reverting commit introduced in r1426616
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1426751 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
250cf6e366
commit
ed39d2dbe2
4
pom.xml
4
pom.xml
|
@ -24,7 +24,7 @@
|
|||
<modelVersion>4.0.0</modelVersion>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-math3</artifactId>
|
||||
<version>3.1.1-SNAPSHOT</version>
|
||||
<version>3.2-SNAPSHOT</version>
|
||||
<name>Commons Math</name>
|
||||
|
||||
<inceptionYear>2003</inceptionYear>
|
||||
|
@ -293,7 +293,7 @@
|
|||
<properties>
|
||||
<commons.componentid>math3</commons.componentid>
|
||||
<!-- do not use snapshot suffix here -->
|
||||
<commons.release.version>3.1.1</commons.release.version>
|
||||
<commons.release.version>3.2</commons.release.version>
|
||||
<commons.release.desc>(requires Java 1.5+)</commons.release.desc>
|
||||
<!-- <commons.rc.version>RC1</commons.rc.version> -->
|
||||
<commons.binary.suffix>-bin</commons.binary.suffix>
|
||||
|
|
|
@ -50,13 +50,6 @@ If the output is not quite correct, check for invisible trailing spaces!
|
|||
<title>Commons Math Release Notes</title>
|
||||
</properties>
|
||||
<body>
|
||||
<release version="3.1.1" date="TBD" description="
|
||||
This is a micro release: It only contains bug fixes bug fixes.
|
||||
">
|
||||
<action dev="luc" type="fix" issue="MATH-924">
|
||||
Fix handling of large number of weights in the new optimizers API.
|
||||
</action>
|
||||
</release>
|
||||
<release version="3.1" date="2012-12-23" description="
|
||||
This is a minor release: It combines bug fixes and new features.
|
||||
Changes to existing features were made in a backwards-compatible
|
||||
|
|
|
@ -18,18 +18,17 @@ package org.apache.commons.math3.fitting;
|
|||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
|
||||
/**
|
||||
* Fitter for parametric univariate real functions y = f(x).
|
||||
|
@ -175,7 +174,7 @@ public class CurveFitter<T extends ParametricUnivariateFunction> {
|
|||
model.getModelFunction(),
|
||||
model.getModelFunctionJacobian(),
|
||||
new Target(target),
|
||||
new NonCorrelatedWeight(weights),
|
||||
new Weight(weights),
|
||||
new InitialGuess(initialGuess));
|
||||
// Extract the coefficients.
|
||||
return optimum.getPointRef();
|
||||
|
|
|
@ -16,18 +16,18 @@
|
|||
*/
|
||||
package org.apache.commons.math3.optim.nonlinear.vector;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Comparator;
|
||||
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.linear.ArrayRealVector;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.linear.RealVector;
|
||||
import org.apache.commons.math3.linear.ArrayRealVector;
|
||||
import org.apache.commons.math3.random.RandomVectorGenerator;
|
||||
import org.apache.commons.math3.optim.BaseMultiStartMultivariateOptimizer;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.random.RandomVectorGenerator;
|
||||
|
||||
/**
|
||||
* Multi-start optimizer for a (vector) model function.
|
||||
|
@ -98,7 +98,7 @@ public class MultiStartMultivariateVectorOptimizer
|
|||
private Comparator<PointVectorValuePair> getPairComparator() {
|
||||
return new Comparator<PointVectorValuePair>() {
|
||||
private final RealVector target = new ArrayRealVector(optimizer.getTarget(), false);
|
||||
private final double[] weight = optimizer.getNonCorrelatedWeight();
|
||||
private final RealMatrix weight = optimizer.getWeight();
|
||||
|
||||
public int compare(final PointVectorValuePair o1,
|
||||
final PointVectorValuePair o2) {
|
||||
|
@ -114,12 +114,7 @@ public class MultiStartMultivariateVectorOptimizer
|
|||
private double weightedResidual(final PointVectorValuePair pv) {
|
||||
final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
|
||||
final RealVector r = target.subtract(v);
|
||||
double sum = 0;
|
||||
for (int i = 0; i < r.getDimension(); ++i) {
|
||||
final double ri = r.getEntry(i);
|
||||
sum += ri * weight[i] * ri;
|
||||
}
|
||||
return sum;
|
||||
return r.dotProduct(weight.operate(r));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -17,15 +17,14 @@
|
|||
|
||||
package org.apache.commons.math3.optim.nonlinear.vector;
|
||||
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.TooManyEvaluationsException;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.optim.OptimizationData;
|
||||
import org.apache.commons.math3.optim.BaseMultivariateOptimizer;
|
||||
import org.apache.commons.math3.optim.ConvergenceChecker;
|
||||
import org.apache.commons.math3.optim.OptimizationData;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
|
||||
/**
|
||||
* Base class for a multivariate vector function optimizer.
