Added user guide sections for complex numbers and distributions.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141198 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
1d0286e297
commit
ee53ecd19a
|
@ -47,6 +47,8 @@
|
||||||
<item name="Numerical Analysis" href="/userguide/analysis.html"/>
|
<item name="Numerical Analysis" href="/userguide/analysis.html"/>
|
||||||
<item name="Special Functions" href="/userguide/special.html"/>
|
<item name="Special Functions" href="/userguide/special.html"/>
|
||||||
<item name="Utilities" href="/userguide/utilities.html"/>
|
<item name="Utilities" href="/userguide/utilities.html"/>
|
||||||
|
<item name="Complex Numbers" href="/userguide/complex.html"/>
|
||||||
|
<item name="Distributions" href="/userguide/distribution.html"/>
|
||||||
</menu>
|
</menu>
|
||||||
|
|
||||||
&common-menus;
|
&common-menus;
|
||||||
|
|
|
@ -0,0 +1,84 @@
|
||||||
|
<?xml version="1.0"?>
|
||||||
|
|
||||||
|
<!--
|
||||||
|
Copyright 2003-2004 The Apache Software Foundation
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
-->
|
||||||
|
|
||||||
|
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
||||||
|
<!-- $Revision: 1.1 $ $Date: 2004/04/26 20:06:50 $ -->
|
||||||
|
<document url="stat.html">
|
||||||
|
<properties>
|
||||||
|
<title>The Commons Math User Guide - Statistics</title>
|
||||||
|
</properties>
|
||||||
|
<body>
|
||||||
|
<section name="7 Complex Numbers">
|
||||||
|
<subsection name="7.1 Overview" href="overview">
|
||||||
|
<p>
|
||||||
|
The complex packages provides a complex number type as well as complex
|
||||||
|
versions of common transcendental functions and complex number
|
||||||
|
formatting.
|
||||||
|
</p>
|
||||||
|
</subsection>
|
||||||
|
<subsection name="7.2 Complex Numbers" href="complex">
|
||||||
|
<p>
|
||||||
|
<a href="../apidocs/org/apache/commons/math/complex/Complex.html">
|
||||||
|
org.apache.commons.math.complex.Complex</a> provides a complex number
|
||||||
|
type that forms the basis for the complex functionality found in
|
||||||
|
commons-math.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
To create a complex number, simply call the constructor passing in two
|
||||||
|
floating-point arguments, the first being the real part of the
|
||||||
|
complex number and the second being the imaginary part:
|
||||||
|
<source>Complex c = new Complex(1.0, 3.0); // 1 + 3i</source>
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
The <code>Complex</code> class provides many unary and binary
|
||||||
|
complex number operations. These operations provide the means to add,
|
||||||
|
subtract, multiple and, divide complex numbers along with other
|
||||||
|
complex number functions similar to the real number functions found in
|
||||||
|
<code>java.math.BigDecimal</code>:
|
||||||
|
<source>Complex lhs = new Complex(1.0, 3.0);
|
||||||
|
Complex rhs = new Complex(2.0, 5.0);
|
||||||
|
|
||||||
|
Complex answer = lhs.add(rhs); // add two complex numbers
|
||||||
|
answer = lhs.subtract(rhs); // subtract two complex numbers
|
||||||
|
answer = lhs.abs(); // absolute value
|
||||||
|
answer = lhs.conjugate(rhs); // complex conjugate</source>
|
||||||
|
</p>
|
||||||
|
</subsection>
|
||||||
|
<subsection name="7.3 Complex Transcendental Functions" href="function">
|
||||||
|
<p>
|
||||||
|
<a href="../apidocs/org/apache/commons/math/complex/ComplexMath.html">
|
||||||
|
org.apache.commons.math.complex.ComplexMath</a> provides
|
||||||
|
implementations of serveral transcendental functions involving complex
|
||||||
|
number arguments. These operations provide the means to compute the
|
||||||
|
log, sine, tangent and, other complex values similar to the real
|
||||||
|
number functions found in <code>java.lang.Math</code>:
|
||||||
|
<source>Complex first = new Complex(1.0, 3.0);
|
||||||
|
Complex second = new Complex(2.0, 5.0);
|
||||||
|
|
||||||
|
Complex answer = ComplexMath.log(first); // natural logarithm.
