MATH-1500: LU decomposition for a matrix whose entries are elements of a field.
This commit is contained in:
parent
407f1e780e
commit
ec77f54bef
|
@ -0,0 +1,59 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.field.linalg;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Interface handling decomposition algorithms that can solve {@code A X = B}.
|
||||
*
|
||||
* <p>Decomposition algorithms decompose an A matrix has a product of several specific
|
||||
* matrices from which they can solve the above system of equations in a least-squares
|
||||
* sense: Find X such that {@code ||A X - B||} is minimal.</p>
|
||||
*
|
||||
* <p>Some solvers like {@link FieldLUDecomposition} can only find the solution for
|
||||
* square matrices and when the solution is an exact linear solution, i.e. when
|
||||
* {@code ||A X - B||} is exactly 0.
|
||||
* Other solvers can also find solutions with non-square matrix {@code A} and with
|
||||
* non-zero minimal norm.
|
||||
* If an exact linear solution exists it is also the minimal norm solution.</p>
|
||||
*
|
||||
* @param <T> Type of the field elements.
|
||||
*
|
||||
* @since 4.0
|
||||
*/
|
||||
public interface FieldDecompositionSolver<T> {
|
||||
/**
|
||||
* Solves the linear equation {@code A X = B}.
|
||||
*
|
||||
* <p>Matrix {@code A} is implicit: It is provided by the underlying
|
||||
* decomposition algorithm.</p>
|
||||
*
|
||||
* @param b Right-hand side of the equation.
|
||||
* @return the matrix {@code X} that minimizes {@code ||A X - B||}.
|
||||
* @throws IllegalArgumentException if the dimensions do not match.
|
||||
*/
|
||||
FieldDenseMatrix<T> solve(final FieldDenseMatrix<T> b);
|
||||
|
||||
/**
|
||||
* Computes the inverse of a decomposed (square) matrix.
|
||||
*
|
||||
* @return the inverse matrix.
|
||||
*/
|
||||
FieldDenseMatrix<T> getInverse();
|
||||
}
|
|
@ -0,0 +1,361 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.field.linalg;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.ArrayList;
|
||||
import org.apache.commons.numbers.field.Field;
|
||||
import org.apache.commons.math4.linear.SingularMatrixException;
|
||||
import org.apache.commons.math4.exception.DimensionMismatchException;
|
||||
|
||||
/**
|
||||
* Calculates the LUP-decomposition of a square matrix.
|
||||
*
|
||||
* <p>The LUP-decomposition of a matrix A consists of three matrices
|
||||
* L, U and P that satisfy: PA = LU, L is lower triangular, and U is
|
||||
* upper triangular and P is a permutation matrix. All matrices are
|
||||
* m×m.</p>
|
||||
*
|
||||
* <p>Since {@link Field field} elements do not provide an ordering
|
||||
* operator, the permutation matrix is computed here only in order to
|
||||
* avoid a zero pivot element, no attempt is done to get the largest
|
||||
* pivot element.</p>
|
||||
*
|
||||
* @param <T> Type of the field elements.
|
||||
*
|
||||
* @see <a href="http://mathworld.wolfram.com/LUDecomposition.html">MathWorld</a>
|
||||
* @see <a href="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</a>
|
||||
*
|
||||
* @since 4.0
|
||||
*/
|
||||
public class FieldLUDecomposition<T> {
|
||||
/** Field to which the elements belong. */
|
||||
private final Field<T> field;
|
||||
/** Entries of LU decomposition. */
|
||||
private final FieldDenseMatrix<T> mLU;
|
||||
/** Pivot permutation associated with LU decomposition. */
|
||||
private final int[] pivot;
|
||||
/** Singularity indicator. */
|
||||
private final boolean isSingular;
|
||||
/** Parity of the permutation associated with the LU decomposition. */
|
||||
private final boolean isEven;
|
||||
|
||||
/**
|
||||
* Calculates the LU-decomposition of the given {@code matrix}.
|
||||
*
|
||||
* @param matrix Matrix to decompose.
|
||||
* @throws IllegalArgumentException if the matrix is not square.
|
||||
*/
|
||||
private FieldLUDecomposition(FieldDenseMatrix<T> matrix) {
|
||||
matrix.checkMultiply(matrix);
|
||||
|
||||
field = matrix.getField();
|
||||
final int m = matrix.getRowDimension();
|
||||
pivot = new int[m];
|
||||
|
||||
// Initialize permutation array and parity.
