
final double[] bottom1 = bottomDiagonal.get(n - (j + 1));
final double inv = 1.0 / (x - abscissae.get(n - (j + 1)));
if (Double.isInfinite(inv)) {
throw new MathIllegalArgumentException(LocalizedFormats.DUPLICATED_ABSCISSA_DIVISION_BY_ZERO,
x);
}
for (int k = 0; k < y.length; ++k) {
bottom1[k] = inv * (bottom0[k] - bottom1[k]);
}
bottom0 = bottom1;
}
// update the top diagonal of the divided differences array
topDiagonal.add(bottom0.clone());
// update the abscissae array
abscissae.add(x);
}
}
/** Compute the interpolation polynomials.
* @return interpolation polynomials array
* @exception MathIllegalStateException if sample is empty
*/
public PolynomialFunction[] getPolynomials()
throws MathIllegalStateException {
// safety check
checkInterpolation();
// iteration initialization
final PolynomialFunction zero = polynomial(0);
PolynomialFunction[] polynomials = new PolynomialFunction[topDiagonal.get(0).length];
for (int i = 0; i < polynomials.length; ++i) {
polynomials[i] = zero;
}
PolynomialFunction coeff = polynomial(1);
// build the polynomials by iterating on the top diagonal of the divided differences array
for (int i = 0; i < topDiagonal.size(); ++i) {
double[] tdi = topDiagonal.get(i);
for (int k = 0; k < polynomials.length; ++k) {
polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
}
coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
}
return polynomials;
}
/** Interpolate value at a specified abscissa.
* <p>
* Calling this method is equivalent to call the {@link PolynomialFunction#value(double)
* value} methods of all polynomials returned by {@link #getPolynomials() getPolynomials},
* except it does not build the intermediate polynomials, so this method is faster and
* numerically more stable.
* </p>
* @param x interpolation abscissa
* @return interpolated value
* @exception MathIllegalStateException if sample is empty
*/
public double[] value(double x)
throws MathIllegalStateException {
// safety check
checkInterpolation();
final double[] value = new double[topDiagonal.get(0).length];
double valueCoeff = 1;
for (int i = 0; i < topDiagonal.size(); ++i) {
double[] dividedDifference = topDiagonal.get(i);
for (int k = 0; k < value.length; ++k) {
value[k] += dividedDifference[k] * valueCoeff;
}
final double deltaX = x - abscissae.get(i);
valueCoeff *= deltaX;
}
return value;
}
/** Interpolate first derivative at a specified abscissa.
* <p>
* Calling this method is equivalent to call the {@link PolynomialFunction#value(double)
* value} methods of the derivatives of all polynomials returned by {@link
* #getPolynomials() getPolynomials}, except it builds neither the intermediate
* polynomials nor their derivatives, so this method is faster and numerically more stable.
* </p>
* @param x interpolation abscissa
* @return interpolated derivative
* @exception MathIllegalStateException if sample is empty
*/
public double[] derivative(double x)
throws MathIllegalStateException {
// safety check
checkInterpolation();
final double[] derivative = new double[topDiagonal.get(0).length];
double valueCoeff = 1;
double derivativeCoeff = 0;
for (int i = 0; i < topDiagonal.size(); ++i) {
double[] dividedDifference = topDiagonal.get(i);
for (int k = 0; k < derivative.length; ++k) {
derivative[k] += dividedDifference[k] * derivativeCoeff;
}
final double deltaX = x - abscissae.get(i);
derivativeCoeff = valueCoeff + derivativeCoeff * deltaX;
valueCoeff *= deltaX;
}
return derivative;
}
/** {@inheritDoc}} */
public UnivariateVectorFunction derivative() {
return new UnivariateVectorFunction() {
/** {@inheritDoc}} */
public double[] value(double x) {
return derivative(x);
}
};
}
/** Check interpolation can be performed.
* @exception MathIllegalStateException if interpolation cannot be performed
* because sample is empty
*/
private void checkInterpolation() throws MathIllegalStateException {
if (abscissae.isEmpty()) {
throw new MathIllegalStateException(LocalizedFormats.EMPTY_INTERPOLATION_SAMPLE);
}
}
/** Create a polynomial from its coefficients.