|
||||||
|
answer = ComplexMath.cos(first); // cosine
|
||||||
|
answer = ComplexMath.pow(first, second); // first raised to the power of second</source>
|
||||||
|
</p>
|
||||||
|
</subsection>
|
||||||
|
<subsection name="7.4 Complex Formatting" href="formatting">
|
||||||
|
<p>This is yet to be written. Any contributions will be gratefully
|
||||||
|
accepted!</p>
|
||||||
|
</subsection>
|
||||||
|
</section>
|
||||||
|
</body>
|
||||||
|
</document>
|
|
@ -0,0 +1,94 @@
|
||||||
|
<?xml version="1.0"?>
|
||||||
|
|
||||||
|
<!--
|
||||||
|
Copyright 2003-2004 The Apache Software Foundation
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
-->
|
||||||
|
|
||||||
|
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
||||||
|
<!-- $Revision: 1.1 $ $Date: 2004/04/26 20:06:50 $ -->
|
||||||
|
<document url="stat.html">
|
||||||
|
<properties>
|
||||||
|
<title>The Commons Math User Guide - Statistics</title>
|
||||||
|
</properties>
|
||||||
|
<body>
|
||||||
|
<section name="8 Probability Distributions">
|
||||||
|
<subsection name="8.1 Overview" href="overview">
|
||||||
|
<p>
|
||||||
|
The distributions package provide a framework for some commonly used
|
||||||
|
probability distributions.
|
||||||
|
</p>
|
||||||
|
</subsection>
|
||||||
|
<subsection name="8.2 Distribution Framework" href="distributions">
|
||||||
|
<p>
|
||||||
|
The distribution framework provides the means to compute probability density
|
||||||
|
function (PDF) probabilities and cumulative distribution function (CDF)
|
||||||
|
probabilities for common probability distributions. Along with the direct
|
||||||
|
computation of PDF and CDF probabilities, the framework also allows for the
|
||||||
|
computation of inverse PDF and inverse CDF values.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
In order to use the distribution framework, first a distribution object must
|
||||||
|
be created. It is encouraged that all distribution object creation occurs via
|
||||||
|
the <code>org.apache.commons.math.distribution.DistributionFactory</code>
|
||||||
|
class. <code>DistributionFactory</code> is a simple factory used to create all
|
||||||
|
of the distribution objects supported by Commons-Math. The typical usage of
|
||||||
|
<code>DistributionFactory</code> to create a distribution object would be:
|
||||||
|
</p>
|
||||||
|
<source>DistributionFactory factory = DistributionFactory.newInstance();
|
||||||
|
BinomialDistribution binomial = factory.createBinomialDistribution(10, .75);</source>
|
||||||
|
<p>
|
||||||
|
The distributions that can be instantiated via the <code>DistributionFactory</code>
|
||||||
|
are detailed below:
|
||||||
|
<table>
|
||||||
|
<tr><th>Distribution</th><th>Factory Method</th><th>Parameters</th></tr>
|
||||||
|
<tr><td>Binomial</td><td>createBinomialDistribution</td><td><div>Number of trials</div><div>Probability of success</div></td></tr>
|
||||||
|
<tr><td>Chi-Squared</td><td>createChiSquaredDistribution</td><td><div>Degrees of freedom</div></td></tr>
|
||||||
|
<tr><td>Exponential</td><td>createExponentialDistribution</td><td><div>Mean</div></td></tr>
|
||||||
|
<tr><td>F</td><td>createFDistribution</td><td><div>Numerator degrees of freedom</div><div>Denominator degrees of freedom</div></td></tr>
|
||||||
|
<tr><td>Gamma</td><td>createGammaDistribution</td><td><div>Alpha</div><div>Beta</div></td></tr>
|
||||||
|
<tr><td>Hypergeometric</td><td>createHypogeometricDistribution</td><td><div>Population size</div><div>Number of successes in population</div><div>Sample size</div></td></tr>
|
||||||
|
<tr><td>Normal (Gaussian)</td><td>createNormalDistribution</td><td><div>Mean</div><div>Standard Deviation</div></td></tr>
|
||||||
|
<tr><td>t</td><td>createTDistribution</td><td><div>Degrees of freedom</div></td></tr>
|
||||||
|
</table>
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
Using a distribution object, PDF and CDF probabilities are easily computed
|
||||||
|
using the <code>cumulativeProbability</code> methods. For a distribution <code>X</code>,
|
||||||
|
and a domain value, <code>x</code>, <code>cumulativeProbability</code> computes
|
||||||
|
<code>P(X <= x)</code> (i.e. the lower tail probability of <code>X</code>).