|
||||
for (int row = 0; row < m; row++) {
|
||||
pivot[row] = row;
|
||||
}
|
||||
mLU = matrix.copy();
|
||||
|
||||
boolean even = true;
|
||||
boolean singular = false;
|
||||
// Loop over columns.
|
||||
for (int col = 0; col < m; col++) {
|
||||
T sum = field.zero();
|
||||
|
||||
// Upper.
|
||||
for (int row = 0; row < col; row++) {
|
||||
sum = mLU.get(row, col);
|
||||
for (int i = 0; i < row; i++) {
|
||||
sum = field.subtract(sum,
|
||||
field.multiply(mLU.get(row, i),
|
||||
mLU.get(i, col)));
|
||||
}
|
||||
mLU.set(row, col, sum);
|
||||
}
|
||||
|
||||
// Lower.
|
||||
int nonZero = col; // Permutation row.
|
||||
for (int row = col; row < m; row++) {
|
||||
sum = mLU.get(row, col);
|
||||
for (int i = 0; i < col; i++) {
|
||||
sum = field.subtract(sum,
|
||||
field.multiply(mLU.get(row, i),
|
||||
mLU.get(i, col)));
|
||||
}
|
||||
mLU.set(row, col, sum);
|
||||
|
||||
if (mLU.get(nonZero, col).equals(field.zero())) {
|
||||
// try to select a better permutation choice
|
||||
++nonZero;
|
||||
}
|
||||
}
|
||||
|
||||
// Singularity check.
|
||||
if (nonZero >= m) {
|
||||
singular = true;
|
||||
} else {
|
||||
// Pivot if necessary.
|
||||
if (nonZero != col) {
|
||||
T tmp = field.zero();
|
||||
for (int i = 0; i < m; i++) {
|
||||
tmp = mLU.get(nonZero, i);
|
||||
mLU.set(nonZero, i, mLU.get(col, i));
|
||||
mLU.set(col, i, tmp);
|
||||
}
|
||||
int temp = pivot[nonZero];
|
||||
pivot[nonZero] = pivot[col];
|
||||
pivot[col] = temp;
|
||||
even = !even;
|
||||
}
|
||||
|
||||
// Divide the lower elements by the "winning" diagonal element.
|
||||
final T luDiag = mLU.get(col, col);
|
||||
for (int row = col + 1; row < m; row++) {
|
||||
mLU.set(row, col, field.divide(mLU.get(row, col),
|
||||
luDiag));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
isSingular = singular;
|
||||
isEven = even;
|
||||
}
|
||||
|
||||
/**
|
||||
* Factory method.
|
||||
*
|
||||
* @param m Matrix to decompose.
|
||||
* @return a new instance.
|
||||
*/
|
||||
public static <T> FieldLUDecomposition<T> of(FieldDenseMatrix<T> m) {
|
||||
return new FieldLUDecomposition<>(m);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return {@code true} if the matrix is singular.
|
||||
*/
|
||||
public boolean isSingular() {
|
||||
return isSingular;
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the "L" matrix of the decomposition.
|
||||
*
|
||||
* @return the lower triangular matrix.
|
||||
* @throws SingularMatrixException if the matrix is singular.
|
||||
*/
|
||||
public FieldDenseMatrix<T> getL() {
|
||||
if (isSingular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final int m = pivot.length;
|
||||
final FieldDenseMatrix<T> mL = FieldDenseMatrix.zero(field, m, m);
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
mL.set(i, j, mLU.get(i, j));
|
||||
}
|
||||
mL.set(i, i, field.one());
|
||||
}
|
||||
|
||||
return mL;
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the "U" matrix of the decomposition.
|
||||
*
|
||||
* @return the upper triangular matrix.
|
||||
* @throws SingularMatrixException if the matrix is singular.
|
||||
*/
|
||||
public FieldDenseMatrix<T> getU() {
|
||||
if (isSingular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final int m = pivot.length;
|
||||
final FieldDenseMatrix<T> mU = FieldDenseMatrix.zero(field, m, m);
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = i; j < m; j++) {
|
||||
mU.set(i, j, mLU.get(i, j));
|
||||
}
|
||||
}
|
||||
|
||||
return mU;
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the "P" matrix.