|
||||
|
@ -37,13 +36,8 @@ public abstract class MultivariateVectorOptimizer
|
|||
extends BaseMultivariateOptimizer<PointVectorValuePair> {
|
||||
/** Target values for the model function at optimum. */
|
||||
private double[] target;
|
||||
/** Weight matrix.
|
||||
* @deprecated as of 3.1.1, replaced by weight
|
||||
*/
|
||||
@Deprecated
|
||||
/** Weight matrix. */
|
||||
private RealMatrix weightMatrix;
|
||||
/** Weight vector. */
|
||||
private double[] weight;
|
||||
/** Model function. */
|
||||
private MultivariateVectorFunction model;
|
||||
|
||||
|
@ -71,25 +65,14 @@ public abstract class MultivariateVectorOptimizer
|
|||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
* <p>
|
||||
* Note that for version 3.1 of Apache Commons Math, a general <code>Weight</code>
|
||||
* data was looked for, which could hold arbitrary square matrices and not only
|
||||
* vector as the current {@link NonCorrelatedWeight} does. This was flawed as some
|
||||
* optimizers like {@link GaussNewtonOptimizer} only considered the diagonal elements.
|
||||
* This feature was deprecated. If users need non-diagonal weights to handle correlated
|
||||
* observations, they will have to implement it by themselves using pre-multiplication
|
||||
* by a matrix in both their function implementation and observation vectors. There is
|
||||
* no direct support for this anymore in the Apache Commons Math library. The only
|
||||
* feature that is supported here is a convenience feature for non-correlated observations,
|
||||
* with vector only weights (i.e. weight[i] is the weight for observation i).
|
||||
* </p>
|
||||
*
|
||||
* @param optData Optimization data. The following data will be looked for:
|
||||
* <ul>
|
||||
* <li>{@link org.apache.commons.math3.optim.MaxEval}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.InitialGuess}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.SimpleBounds}</li>
|
||||
* <li>{@link Target}</li>
|
||||
* <li>{@link NonCorrelatedWeight}</li>
|
||||
* <li>{@link Weight}</li>
|
||||
* <li>{@link ModelFunction}</li>
|
||||
* </ul>
|
||||
* @return {@inheritDoc}
|
||||
|
@ -113,22 +96,10 @@ public abstract class MultivariateVectorOptimizer
|
|||
* Gets the weight matrix of the observations.
|
||||
*
|
||||
* @return the weight matrix.
|
||||
* @deprecated as of 3.1.1, replaced by {@link #getNonCorrelatedWeight()}
|
||||
*/
|
||||
@Deprecated
|
||||
public RealMatrix getWeight() {
|
||||
return weightMatrix.copy();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the weights of the observations.
|
||||
*
|
||||
* @return the weights.
|
||||
* @since 3.1.1
|
||||
*/
|
||||
public double[] getNonCorrelatedWeight() {
|
||||
return weight.clone();
|
||||
}
|
||||
/**
|
||||
* Gets the observed values to be matched by the objective vector
|
||||
* function.
|
||||
|
@ -155,7 +126,7 @@ public abstract class MultivariateVectorOptimizer
|
|||
* @param optData Optimization data. The following data will be looked for:
|
||||
* <ul>
|
||||
* <li>{@link Target}</li>
|
||||
* <li>{@link NonCorrelatedWeight}</li>
|
||||
* <li>{@link Weight}</li>
|
||||
* <li>{@link ModelFunction}</li>
|
||||
* </ul>
|
||||
*/
|
||||
|
@ -171,18 +142,8 @@ public abstract class MultivariateVectorOptimizer
|
|||
target = ((Target) data).getTarget();
|
||||
continue;
|
||||
}
|
||||
if (data instanceof NonCorrelatedWeight) {
|
||||
weight = ((NonCorrelatedWeight) data).getWeight();
|
||||
continue;
|
||||
}
|
||||
// TODO: remove this for 4.0, when the Weight class will be removed
|
||||
if (data instanceof Weight) {
|
||||
weightMatrix = ((Weight) data).getWeight();
|
||||
weight = new double[weightMatrix.getColumnDimension()];
|
||||
for (int i = 0; i < weight.length; ++i) {
|
||||
// extract the diagonal of the matrix
|
||||
weight[i] = weightMatrix.getEntry(i, i);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
@ -192,11 +153,12 @@ public abstract class MultivariateVectorOptimizer
|
|||
* Check parameters consistency.