* @param c polynomials coefficients
* @return polynomial
*/
private PolynomialFunction polynomial(double ... c) {
return new PolynomialFunction(c);
}
}

View File

@ -88,9 +88,10 @@ public enum LocalizedFormats implements Localizable {
DIMENSIONS_MISMATCH("dimensions mismatch"), /* keep */
DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN("Discrete cumulative probability function returned NaN for argument {0}"),
DISTRIBUTION_NOT_LOADED("distribution not loaded"),
DUPLICATED_ABSCISSA("Abscissa {0} is duplicated at both indices {1} and {2}"),
DUPLICATED_ABSCISSA_DIVISION_BY_ZERO("duplicated abscissa {0} causes division by zero"),
ELITISM_RATE("elitism rate ({0})"),
EMPTY_CLUSTER_IN_K_MEANS("empty cluster in k-means"),
EMPTY_INTERPOLATION_SAMPLE("sample for interpolation is empty"),
EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY("empty polynomials coefficients array"), /* keep */
EMPTY_SELECTED_COLUMN_INDEX_ARRAY("empty selected column index array"),
EMPTY_SELECTED_ROW_INDEX_ARRAY("empty selected row index array"),
@ -112,7 +113,6 @@ public enum LocalizedFormats implements Localizable {
GCD_OVERFLOW_32_BITS("overflow: gcd({0}, {1}) is 2^31"),
GCD_OVERFLOW_64_BITS("overflow: gcd({0}, {1}) is 2^63"),
HOLE_BETWEEN_MODELS_TIME_RANGES("{0} wide hole between models time ranges"),
IDENTICAL_ABSCISSAS_DIVISION_BY_ZERO("identical abscissas x[{0}] == x[{1}] == {2} cause division by zero"),
ILL_CONDITIONED_OPERATOR("condition number {1} is too high "),
INDEX_LARGER_THAN_MAX("the index specified: {0} is larger than the current maximal index {1}"),
INDEX_NOT_POSITIVE("index ({0}) is not positive"),

View File

@ -60,9 +60,10 @@ DIMENSIONS_MISMATCH_SIMPLE = {0} != {1}
DIMENSIONS_MISMATCH = dimensions incoh\u00e9rentes
DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN = Discr\u00e8tes fonction de probabilit\u00e9 cumulative retourn\u00e9 NaN \u00e0 l''argument de {0}
DISTRIBUTION_NOT_LOADED = aucune distribution n''a \u00e9t\u00e9 charg\u00e9e
DUPLICATED_ABSCISSA = Abscisse {0} dupliqu\u00e9e aux indices {1} et {2}
DUPLICATED_ABSCISSA_DIVISION_BY_ZERO = la duplication de l''abscisse {0} engendre une division par z\u00e9ro
ELITISM_RATE = proportion d''\u00e9litisme ({0})
EMPTY_CLUSTER_IN_K_MEANS = groupe vide dans l''algorithme des k-moyennes
EMPTY_INTERPOLATION_SAMPLE = \u00e9chantillon d''interpolation vide
EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY = tableau de coefficients polyn\u00f4miaux vide
EMPTY_SELECTED_COLUMN_INDEX_ARRAY = tableau des indices de colonnes s\u00e9lectionn\u00e9es vide
EMPTY_SELECTED_ROW_INDEX_ARRAY = tableau des indices de lignes s\u00e9lectionn\u00e9es vide
@ -84,7 +85,6 @@ FUNCTION_NOT_POLYNOMIAL = la fonction n''est pas p\u00f4lynomiale
GCD_OVERFLOW_32_BITS = d\u00e9passement de capacit\u00e9 : le PGCD de {0} et {1} vaut 2^31
GCD_OVERFLOW_64_BITS = d\u00e9passement de capacit\u00e9 : le PGCD de {0} et {1} vaut 2^63
HOLE_BETWEEN_MODELS_TIME_RANGES = trou de longueur {0} entre les domaines temporels des mod\u00e8les
IDENTICAL_ABSCISSAS_DIVISION_BY_ZERO = les abscisses identiques x[{0}] == x[{1}] == {2} engendrent une division par z\u00e9ro
ILL_CONDITIONED_OPERATOR = le conditionnement {1} est trop \u00e9lev\u00e9
INDEX_LARGER_THAN_MAX = l''index sp\u00e9cifi\u00e9 ({0}) d\u00e9passe l''index maximal courant ({1})
INDEX_NOT_POSITIVE = l''indice ({0}) n''est pas positif

View File

@ -436,6 +436,27 @@ System.out println("f(" + interpolationX + ") = " + interpolatedY);</source>
It has been described in William Dudziak's <a
href="http://www.dudziak.com/microsphere.pdf">MS thesis</a>.