|
||||
*
|
||||
* <p>P is a matrix with exactly one element set to {@link Field#one() one} in
|
||||
* each row and each column, all other elements being set to {@link Field#zero() zero}.
|
||||
* The positions of the "one" elements are given by the {@link #getPivot()
|
||||
* pivot permutation vector}.</p>
|
||||
* @return the "P" rows permutation matrix.
|
||||
* @throws SingularMatrixException if the matrix is singular.
|
||||
*
|
||||
* @see #getPivot()
|
||||
*/
|
||||
public FieldDenseMatrix<T> getP() {
|
||||
if (isSingular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final int m = pivot.length;
|
||||
final FieldDenseMatrix<T> mP = FieldDenseMatrix.zero(field, m, m);
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
mP.set(i, pivot[i], field.one());
|
||||
}
|
||||
|
||||
return mP;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the pivot permutation vector.
|
||||
*
|
||||
* @return the pivot permutation vector.
|
||||
*
|
||||
* @see #getP()
|
||||
*/
|
||||
public int[] getPivot() {
|
||||
return pivot.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the determinant of the matrix.
|
||||
* @return determinant of the matrix
|
||||
*/
|
||||
public T getDeterminant() {
|
||||
if (isSingular) {
|
||||
return field.zero();
|
||||
} else {
|
||||
final int m = pivot.length;
|
||||
T determinant = isEven ?
|
||||
field.one() :
|
||||
field.negate(field.one());
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
determinant = field.multiply(determinant,
|
||||
mLU.get(i, i));
|
||||
}
|
||||
|
||||
return determinant;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a solver for finding the solution {@code X} of the linear
|
||||
* system of equations {@code A X = B}.
|
||||
*
|
||||
* @return a solver.
|
||||
* @throws SingularMatrixException if the matrix is singular.
|
||||
*/
|
||||
public FieldDecompositionSolver<T> getSolver() {
|
||||
if (isSingular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
return new Solver<>(mLU, pivot);
|
||||
}
|
||||
|
||||
/**
|
||||
* Specialized solver.
|
||||
*
|
||||
* @param <T> Type of the field elements.
|
||||
*/
|
||||
private static class Solver<T> implements FieldDecompositionSolver<T> {
|
||||
/** Field to which the elements belong. */
|
||||
private final Field<T> field;
|
||||
/** LU decomposition. */
|
||||
private final FieldDenseMatrix<T> mLU;
|
||||
/** Pivot permutation associated with LU decomposition. */
|
||||
private final int[] pivot;
|
||||
|
||||
/**
|
||||
* Builds a solver from a LU-decomposed matrix.
|
||||
*
|
||||
* @param mLU LU matrix.
|
||||
* @param pivot Pivot permutation associated with the decomposition.
|
||||
*/
|
||||
private Solver(final FieldDenseMatrix<T> mLU,
|
||||
final int[] pivot) {
|
||||
field = mLU.getField();
|
||||
this.mLU = mLU.copy();
|
||||
this.pivot = pivot.clone();
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public FieldDenseMatrix<T> solve(final FieldDenseMatrix<T> b) {
|
||||
mLU.checkMultiply(b);
|
||||
|
||||
final FieldDenseMatrix<T> bp = b.copy();
|
||||
final int nColB = b.getColumnDimension();
|
||||
final int m = pivot.length;
|
||||
|
||||
// Apply permutations.