|
||||||
|
</p>
|
||||||
|
<source>DistributionFactory factory = DistributionFactory.newInstance();
|
||||||
|
TDistribution t = factory.createBinomialDistribution(29);
|
||||||
|
double lowerTail = t.cumulativeProbability(-2.656); // P(T <= -2.656)
|
||||||
|
double upperTail = 1.0 - t.cumulativeProbability(2.75); // P(T >= 2.75)</source>
|
||||||
|
<p>
|
||||||
|
The inverse PDF and CDF values are just as easily computed using the
|
||||||
|
<code>inverseCumulativeProbability</code>methods. For a distribution <code>X</code>,
|
||||||
|
and a probability, <code>p</code>, <code>inverseCumulativeProbability</code>
|
||||||
|
computes the domain value <code>x</code>, such that:
|
||||||
|
<ul>
|
||||||
|
<li><code>P(X <= x) = p</code>, for continuous distributions</li>
|
||||||
|
<li><code>P(X <= x) <= p</code>, for discrete distributions</li>
|
||||||
|
</ul>
|
||||||
|
Notice the different cases for continuous and discrete distributions. This is the result
|
||||||
|
of PDFs not being invertible functions. As such, for discrete distributions, an exact
|
||||||
|
domain value can not be returned. Only the "best" domain value. For Commons-Math, the "best"
|
||||||
|
domain value is determined by the largest domain value whose cumulative probability is
|
||||||
|
less-than or equal to the given probability.
|
||||||
|
</p>
|
||||||
|
</subsection>
|
||||||
|
</section>
|
||||||
|
</body>
|
||||||
|
</document>
|
|
@ -17,7 +17,7 @@
|
||||||
-->
|
-->
|
||||||
|
|
||||||
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
||||||
<!-- $Revision: 1.7 $ $Date: 2004/02/29 21:25:08 $ -->
|
<!-- $Revision: 1.8 $ $Date: 2004/04/26 20:06:50 $ -->
|
||||||
<document url="index.html">
|
<document url="index.html">
|
||||||
<properties>
|
<properties>
|
||||||
<title>The Commons Math User Guide - Table of Contents</title>
|
<title>The Commons Math User Guide - Table of Contents</title>
|
||||||
|
@ -36,7 +36,7 @@
|
||||||
<li><a href="overview.html#dependencies">0.5 Dependencies</a></li>
|
<li><a href="overview.html#dependencies">0.5 Dependencies</a></li>
|
||||||
</ul></li>
|
</ul></li>
|
||||||
|
|
||||||
<li><a href="stat.html">1. Statistics and Distributions</a>
|
<li><a href="stat.html">1. Statistics</a>
|
||||||
<ul>
|
<ul>
|
||||||
<li><a href="stat.html#overview">1.1 Overview</a></li>
|
<li><a href="stat.html#overview">1.1 Overview</a></li>
|
||||||
<li><a href="stat.html#univariate">1.2 Univariate statistics</a></li>
|
<li><a href="stat.html#univariate">1.2 Univariate statistics</a></li>
|
||||||
|
@ -79,6 +79,18 @@
|
||||||
<li><a href="utilities.html#math_utils">6.4 binomial coefficients, factorials and other common math functions</a></li>
|
<li><a href="utilities.html#math_utils">6.4 binomial coefficients, factorials and other common math functions</a></li>
|
||||||
<li><a href="utilities.html#stat_utils">6.5 statistical computation utiliities</a></li>
|
<li><a href="utilities.html#stat_utils">6.5 statistical computation utiliities</a></li>
|
||||||
</ul></li>
|
</ul></li>
|
||||||
|
<li><a href="complex.html">7. Complex Numbers</a>
|
||||||
|
<ul>
|
||||||
|
<li><a href="complex.html#overview">7.1 Overview</a></li>
|
||||||
|
<li><a href="complex.html#complex">7.2 Complex Numbers</a></li>
|
||||||
|
<li><a href="complex.html#functions">7.3 Complex Transcendental Functions</a></li>
|
||||||
|
<li><a href="complex.html#formatting">7.4 Complex Formatting</a></li>
|
||||||
|
</ul></li>
|
||||||
|
<li><a href="distribution.html">8. Probability Distributions</a>
|
||||||
|
<ul>
|
||||||
|
<li><a href="distribution.html#overview">8.1 Overview</a></li>
|
||||||
|
<li><a href="distribution.html#distributions">8.2 Distribution Framework</a></li>
|
||||||
|
</ul></li>
|
||||||
</ul>
|
</ul>
|
||||||
</section>
|
</section>
|
||||||
|
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
-->
|
-->
|
||||||
|
|
||||||
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
||||||
<!-- $Revision: 1.9 $ $Date: 2004/04/25 17:12:05 $ -->
|
<!-- $Revision: 1.10 $ $Date: 2004/04/26 20:06:50 $ -->
|
||||||
<document>
|
<document>
|
||||||
<properties>
|
<properties>
|
||||||
<title>User Guide - Overview</title>
|
<title>User Guide - Overview</title>
|
||||||
|
@ -67,13 +67,16 @@
|
||||||
|
|
||||||
<subsection name="0.3 How commons-math is organized" href="organization">
|
<subsection name="0.3 How commons-math is organized" href="organization">
|
||||||
<p>
|
<p>
|
||||||
Commons Math is divided into 6 subpackages, based on functionality provided.