|
||||
*
|
||||
* @throws DimensionMismatchException if {@link #target} and
|
||||
* {@link #weight} have inconsistent dimensions.
|
||||
* {@link #weightMatrix} have inconsistent dimensions.
|
||||
*/
|
||||
private void checkParameters() {
|
||||
if (target.length != weight.length) {
|
||||
throw new DimensionMismatchException(target.length, weight.length);
|
||||
if (target.length != weightMatrix.getColumnDimension()) {
|
||||
throw new DimensionMismatchException(target.length,
|
||||
weightMatrix.getColumnDimension());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,53 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.optim.nonlinear.vector;
|
||||
|
||||
import org.apache.commons.math3.optim.OptimizationData;
|
||||
|
||||
/**
|
||||
* Weight of the residuals between model and observations, when
|
||||
* observations are non-correlated.
|
||||
* <br/>
|
||||
* Immutable class.
|
||||
*
|
||||
* @version $Id$
|
||||
* @since 3.1.1
|
||||
*/
|
||||
public class NonCorrelatedWeight implements OptimizationData {
|
||||
|
||||
/** Weight. */
|
||||
private final double[] weight;
|
||||
|
||||
/**
|
||||
* Creates a weight vector.
|
||||
*
|
||||
* @param weight weight of the observations
|
||||
*/
|
||||
public NonCorrelatedWeight(final double[] weight) {
|
||||
this.weight = weight.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the weight.
|
||||
*
|
||||
* @return a fresh copy of the weight.
|
||||
*/
|
||||
public double[] getWeight() {
|
||||
return weight.clone();
|
||||
}
|
||||
|
||||
}
|
|
@ -28,20 +28,22 @@ import org.apache.commons.math3.linear.NonSquareMatrixException;
|
|||
*
|
||||
* @version $Id: Weight.java 1416643 2012-12-03 19:37:14Z tn $
|
||||
* @since 3.1
|
||||
* @deprecated as of 3.1.1, replaced by {@link NonCorrelatedWeight}
|
||||
*/
|
||||
@Deprecated
|
||||
public class Weight implements OptimizationData {
|
||||
/** Weight matrix. */
|
||||
private final RealMatrix weightMatrix;
|
||||
|
||||
/**
|
||||
* Creates a weight matrix.
|
||||
* Creates a diagonal weight matrix.
|
||||
*
|
||||
* @param weight matrix elements.
|
||||
* @param weight List of the values of the diagonal.
|
||||
*/
|
||||
public Weight(double[][] weight) {
|
||||
weightMatrix = MatrixUtils.createRealMatrix(weight);
|
||||
public Weight(double[] weight) {
|
||||
final int dim = weight.length;
|
||||
weightMatrix = MatrixUtils.createRealMatrix(dim, dim);
|
||||
for (int i = 0; i < dim; i++) {
|
||||
weightMatrix.setEntry(i, i, weight[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -59,9 +61,9 @@ public class Weight implements OptimizationData {
|
|||
}
|
||||
|
||||
/**
|
||||
* Gets the weight.
|
||||
* Gets the initial guess.
|
||||
*
|
||||
* @return a fresh copy of the weight.
|
||||
* @return the initial guess.
|
||||
*/
|
||||
public RealMatrix getWeight() {
|
||||
return weightMatrix.copy();
|
||||
|
|
|
@ -19,18 +19,16 @@ package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
|||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.TooManyEvaluationsException;
|
||||
import org.apache.commons.math3.linear.ArrayRealVector;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.linear.DecompositionSolver;
|
||||
import org.apache.commons.math3.linear.EigenDecomposition;
|
||||
import org.apache.commons.math3.linear.MatrixUtils;
|
||||
import org.apache.commons.math3.linear.QRDecomposition;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.optim.ConvergenceChecker;
|
||||
import org.apache.commons.math3.linear.EigenDecomposition;
|
||||
import org.apache.commons.math3.optim.OptimizationData;
|
||||
import org.apache.commons.math3.optim.ConvergenceChecker;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
|
||||
/**
|
||||
|
@ -42,13 +40,8 @@ import org.apache.commons.math3.util.FastMath;
|
|||
*/
|
||||
public abstract class AbstractLeastSquaresOptimizer
|
||||
extends JacobianMultivariateVectorOptimizer {
|
||||
/** Square-root of the weight matrix.
|
||||
* @deprecated as of 3.1.1, replaced by {@link #weight}
|
||||
*/
|
||||
@Deprecated
|
||||
/** Square-root of the weight matrix. */
|
||||
private RealMatrix weightMatrixSqrt;
|
||||
/** Square-root of the weight vector. */
|
||||
private double[] weightSquareRoot;
|
||||
/** Cost value (square root of the sum of the residuals). */
|
||||
private double cost;
|
||||
|
||||
|
@ -68,23 +61,7 @@ public abstract class AbstractLeastSquaresOptimizer
|
|||
* match problem dimension.
|
||||
*/
|
||||
protected RealMatrix computeWeightedJacobian(double[] params) {
|
||||
|
||||
final double[][] jacobian = computeJacobian(params);
|
||||
|
||||
if (weightSquareRoot != null) {
|
||||
for (int i = 0; i < jacobian.length; ++i) {
|
||||
final double wi = weightSquareRoot[i];
|
||||
final double[] row = jacobian[i];
|
||||
for (int j = 0; j < row.length; ++j) {
|
||||
row[j] *= wi;
|
||||
}
|
||||
}
|
||||
return MatrixUtils.createRealMatrix(jacobian);
|
||||
} else {
|
||||
// TODO: remove for 4.0, when the {@link Weight} class will be removed
|
||||
return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(jacobian));
|
||||
}
|
||||
|
||||
return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(computeJacobian(params)));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -96,13 +73,7 @@ public abstract class AbstractLeastSquaresOptimizer
|
|||
*/
|
||||
protected double computeCost(double[] residuals) {
|
||||
final ArrayRealVector r = new ArrayRealVector(residuals);
|
||||
final double[] weight = getNonCorrelatedWeight();
|
||||
double sum = 0;
|
||||
for (int i = 0; i < r.getDimension(); ++i) {
|
||||
final double ri = r.getEntry(i);
|
||||
sum += ri * weight[i] * ri;
|
||||
}
|
||||
return FastMath.sqrt(sum);
|
||||
return FastMath.sqrt(r.dotProduct(getWeight().operate(r)));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -134,9 +105,7 @@ public abstract class AbstractLeastSquaresOptimizer
|
|||
* Gets the square-root of the weight matrix.
|
||||
*
|
||||
* @return the square-root of the weight matrix.
|
||||
* @deprecated as of 3.1.1, replaced with {@link MultivariateVectorOptimizer#getNonCorrelatedWeight()}
|
||||
*/
|
||||
@Deprecated
|
||||
public RealMatrix getWeightSquareRoot() {
|
||||
return weightMatrixSqrt.copy();
|
||||
}
|
||||
|
@ -214,7 +183,7 @@ public abstract class AbstractLeastSquaresOptimizer
|
|||
* <li>{@link org.apache.commons.math3.optim.InitialGuess}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.SimpleBounds}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.nonlinear.vector.Target}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.nonlinear.vector.Weight}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.nonlinear.vector.ModelFunction}</li>
|
||||
* <li>{@link org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian}</li>
|
||||
* </ul>
|
||||
|
@ -266,7 +235,8 @@ public abstract class AbstractLeastSquaresOptimizer
|
|||
/**
|
||||
* Scans the list of (required and optional) optimization data that
|
||||
* characterize the problem.
|
||||
* If the weight is specified, the {@link #weightSquareRoot} field is recomputed.
|
||||
* If the weight matrix is specified, the {@link #weightMatrixSqrt}
|
||||
* field is recomputed.
|
||||
*
|
||||
* @param optData Optimization data. The following data will be looked for:
|
||||
* <ul>
|
||||
|
@ -278,19 +248,22 @@ public abstract class AbstractLeastSquaresOptimizer
|
|||
// not provided in the argument list.
|
||||
for (OptimizationData data : optData) {
|
||||
if (data instanceof Weight) {
|
||||
// TODO: remove for 4.0, when the {@link Weight} class will be removed
|
||||
weightSquareRoot = null;
|
||||
final RealMatrix w = ((Weight) data).getWeight();
|
||||
final EigenDecomposition dec = new EigenDecomposition(w);
|
||||
weightMatrixSqrt = dec.getSquareRoot();
|
||||
} else if (data instanceof NonCorrelatedWeight) {
|
||||
weightSquareRoot = ((NonCorrelatedWeight) data).getWeight();
|
||||
for (int i = 0; i < weightSquareRoot.length; ++i) {
|
||||
weightSquareRoot[i] = FastMath.sqrt(weightSquareRoot[i]);
|
||||
}
|
||||
weightMatrixSqrt = null;
|
||||
weightMatrixSqrt = squareRoot(((Weight) data).getWeight());
|
||||
// If more data must be parsed, this statement _must_ be
|
||||
// changed to "continue".
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the square-root of the weight matrix.
|
||||
*
|
||||
* @param m Symmetric, positive-definite (weight) matrix.
|
||||
* @return the square-root of the weight matrix.
|
||||
*/
|
||||
private RealMatrix squareRoot(RealMatrix m) {
|
||||
final EigenDecomposition dec = new EigenDecomposition(m);
|
||||
return dec.getSquareRoot();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,8 +17,8 @@
|
|||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import org.apache.commons.math3.exception.ConvergenceException;
|
||||
import org.apache.commons.math3.exception.MathInternalError;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.MathInternalError;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.linear.ArrayRealVector;
|
||||
import org.apache.commons.math3.linear.BlockRealMatrix;
|
||||
|
@ -83,7 +83,12 @@ public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer {
|
|||
final double[] targetValues = getTarget();
|
||||
final int nR = targetValues.length; // Number of observed data.
|
||||
|
||||
final double[] residualsWeights = getNonCorrelatedWeight();
|
||||
final RealMatrix weightMatrix = getWeight();
|
||||
// Diagonal of the weight matrix.
|
||||
final double[] residualsWeights = new double[nR];
|
||||
for (int i = 0; i < nR; i++) {
|
||||
residualsWeights[i] = weightMatrix.getEntry(i, i);
|
||||
}
|
||||
|
||||
final double[] currentPoint = getStartPoint();
|
||||
final int nC = currentPoint.length;
|
||||
|
|
|
@ -17,14 +17,13 @@
|
|||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math3.exception.ConvergenceException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.optim.ConvergenceChecker;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.optim.ConvergenceChecker;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
|
||||
|
||||
/**
|
||||
|
@ -301,7 +300,7 @@ public class LevenbergMarquardtOptimizer
|
|||
double[] work2 = new double[nC];
|
||||
double[] work3 = new double[nC];
|
||||
|
||||
final double[] weight = getNonCorrelatedWeight();
|
||||
final RealMatrix weightMatrixSqrt = getWeightSquareRoot();
|
||||
|
||||
// Evaluate the function at the starting point and calculate its norm.
|
||||
double[] currentObjective = computeObjectiveValue(currentPoint);
|
||||
|
@ -321,10 +320,7 @@ public class LevenbergMarquardtOptimizer
|
|||
// QR decomposition of the jacobian matrix
|
||||
qrDecomposition(computeWeightedJacobian(currentPoint));
|
||||
|
||||
weightedResidual = new double[currentResiduals.length];
|
||||
for (int i = 0; i < weightedResidual.length; ++i) {
|
||||
weightedResidual[i] = FastMath.sqrt(weight[i]) * currentResiduals[i];
|
||||
}
|
||||
weightedResidual = weightMatrixSqrt.operate(currentResiduals);
|
||||
for (int i = 0; i < nR; i++) {
|
||||
qtf[i] = weightedResidual[i];
|
||||
}
|
||||
|
|
|
@ -220,33 +220,6 @@ public class PolynomialFitterTest {
|
|||
checkUnsolvableProblem(new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-15, 1e-15)), false);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLargeSample() {
|
||||
Random randomizer = new Random(0x5551480dca5b369bl);
|
||||
double maxError = 0;
|
||||
for (int degree = 0; degree < 10; ++degree) {
|
||||
PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
|
||||
|
||||
PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer());
|
||||
for (int i = 0; i < 40000; ++i) {
|
||||
double x = -1.0 + i / 20000.0;
|
||||
fitter.addObservedPoint(1.0, x,
|
||||
p.value(x) + 0.1 * randomizer.nextGaussian());
|
||||
}
|
||||
|
||||
final double[] init = new double[degree + 1];
|
||||
PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init));
|
||||
|
||||
for (double x = -1.0; x < 1.0; x += 0.01) {
|
||||
double error = FastMath.abs(p.value(x) - fitted.value(x)) /
|
||||
(1.0 + FastMath.abs(p.value(x)));
|
||||
maxError = FastMath.max(maxError, error);
|
||||
Assert.assertTrue(FastMath.abs(error) < 0.01);
|
||||
}
|
||||
}
|
||||
Assert.assertTrue(maxError > 0.001);
|
||||
}
|
||||
|
||||
private void checkUnsolvableProblem(MultivariateVectorOptimizer optimizer,
|
||||
boolean solvable) {
|
||||
Random randomizer = new Random(1248788532l);
|
||||
|
|
|
@ -16,12 +16,13 @@
|
|||
*/
|
||||
package org.apache.commons.math3.optim.nonlinear.vector;
|
||||
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.exception.MathIllegalStateException;
|
||||
import org.apache.commons.math3.linear.BlockRealMatrix;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.SimpleVectorValueChecker;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer;
|
||||
|
@ -129,7 +130,7 @@ public class MultiStartMultivariateVectorOptimizerTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1 }),
|
||||
new Weight(new double[] { 1 }),
|
||||
new InitialGuess(new double[] { 0 }));
|
||||
Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10);
|
||||
Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10);
|
||||
|
@ -160,7 +161,7 @@ public class MultiStartMultivariateVectorOptimizerTest {
|
|||
= new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);
|
||||
optimizer.optimize(new MaxEval(100),
|
||||
new Target(new double[] { 0 }),
|
||||
new NonCorrelatedWeight(new double[] { 1 }),
|
||||
new Weight(new double[] { 1 }),
|
||||
new InitialGuess(new double[] { 0 }),
|
||||
new ModelFunction(new MultivariateVectorFunction() {
|
||||
public double[] value(double[] point) {
|
||||
|
|
|
@ -17,22 +17,23 @@
|
|||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.Serializable;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.exception.ConvergenceException;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
|
||||
import org.apache.commons.math3.linear.BlockRealMatrix;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
@ -114,7 +115,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1 }),
|
||||
new Weight(new double[] { 1 }),
|
||||
new InitialGuess(new double[] { 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10);
|
||||
|
@ -134,7 +135,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(7, optimum.getPoint()[0], 1e-10);
|
||||
|
@ -160,7 +161,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
for (int i = 0; i < problem.target.length; ++i) {
|
||||
|
@ -182,7 +183,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0, 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(1, optimum.getPoint()[0], 1e-10);
|
||||
|
@ -208,7 +209,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(3, optimum.getPoint()[0], 1e-10);
|
||||
|
@ -234,7 +235,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0, 0 }));
|
||||
}
|
||||
|
||||
|
@ -252,7 +253,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem1.getModelFunction(),
|
||||
problem1.getModelFunctionJacobian(),
|
||||
problem1.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 1, 2, 3 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(1, optimum1.getPoint()[0], 1e-10);
|
||||
|
@ -271,7 +272,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem2.getModelFunction(),
|
||||
problem2.getModelFunctionJacobian(),
|
||||
problem2.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 1, 2, 3 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(-81, optimum2.getPoint()[0], 1e-8);
|
||||
|
@ -294,7 +295,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 7, 6, 5, 4 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
}
|
||||
|
@ -315,7 +316,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 2, 2, 2, 2, 2, 2 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(3, optimum.getPointRef()[2], 1e-10);
|
||||
|
@ -338,7 +339,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 1, 1 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(2, optimum.getPointRef()[0], 1e-10);
|
||||
|
@ -358,7 +359,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 1, 1 }));
|
||||
Assert.assertTrue(optimizer.getRMS() > 0.1);
|
||||
}
|
||||
|
@ -374,7 +375,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1 }),
|
||||
new Weight(new double[] { 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(-1, optimum.getPoint()[0], 1e-10);
|
||||
|
@ -384,7 +385,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1 }),
|
||||
new Weight(new double[] { 1 }),
|
||||
new InitialGuess(new double[] { 0, 0 }));
|
||||
}
|
||||
|
||||
|
@ -399,7 +400,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1 }),
|
||||
new Weight(new double[] { 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0 }));
|
||||
Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
|
||||
Assert.assertEquals(-1, optimum.getPoint()[0], 1e-10);
|
||||
|
@ -409,7 +410,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(new double[] { 1 }),
|
||||
new NonCorrelatedWeight(new double[] { 1 }),
|
||||
new Weight(new double[] { 1 }),
|
||||
new InitialGuess(new double[] { 0, 0 }));
|
||||
}
|
||||
|
||||
|
@ -427,7 +428,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
circle.getModelFunction(),
|
||||
circle.getModelFunctionJacobian(),
|
||||
new Target(new double[] { 0, 0, 0, 0, 0 }),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 98.680, 47.345 }));
|
||||
Assert.assertTrue(optimizer.getEvaluations() < 10);
|
||||
double rms = optimizer.getRMS();
|
||||
|
@ -455,7 +456,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
circle.getModelFunction(),
|
||||
circle.getModelFunctionJacobian(),
|
||||
new Target(target),
|
||||
new NonCorrelatedWeight(weights),
|
||||
new Weight(weights),
|
||||
new InitialGuess(new double[] { 98.680, 47.345 }));
|
||||
cov = optimizer.computeCovariances(optimum.getPoint(), 1e-14);
|
||||
Assert.assertEquals(0.0016, cov[0][0], 0.001);
|
||||
|
@ -481,7 +482,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
circle.getModelFunction(),
|
||||
circle.getModelFunctionJacobian(),
|
||||
new Target(target),
|
||||
new NonCorrelatedWeight(weights),
|
||||
new Weight(weights),
|
||||
new InitialGuess(new double[] { -12, -12 }));
|
||||
Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]);
|
||||
Assert.assertTrue(optimizer.getEvaluations() < 25);
|
||||
|
@ -508,7 +509,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
circle.getModelFunction(),
|
||||
circle.getModelFunctionJacobian(),
|
||||
new Target(target),
|
||||
new NonCorrelatedWeight(weights),
|
||||
new Weight(weights),
|
||||
new InitialGuess(new double[] { 0, 0 }));
|
||||
Assert.assertEquals(-0.1517383071957963, optimum.getPointRef()[0], 1e-6);
|
||||
Assert.assertEquals(0.2074999736353867, optimum.getPointRef()[1], 1e-6);
|
||||
|
@ -562,7 +563,7 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(data[1]),
|
||||
new NonCorrelatedWeight(w),
|
||||
new Weight(w),
|
||||
new InitialGuess(initial));
|
||||
|
||||
final double[] actual = optimum.getPoint();
|
||||
|
|
|
@ -15,15 +15,14 @@ package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
|||
|
||||
import java.io.IOException;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import org.junit.Assert;
|
||||
|
||||
public class AbstractLeastSquaresOptimizerTest {
|
||||
|
||||
|
@ -57,7 +56,7 @@ public class AbstractLeastSquaresOptimizerTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(y),
|
||||
new NonCorrelatedWeight(w),
|
||||
new Weight(w),
|
||||
new InitialGuess(a));
|
||||
final double expected = dataset.getResidualSumOfSquares();
|
||||
final double actual = optimizer.getChiSquare();
|
||||
|
@ -82,7 +81,7 @@ public class AbstractLeastSquaresOptimizerTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(y),
|
||||
new NonCorrelatedWeight(w),
|
||||
new Weight(w),
|
||||
new InitialGuess(a));
|
||||
|
||||
final double expected = FastMath
|
||||
|
@ -111,7 +110,7 @@ public class AbstractLeastSquaresOptimizerTest {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(y),
|
||||
new NonCorrelatedWeight(w),
|
||||
new Weight(w),
|
||||
new InitialGuess(a));
|
||||
|
||||
final double[] sig = optimizer.computeSigma(optimum.getPoint(), 1e-14);
|
||||
|
|
|
@ -13,21 +13,20 @@
|
|||
*/
|
||||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import java.awt.geom.Point2D;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.awt.geom.Point2D;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.stat.descriptive.StatisticalSummary;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
|
||||
import org.apache.commons.math3.stat.descriptive.StatisticalSummary;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import org.junit.Assert;
|
||||
|
||||
/**
|
||||
* This class demonstrates the main functionality of the
|
||||
|