</p>
<p>
<a href="http://en.wikipedia.org/wiki/Hermite_interpolation">Hermite interpolation</a>
is an interpolation method that can use derivatives in addition to function values at sample points. The <a
href="../apidocs/org/apache/commons/math3/analysis/interpolation/HermiteInterpolator.html">HermiteInterpolator</a>
class implements this method for vector-valued functions. The sampling points can have any spacing (there are
no requirements for a regular grid) and some points may provide derivatives while others don't provide them
(or provide derivatives to a smaller order). Points are added one at a time, as shown in the following example:
</p>
<source>HermiteInterpolator interpolator = new HermiteInterpolator;
// at x = 0, we provide both value and first derivative
interpolator.addSamplePoint(0.0, new double[] { 1.0 }, new double[] { 2.0 });
// at x = 1, we provide only function value
interpolator.addSamplePoint(1.0, new double[] { 4.0 });
// at x = 2, we provide both value and first derivative
interpolator.addSamplePoint(2.0, new double[] { 5.0 }, new double[] { 2.0 });
// should print "value at x = 0.5: 2.5625"
System.out.println("value at x = 0.5: " + interpolator.value(0.5)[0]);
// should print "derivative at x = 0.5: 3.5"
System.out.println("derivative at x = 0.5: " + interpolator.derivative(0.5)[0]);
// should print "interpolation polynomial: 1 + 2 x + 4 x^2 - 4 x^3 + x^4"
System.out.println("interpolation polynomial: " + interpolator.getPolynomials()[0]);</source>
<p>
A <a href="../apidocs/org/apache/commons/math3/analysis/interpolation/BivariateGridInterpolator.html">
BivariateGridInterpolator</a> is used to find a bivariate real-valued

View File

@ -0,0 +1,246 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.Random;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
public class HermiteInterpolatorTest {
@Test
public void testZero() {
HermiteInterpolator interpolator = new HermiteInterpolator();
interpolator.addSamplePoint(0.0, new double[] { 0.0 });
for (double x = -10; x < 10; x += 1.0) {
Assert.assertEquals(0.0, interpolator.value(x)[0], 1.0e-15);
Assert.assertEquals(0.0, interpolator.derivative(x)[0], 1.0e-15);
}
checkPolynomial(new PolynomialFunction(new double[] { 0.0 }),
interpolator.getPolynomials()[0]);
}
@Test
public void testQuadratic() {
HermiteInterpolator interpolator = new HermiteInterpolator();
interpolator.addSamplePoint(0.0, new double[] { 2.0 });
interpolator.addSamplePoint(1.0, new double[] { 0.0 });
interpolator.addSamplePoint(2.0, new double[] { 0.0 });
for (double x = -10; x < 10; x += 1.0) {
Assert.assertEquals((x - 1.0) * (x - 2.0), interpolator.value(x)[0], 1.0e-15);
Assert.assertEquals(2 * x - 3.0, interpolator.derivative(x)[0], 1.0e-15);
}
checkPolynomial(new PolynomialFunction(new double[] { 2.0, -3.0, 1.0 }),
interpolator.getPolynomials()[0]);
}
@Test
public void testMixedDerivatives() {
HermiteInterpolator interpolator = new HermiteInterpolator();
interpolator.addSamplePoint(0.0, new double[] { 1.0 }, new double[] { 2.0 });
interpolator.addSamplePoint(1.0, new double[] { 4.0 });
interpolator.addSamplePoint(2.0, new double[] { 5.0 }, new double[] { 2.0 });
Assert.assertEquals(4, interpolator.getPolynomials()[0].degree());
Assert.assertEquals(1.0, interpolator.value(0.0)[0], 1.0e-15);
Assert.assertEquals(2.0, interpolator.derivative(0.0)[0], 1.0e-15);
Assert.assertEquals(4.0, interpolator.value(1.0)[0], 1.0e-15);
Assert.assertEquals(5.0, interpolator.value(2.0)[0], 1.0e-15);
Assert.assertEquals(2.0, interpolator.derivative(2.0)[0], 1.0e-15);
checkPolynomial(new PolynomialFunction(new double[] { 1.0, 2.0, 4.0, -4.0, 1.0 }),
interpolator.getPolynomials()[0]);
}
@Test
public void testRandomPolynomialsValuesOnly() {
Random random = new Random(0x42b1e7dbd361a932l);
for (int i = 0; i < 100; ++i) {
int maxDegree = 0;
PolynomialFunction[] p = new PolynomialFunction[5];
for (int k = 0; k < p.length; ++k) {
int degree = random.nextInt(7);
p[k] = randomPolynomial(degree, random);
maxDegree = FastMath.max(maxDegree, degree);
}
HermiteInterpolator interpolator = new HermiteInterpolator();
for (int j = 0; j < 1 + maxDegree; ++j) {
double x = 0.1 * j;
double[] values = new double[p.length];
for (int k = 0; k < p.length; ++k) {
values[k] = p[k].value(x);
}
interpolator.addSamplePoint(x, values);
}
for (double x = 0; x < 2; x += 0.1) {
double[] values = interpolator.value(x);
Assert.assertEquals(p.length, values.length);
for (int k = 0; k < p.length; ++k) {
Assert.assertEquals(p[k].value(x), values[k], 1.0e-8 * FastMath.abs(p[k].value(x)));
}
}
PolynomialFunction[] result = interpolator.getPolynomials();
for (int k = 0; k < p.length; ++k) {
checkPolynomial(p[k], result[k]);
}
}
}
@Test
public void testRandomPolynomialsFirstDerivative() {
Random random = new Random(0x570803c982ca5d3bl);
for (int i = 0; i < 100; ++i) {
int maxDegree = 0;
PolynomialFunction[] p = new PolynomialFunction[5];
PolynomialFunction[] pPrime = new PolynomialFunction[5];
for (int k = 0; k < p.length; ++k) {
int degree = random.nextInt(7);
p[k] = randomPolynomial(degree, random);
pPrime[k] = p[k].polynomialDerivative();
maxDegree = FastMath.max(maxDegree, degree);
}
HermiteInterpolator interpolator = new HermiteInterpolator();
for (int j = 0; j < 1 + maxDegree / 2; ++j) {
double x = 0.1 * j;
double[] values = new double[p.length];
double[] derivatives = new double[p.length];
for (int k = 0; k < p.length; ++k) {
values[k] = p[k].value(x);
derivatives[k] = pPrime[k].value(x);
}
interpolator.addSamplePoint(x, values, derivatives);
}
for (double x = 0; x < 2; x += 0.1) {
double[] values = interpolator.value(x);
double[] derivatives = interpolator.derivative(x);
Assert.assertEquals(p.length, values.length);
for (int k = 0; k < p.length; ++k) {
Assert.assertEquals(p[k].value(x), values[k], 1.0e-8 * FastMath.abs(p[k].value(x)));
Assert.assertEquals(pPrime[k].value(x), derivatives[k], 4.0e-8 * FastMath.abs(p[k].value(x)));
}
}
PolynomialFunction[] result = interpolator.getPolynomials();
for (int k = 0; k < p.length; ++k) {
checkPolynomial(p[k], result[k]);
}
}
}
@Test
public void testSine() {
HermiteInterpolator interpolator = new HermiteInterpolator();
for (double x = 0; x < FastMath.PI; x += 0.5) {
interpolator.addSamplePoint(x, new double[] { FastMath.sin(x) });
}
for (double x = 0.1; x <= 2.9; x += 0.01) {
Assert.assertEquals(FastMath.sin(x), interpolator.value(x)[0], 3.5e-5);
Assert.assertEquals(FastMath.cos(x), interpolator.derivative(x)[0], 1.3e-4);
}
}
@Test
public void testSquareRoot() {
HermiteInterpolator interpolator = new HermiteInterpolator();
for (double x = 1.0; x < 3.6; x += 0.5) {
interpolator.addSamplePoint(x, new double[] { FastMath.sqrt(x) });
}
for (double x = 1.1; x < 3.5; x += 0.01) {
Assert.assertEquals(FastMath.sqrt(x), interpolator.value(x)[0], 1.5e-4);
Assert.assertEquals(0.5 / FastMath.sqrt(x), interpolator.derivative(x)[0], 8.5e-4);
}
}
@Test
public void testWikipedia() {
// this test corresponds to the example from Wikipedia page:
// http://en.wikipedia.org/wiki/Hermite_interpolation
HermiteInterpolator interpolator = new HermiteInterpolator();
interpolator.addSamplePoint(-1, new double[] { 2 }, new double[] { -8 }, new double[] { 56 });
interpolator.addSamplePoint( 0, new double[] { 1 }, new double[] { 0 }, new double[] { 0 });
interpolator.addSamplePoint( 1, new double[] { 2 }, new double[] { 8 }, new double[] { 56 });
for (double x = -1.0; x <= 1.0; x += 0.125) {
double x2 = x * x;
double x4 = x2 * x2;
double x8 = x4 * x4;
Assert.assertEquals(x8 + 1, interpolator.value(x)[0], 1.0e-15);
Assert.assertEquals(8 * x4 * x2 * x, interpolator.derivative(x)[0], 1.0e-15);
}
checkPolynomial(new PolynomialFunction(new double[] { 1, 0, 0, 0, 0, 0, 0, 0, 1 }),
interpolator.getPolynomials()[0]);
}
@Test
public void testOnePointParabola() {
HermiteInterpolator interpolator = new HermiteInterpolator();
interpolator.addSamplePoint(0, new double[] { 1 }, new double[] { 1 }, new double[] { 2 });
for (double x = -1.0; x <= 1.0; x += 0.125) {
Assert.assertEquals(1 + x * (1 + x), interpolator.value(x)[0], 1.0e-15);
Assert.assertEquals(1 + 2 * x, interpolator.derivative(x)[0], 1.0e-15);
}
checkPolynomial(new PolynomialFunction(new double[] { 1, 1, 1 }),
interpolator.getPolynomials()[0]);
}
private PolynomialFunction randomPolynomial(int degree, Random random) {
double[] coeff = new double[ 1 + degree];
for (int j = 0; j < degree; ++j) {
coeff[j] = random.nextDouble();
}
return new PolynomialFunction(coeff);
}
@Test(expected=IllegalStateException.class)
public void testEmptySample() {
new HermiteInterpolator().value(0.0);
}
@Test(expected=IllegalArgumentException.class)
public void testDuplicatedAbscissa() {
HermiteInterpolator interpolator = new HermiteInterpolator();
interpolator.addSamplePoint(1.0, new double[] { 0.0 });
interpolator.addSamplePoint(1.0, new double[] { 1.0 });
}
private void checkPolynomial(PolynomialFunction expected, PolynomialFunction result) {
Assert.assertTrue(result.degree() >= expected.degree());
double[] cE = expected.getCoefficients();
double[] cR = result.getCoefficients();
for (int i = 0; i < cE.length; ++i) {
Assert.assertEquals(cE[i], cR[i], 1.0e-8 * FastMath.abs(cE[i]));
}
for (int i = cE.length; i < cR.length; ++i) {
Assert.assertEquals(0.0, cR[i], 1.0e-9);
}
}
}