|
Commons Math is divided into eight subpackages, based on functionality provided.
|
||||||
<ol><li><a href="stat.html">org.apache.commons.math.stat</a> - statistics, statistical tests, probability distributions</li>
|
<ol>
|
||||||
|
<li><a href="stat.html">org.apache.commons.math.stat</a> - statistics, statistical tests</li>
|
||||||
<li><a href="analysis.html">org.apache.commons.math.analysis</a> - rootfinding and interpolation</li>
|
<li><a href="analysis.html">org.apache.commons.math.analysis</a> - rootfinding and interpolation</li>
|
||||||
<li><a href="random.html">org.apache.commons.math.random</a> - random numbers, strings and data generation</li>
|
<li><a href="random.html">org.apache.commons.math.random</a> - random numbers, strings and data generation</li>
|
||||||
<li><a href="special.html">org.apache.commons.math.special</a> - special functions (Gamma, Beta) </li>
|
<li><a href="special.html">org.apache.commons.math.special</a> - special functions (Gamma, Beta) </li>
|
||||||
<li><a href="linear.html">org.apache.commons.math.linear</a> - matrices, solving linear systems </li>
|
<li><a href="linear.html">org.apache.commons.math.linear</a> - matrices, solving linear systems </li>
|
||||||
<li><a href="utilities.html">org.apache.commons.math.util</a> - common math/stat functions extending java.lang.Math </li>
|
<li><a href="utilities.html">org.apache.commons.math.util</a> - common math/stat functions extending java.lang.Math </li>
|
||||||
|
<li><a href="complex.html">org.apache.commons.math.complex</a> - complex numbers</li>
|
||||||
|
<li><a href="distribution.html">org.apache.commons.math.distribution</a> - probability distributions</li>
|
||||||
</ol>
|
</ol>
|
||||||
Package javadocs are <a href="../apidocs/index.html">here</a>
|
Package javadocs are <a href="../apidocs/index.html">here</a>
|
||||||
</p>
|
</p>
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
-->
|
-->
|
||||||
|
|
||||||
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
||||||
<!-- $Revision: 1.15 $ $Date: 2004/04/26 05:16:35 $ -->
|
<!-- $Revision: 1.16 $ $Date: 2004/04/26 20:06:50 $ -->
|
||||||
<document url="stat.html">
|
<document url="stat.html">
|
||||||
<properties>
|
<properties>
|
||||||
<title>The Commons Math User Guide - Statistics</title>
|
<title>The Commons Math User Guide - Statistics</title>
|
||||||
|
@ -345,66 +345,6 @@ System.out.println(regression.getSlopeStdErr()); // displays slope standard erro
|
||||||
<p>This is yet to be written. Any contributions will be gratefully
|
<p>This is yet to be written. Any contributions will be gratefully
|
||||||
accepted!</p>
|
accepted!</p>
|
||||||
</subsection>
|
</subsection>
|
||||||
<subsection name="1.6 Distribution framework" href="distributions">
|
|
||||||
<p>
|
|
||||||
The distribution framework provides the means to compute probability density
|
|
||||||
function (PDF) probabilities and cumulative distribution function (CDF)
|
|
||||||
probabilities for common probability distributions. Along with the direct
|
|
||||||
computation of PDF and CDF probabilities, the framework also allows for the
|
|
||||||
computation of inverse PDF and inverse CDF values.