|
||||
for (int row = 0; row < m; row++) {
|
||||
final int pRow = pivot[row];
|
||||
for (int col = 0; col < nColB; col++) {
|
||||
bp.set(row, col,
|
||||
b.get(row, col));
|
||||
}
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
for (int col = 0; col < m; col++) {
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bp.set(i, j,
|
||||
field.subtract(bp.get(i, j),
|
||||
field.multiply(bp.get(col, j),
|
||||
mLU.get(i, col))));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bp.set(col, j,
|
||||
field.divide(bp.get(col, j),
|
||||
mLU.get(col, col)));
|
||||
}
|
||||
for (int i = 0; i < col; i++) {
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bp.set(i, j,
|
||||
field.subtract(bp.get(i, j),
|
||||
field.multiply(bp.get(col, j),
|
||||
mLU.get(i, col))));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return bp;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public FieldDenseMatrix<T> getInverse() {
|
||||
return solve(FieldDenseMatrix.identity(field, pivot.length));
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,267 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.field.linalg;
|
||||
|
||||
import org.apache.commons.numbers.fraction.Fraction;
|
||||
import org.apache.commons.numbers.field.FractionField;
|
||||
import org.junit.Test;
|
||||
import org.junit.Assert;
|
||||
import org.apache.commons.math4.linear.NonSquareMatrixException;
|
||||
import org.apache.commons.math4.linear.SingularMatrixException;
|
||||
|
||||
public class FieldLUDecompositionTest {
|
||||
private final Fraction[][] testData = {
|
||||
{ Fraction.of(1), Fraction.of(2), Fraction.of(3)},
|
||||
{ Fraction.of(2), Fraction.of(5), Fraction.of(3)},
|
||||
{ Fraction.of(1), Fraction.of(0), Fraction.of(8)}
|
||||
};
|
||||
private final Fraction[][] testDataMinus = {
|
||||
{ Fraction.of(-1), Fraction.of(-2), Fraction.of(-3)},
|
||||
{ Fraction.of(-2), Fraction.of(-5), Fraction.of(-3)},
|
||||
{ Fraction.of(-1), Fraction.of(0), Fraction.of(-8)}
|
||||
};
|
||||
private final Fraction[][] luData = {
|
||||
{ Fraction.of(2), Fraction.of(3), Fraction.of(3) },
|
||||
{ Fraction.of(2), Fraction.of(3), Fraction.of(7) },
|
||||
{ Fraction.of(6), Fraction.of(6), Fraction.of(8) }
|
||||
};
|
||||
|
||||
// singular matrices
|
||||
private final Fraction[][] singular = {
|
||||
{ Fraction.of(2), Fraction.of(3) },
|
||||
{ Fraction.of(2), Fraction.of(3) }
|
||||
};
|
||||
private final Fraction[][] bigSingular = {
|
||||
{ Fraction.of(1), Fraction.of(2), Fraction.of(3), Fraction.of(4) },
|
||||
{ Fraction.of(2), Fraction.of(5), Fraction.of(3), Fraction.of(4) },
|
||||
{ Fraction.of(7), Fraction.of(3), Fraction.of(256), Fraction.of(1930) },
|
||||
{ Fraction.of(3), Fraction.of(7), Fraction.of(6), Fraction.of(8) }
|
||||
}; // 4th row = 1st + 2nd
|
||||
|
||||
/**
|
||||
* @param data Matrix.
|
||||
* @return a {@link FieldDenseMatrix} instance.
|
||||
*/
|
||||
private FieldDenseMatrix<Fraction> create(Fraction[][] data) {
|
||||
final FieldDenseMatrix<Fraction> m = FieldDenseMatrix.create(FractionField.get(),
|
||||
data.length,
|
||||
data[0].length);
|
||||
for (int i = 0; i < data.length; i++) {
|
||||
for (int j = 0; j < data.length; j++) {
|
||||
m.set(i, j, data[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
/** test dimensions */
|
||||
@Test
|
||||
public void testDimensions() {
|
||||
FieldDenseMatrix<Fraction> matrix = create(testData);
|
||||
FieldLUDecomposition<Fraction> LU = FieldLUDecomposition.of(matrix);
|
||||
Assert.assertEquals(testData.length, LU.getL().getRowDimension());
|
||||