@ -125,7 +124,7 @@ public class AbstractLeastSquaresOptimizerTestValidation {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(problem.target()),
|
||||
new NonCorrelatedWeight(problem.weight()),
|
||||
new Weight(problem.weight()),
|
||||
new InitialGuess(init));
|
||||
final double[] sigma = optim.computeSigma(optimum.getPoint(), 1e-14);
|
||||
|
||||
|
@ -306,7 +305,7 @@ public class AbstractLeastSquaresOptimizerTestValidation {
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(t),
|
||||
new NonCorrelatedWeight(w),
|
||||
new Weight(w),
|
||||
new InitialGuess(params));
|
||||
|
||||
return optim.getChiSquare() / (t.length - params.length);
|
||||
|
|
|
@ -18,14 +18,15 @@
|
|||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
import org.apache.commons.math3.exception.ConvergenceException;
|
||||
import org.apache.commons.math3.exception.TooManyEvaluationsException;
|
||||
import org.apache.commons.math3.optim.SimpleVectorValueChecker;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.SimpleVectorValueChecker;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
|
||||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
|
@ -132,7 +133,7 @@ public class GaussNewtonOptimizerTest
|
|||
circle.getModelFunction(),
|
||||
circle.getModelFunctionJacobian(),
|
||||
new Target(new double[] { 0, 0, 0, 0, 0 }),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 98.680, 47.345 }));
|
||||
}
|
||||
|
||||
|
|
|
@ -17,26 +17,28 @@
|
|||
|
||||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.exception.ConvergenceException;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.TooManyEvaluationsException;
|
||||
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
|
||||
import org.apache.commons.math3.linear.SingularMatrixException;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import org.junit.Ignore;
|
||||
|
||||
/**
|
||||
* <p>Some of the unit tests are re-implementations of the MINPACK <a
|
||||
|
@ -126,7 +128,7 @@ public class LevenbergMarquardtOptimizerTest
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
problem.getTarget(),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 0, 0, 0 }));
|
||||
Assert.assertTrue(FastMath.sqrt(optimizer.getTargetSize()) * optimizer.getRMS() > 0.6);
|
||||
|
||||
|
@ -172,7 +174,7 @@ public class LevenbergMarquardtOptimizerTest
|
|||
problem,
|
||||
problemJacobian,
|
||||
new Target(new double[] { 0, 0, 0, 0, 0 }),
|
||||
new NonCorrelatedWeight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new Weight(new double[] { 1, 1, 1, 1, 1 }),
|
||||
new InitialGuess(new double[] { 98.680, 47.345 }));
|
||||
Assert.assertTrue(!shouldFail);
|
||||
} catch (DimensionMismatchException ee) {
|
||||
|
@ -227,7 +229,7 @@ public class LevenbergMarquardtOptimizerTest
|
|||
problem.getModelFunction(),
|
||||
problem.getModelFunctionJacobian(),
|
||||
new Target(dataPoints[1]),
|
||||
new NonCorrelatedWeight(weights),
|
||||
new Weight(weights),
|
||||
new InitialGuess(new double[] { 10, 900, 80, 27, 225 }));
|
||||
|
||||
final double[] solution = optimum.getPoint();
|
||||
|
@ -291,7 +293,7 @@ public class LevenbergMarquardtOptimizerTest
|
|||
circle.getModelFunction(),
|
||||
circle.getModelFunctionJacobian(),
|
||||
new Target(circle.target()),
|
||||
new NonCorrelatedWeight(circle.weight()),
|
||||
new Weight(circle.weight()),
|
||||
new InitialGuess(init));
|
||||
|
||||
final double[] paramFound = optimum.getPoint();
|
||||
|
|
|
@ -17,18 +17,18 @@
|
|||
|
||||
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.exception.TooManyEvaluationsException;
|
||||
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
|
||||
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.InitialGuess;
|
||||
import org.apache.commons.math3.optim.MaxEval;
|
||||
import org.apache.commons.math3.optim.PointVectorValuePair;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.Target;
|
||||
import org.apache.commons.math3.optim.nonlinear.vector.NonCorrelatedWeight;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
@ -512,7 +512,7 @@ public class MinpackTest {
|
|||
function.getModelFunction(),
|
||||
function.getModelFunctionJacobian(),
|
||||
new Target(function.getTarget()),
|
||||
new NonCorrelatedWeight(function.getWeight()),
|
||||
new Weight(function.getWeight()),
|
||||
new InitialGuess(function.getStartPoint()));
|
||||
Assert.assertFalse(exceptionExpected);
|
||||
function.checkTheoreticalMinCost(optimizer.getRMS());
|
||||
|
|
Loading…
Reference in New Issue