MATH-1417: Incorrect loop start.

Thanks to Jean-François Lecomte for the report and the fix.
This commit is contained in:
Gilles 2017-05-09 21:31:24 +02:00
parent 7a7b390528
commit ed1ce82d82
3 changed files with 24 additions and 4 deletions

View File

@ -54,6 +54,9 @@ If the output is not quite correct, check for invisible trailing spaces!
</release>
<release version="4.0" date="XXXX-XX-XX" description="">
<action dev="erans" type="fix" issue="MATH-1417" due-to="Jean-Francois Lecomte">
"RRQRDecomposition": bug in method "performHouseholderReflection".
</action>
<action dev="kinow" type="fix" issue="MATH-1381" due-to="Kexin Xie">
BinomialTest P-value > 1
</action>

View File

@ -68,7 +68,7 @@ public class RRQRDecomposition extends QRDecomposition {
this(matrix, 0d);
}
/**
/**
* Calculates the QR-decomposition of the given matrix.
*
* @param matrix The matrix to decompose.
@ -92,18 +92,18 @@ public class RRQRDecomposition extends QRDecomposition {
}
/** Perform Householder reflection for a minor A(minor, minor) of A.
*
* @param minor minor index
* @param qrt transposed matrix
*/
@Override
protected void performHouseholderReflection(int minor, double[][] qrt) {
double l2NormSquaredMax = 0;
// Find the unreduced column with the greatest L2-Norm
int l2NormSquaredMaxIndex = minor;
for (int i = minor; i < qrt.length; i++) {
double l2NormSquared = 0;
for (int j = 0; j < qrt[i].length; j++) {
for (int j = minor; j < qrt[i].length; j++) {
l2NormSquared += qrt[i][j] * qrt[i][j];
}
if (l2NormSquared > l2NormSquaredMax) {
@ -122,7 +122,6 @@ public class RRQRDecomposition extends QRDecomposition {
}
super.performHouseholderReflection(minor, qrt);
}

View File

@ -244,4 +244,22 @@ public class RRQRDecompositionTest {
RRQRDecomposition qr = new RRQRDecomposition(m);
Assert.assertEquals(2, qr.getRank(1e-14));
}
// MATH-1417
@Test
public void testRank3() {
double[][] d = {
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
RealMatrix m = new Array2DRowRealMatrix(d);
RRQRDecomposition qr = new RRQRDecomposition(m.transpose());
Assert.assertEquals(4, qr.getRank(1e-14));
}
}