Assert.assertEquals(testData.length, LU.getU().getRowDimension());
|
||||
Assert.assertEquals(testData.length, LU.getP().getRowDimension());
|
||||
}
|
||||
|
||||
/** test PA = LU */
|
||||
@Test
|
||||
public void testPAEqualLU() {
|
||||
FieldDenseMatrix<Fraction> matrix = create(testData);
|
||||
FieldLUDecomposition<Fraction> lu = FieldLUDecomposition.of(matrix);
|
||||
FieldDenseMatrix<Fraction> l = lu.getL();
|
||||
FieldDenseMatrix<Fraction> u = lu.getU();
|
||||
FieldDenseMatrix<Fraction> p = lu.getP();
|
||||
Assert.assertEquals(p.multiply(matrix), l.multiply(u));
|
||||
|
||||
matrix = create(testDataMinus);
|
||||
lu = FieldLUDecomposition.of(matrix);
|
||||
l = lu.getL();
|
||||
u = lu.getU();
|
||||
p = lu.getP();
|
||||
Assert.assertEquals(p.multiply(matrix), l.multiply(u));
|
||||
|
||||
matrix = FieldDenseMatrix.identity(FractionField.get(), 17);
|
||||
lu = FieldLUDecomposition.of(matrix);
|
||||
l = lu.getL();
|
||||
u = lu.getU();
|
||||
p = lu.getP();
|
||||
Assert.assertEquals(p.multiply(matrix), l.multiply(u));
|
||||
}
|
||||
|
||||
/** test that L is lower triangular with unit diagonal */
|
||||
@Test
|
||||
public void testLLowerTriangular() {
|
||||
FieldDenseMatrix<Fraction> matrix = create(testData);
|
||||
FieldDenseMatrix<Fraction> l = FieldLUDecomposition.of(matrix).getL();
|
||||
for (int i = 0; i < l.getRowDimension(); i++) {
|
||||
Assert.assertEquals(Fraction.ONE, l.get(i, i));
|
||||
for (int j = i + 1; j < l.getColumnDimension(); j++) {
|
||||
Assert.assertEquals(Fraction.ZERO, l.get(i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** test that U is upper triangular */
|
||||
@Test
|
||||
public void testUUpperTriangular() {
|
||||
FieldDenseMatrix<Fraction> matrix = create(testData);
|
||||
FieldDenseMatrix<Fraction> u = FieldLUDecomposition.of(matrix).getU();
|
||||
for (int i = 0; i < u.getRowDimension(); i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
Assert.assertEquals(Fraction.ZERO, u.get(i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** test that P is a permutation matrix */
|
||||
@Test
|
||||
public void testPPermutation() {
|
||||
FieldDenseMatrix<Fraction> matrix = create(testData);
|
||||
FieldDenseMatrix<Fraction> p = FieldLUDecomposition.of(matrix).getP();
|
||||
|
||||
FieldDenseMatrix<Fraction> ppT = p.multiply(p.transpose());
|
||||
FieldDenseMatrix<Fraction> id = FieldDenseMatrix.identity(FractionField.get(),
|
||||
p.getRowDimension());
|
||||
Assert.assertEquals(id, ppT);
|
||||
|
||||
for (int i = 0; i < p.getRowDimension(); i++) {
|
||||
int zeroCount = 0;
|
||||
int oneCount = 0;
|
||||
int otherCount = 0;
|
||||
for (int j = 0; j < p.getColumnDimension(); j++) {
|
||||
final Fraction e = p.get(i, j);
|
||||
if (e.equals(Fraction.ZERO)) {
|
||||
++zeroCount;
|
||||
} else if (e.equals(Fraction.ONE)) {
|
||||
++oneCount;
|
||||
} else {
|
||||
++otherCount;
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(p.getRowDimension() - 1, zeroCount);
|
||||
Assert.assertEquals(1, oneCount);
|
||||
Assert.assertEquals(0, otherCount);
|
||||
}
|
||||
|
||||
for (int j = 0; j < p.getRowDimension(); j++) {
|
||||
int zeroCount = 0;
|
||||
int oneCount = 0;
|
||||
int otherCount = 0;
|
||||
for (int i = 0; i < p.getColumnDimension(); i++) {
|
||||
final Fraction e = p.get(i, j);
|
||||
if (e.equals(Fraction.ZERO)) {
|
||||
++zeroCount;
|
||||
} else if (e.equals(Fraction.ONE)) {
|
||||
++oneCount;
|
||||
} else {
|
||||
++otherCount;
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(p.getRowDimension() - 1, zeroCount);
|
||||
Assert.assertEquals(1, oneCount);
|
||||