|
|
||||||
</p>
|
|
||||||
<p>
|
|
||||||
In order to use the distribution framework, first a distribution object must
|
|
||||||
be created. It is encouraged that all distribution object creation occurs via
|
|
||||||
the <code>org.apache.commons.math.stat.distribution.DistributionFactory</code>
|
|
||||||
class. <code>DistributionFactory</code> is a simple factory used to create all
|
|
||||||
of the distribution objects supported by Commons-Math. The typical usage of
|
|
||||||
<code>DistributionFactory</code> to create a distribution object would be:
|
|
||||||
</p>
|
|
||||||
<source>DistributionFactory factory = DistributionFactory.newInstance();
|
|
||||||
BinomialDistribution binomial = factory.createBinomialDistribution(10, .75);</source>
|
|
||||||
<p>
|
|
||||||
The distributions that can be instantiated via the <code>DistributionFactory</code>
|
|
||||||
are detailed below:
|
|
||||||
<table>
|
|
||||||
<tr><th>Distribution</th><th>Factory Method</th><th>Parameters</th></tr>
|
|
||||||
<tr><td>Binomial</td><td>createBinomialDistribution</td><td><div>Number of trials</div><div>Probability of success</div></td></tr>
|
|
||||||
<tr><td>Chi-Squared</td><td>createChiSquaredDistribution</td><td><div>Degrees of freedom</div></td></tr>
|
|
||||||
<tr><td>Exponential</td><td>createExponentialDistribution</td><td><div>Mean</div></td></tr>
|
|
||||||
<tr><td>F</td><td>createFDistribution</td><td><div>Numerator degrees of freedom</div><div>Denominator degrees of freedom</div></td></tr>
|
|
||||||
<tr><td>Gamma</td><td>createGammaDistribution</td><td><div>Alpha</div><div>Beta</div></td></tr>
|
|
||||||
<tr><td>Hypergeometric</td><td>createHypogeometricDistribution</td><td><div>Population size</div><div>Number of successes in population</div><div>Sample size</div></td></tr>
|
|
||||||
<tr><td>Normal (Gaussian)</td><td>createNormalDistribution</td><td><div>Mean</div><div>Standard Deviation</div></td></tr>
|
|
||||||
<tr><td>t</td><td>createTDistribution</td><td><div>Degrees of freedom</div></td></tr>
|
|
||||||
</table>
|
|
||||||
</p>
|
|
||||||
<p>
|
|
||||||
Using a distribution object, PDF and CDF probabilities are easily computed
|
|
||||||
using the <code>cumulativeProbability</code> methods. For a distribution <code>X</code>,
|
|
||||||
and a domain value, <code>x</code>, <code>cumulativeProbability</code> computes
|
|
||||||
<code>P(X <= x)</code> (i.e. the lower tail probability of <code>X</code>).
|
|
||||||
</p>
|
|
||||||
<source>DistributionFactory factory = DistributionFactory.newInstance();
|
|
||||||
TDistribution t = factory.createBinomialDistribution(29);
|
|
||||||
double lowerTail = t.cumulativeProbability(-2.656); // P(T <= -2.656)
|
|
||||||
double upperTail = 1.0 - t.cumulativeProbability(2.75); // P(T >= 2.75)</source>
|
|
||||||
<p>
|
|
||||||
The inverse PDF and CDF values are just as easily computed using the
|
|
||||||
<code>inverseCumulativeProbability</code>methods. For a distribution <code>X</code>,
|
|
||||||
and a probability, <code>p</code>, <code>inverseCumulativeProbability</code>
|
|
||||||
computes the domain value <code>x</code>, such that:
|
|
||||||
<ul>
|
|
||||||
<li><code>P(X <= x) = p</code>, for continuous distributions</li>
|
|
||||||
<li><code>P(X <= x) <= p</code>, for discrete distributions</li>
|
|
||||||
</ul>
|
|
||||||
Notice the different cases for continuous and discrete distributions. This is the result
|
|
||||||
of PDFs not being invertible functions. As such, for discrete distributions, an exact
|
|
||||||
domain value can not be returned. Only the "best" domain value. For Commons-Math, the "best"
|
|
||||||
domain value is determined by the largest domain value whose cumulative probability is
|
|
||||||
less-than or equal to the given probability.
|
|
||||||
</p>
|
|
||||||
</subsection>
|
|
||||||
|
|
||||||
</section>
|
</section>
|
||||||
</body>
|
</body>
|
||||||
</document>
|
</document>
|
||||||
|
|
Loading…
Reference in New Issue