Assert.assertEquals(0, otherCount);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIsSingular1() {
|
||||
FieldLUDecomposition<Fraction> lu = FieldLUDecomposition.of(create(testData));
|
||||
Assert.assertFalse(lu.isSingular());
|
||||
lu.getSolver();
|
||||
}
|
||||
@Test(expected=SingularMatrixException.class)
|
||||
public void testIsSingular2() {
|
||||
FieldLUDecomposition<Fraction> lu = FieldLUDecomposition.of(create(singular));
|
||||
Assert.assertTrue(lu.isSingular());
|
||||
lu.getSolver();
|
||||
}
|
||||
@Test(expected=SingularMatrixException.class)
|
||||
public void testIsSingular3() {
|
||||
FieldLUDecomposition<Fraction> lu = FieldLUDecomposition.of(create(bigSingular));
|
||||
Assert.assertTrue(lu.isSingular());
|
||||
lu.getSolver();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMatricesValues1() {
|
||||
FieldLUDecomposition<Fraction> lu = FieldLUDecomposition.of(create(testData));
|
||||
FieldDenseMatrix<Fraction> lRef = create(new Fraction[][] {
|
||||
{ Fraction.of(1), Fraction.of(0), Fraction.of(0) },
|
||||
{ Fraction.of(2), Fraction.of(1), Fraction.of(0) },
|
||||
{ Fraction.of(1), Fraction.of(-2), Fraction.of(1) }
|
||||
});
|
||||
FieldDenseMatrix<Fraction> uRef = create(new Fraction[][] {
|
||||
{ Fraction.of(1), Fraction.of(2), Fraction.of(3) },
|
||||
{ Fraction.of(0), Fraction.of(1), Fraction.of(-3) },
|
||||
{ Fraction.of(0), Fraction.of(0), Fraction.of(-1) }
|
||||
});
|
||||
FieldDenseMatrix<Fraction> pRef = create(new Fraction[][] {
|
||||
{ Fraction.of(1), Fraction.of(0), Fraction.of(0) },
|
||||
{ Fraction.of(0), Fraction.of(1), Fraction.of(0) },
|
||||
{ Fraction.of(0), Fraction.of(0), Fraction.of(1) }
|
||||
});
|
||||
int[] pivotRef = { 0, 1, 2 };
|
||||
|
||||
// check values against known references
|
||||
FieldDenseMatrix<Fraction> l = lu.getL();
|
||||
Assert.assertEquals(lRef, l);
|
||||
FieldDenseMatrix<Fraction> u = lu.getU();
|
||||
Assert.assertEquals(uRef, u);
|
||||
FieldDenseMatrix<Fraction> p = lu.getP();
|
||||
Assert.assertEquals(pRef, p);
|
||||
int[] pivot = lu.getPivot();
|
||||
for (int i = 0; i < pivotRef.length; ++i) {
|
||||
Assert.assertEquals(pivotRef[i], pivot[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMatricesValues2() {
|
||||
FieldLUDecomposition<Fraction> lu = FieldLUDecomposition.of(create(luData));
|
||||
FieldDenseMatrix<Fraction> lRef = create(new Fraction[][] {
|
||||
{ Fraction.of(1), Fraction.of(0), Fraction.of(0) },
|
||||
{ Fraction.of(3), Fraction.of(1), Fraction.of(0) },
|
||||
{ Fraction.of(1), Fraction.of(0), Fraction.of(1) }
|
||||
});
|
||||
FieldDenseMatrix<Fraction> uRef = create(new Fraction[][] {
|
||||
{ Fraction.of(2), Fraction.of(3), Fraction.of(3) },
|
||||
{ Fraction.of(0), Fraction.of(-3), Fraction.of(-1) },
|
||||
{ Fraction.of(0), Fraction.of(0), Fraction.of(4) }
|
||||
});
|
||||
FieldDenseMatrix<Fraction> pRef = create(new Fraction[][] {
|
||||
{ Fraction.of(1), Fraction.of(0), Fraction.of(0) },
|
||||
{ Fraction.of(0), Fraction.of(0), Fraction.of(1) },
|
||||
{ Fraction.of(0), Fraction.of(1), Fraction.of(0) }
|
||||
});
|
||||
int[] pivotRef = { 0, 2, 1 };
|
||||
|
||||
// check values against known references
|
||||
FieldDenseMatrix<Fraction> l = lu.getL();
|
||||
Assert.assertEquals(lRef, l);
|
||||
FieldDenseMatrix<Fraction> u = lu.getU();
|
||||
Assert.assertEquals(uRef, u);
|
||||
FieldDenseMatrix<Fraction> p = lu.getP();
|
||||
Assert.assertEquals(pRef, p);
|
||||
int[] pivot = lu.getPivot();
|
||||
for (int i = 0; i < pivotRef.length; ++i) {
|
||||
Assert.assertEquals(pivotRef[i], pivot[i]);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue