diff --git a/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java b/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java
index a3b1c8b60..d3f3cc79b 100644
--- a/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java
+++ b/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java
@@ -56,8 +56,8 @@ public class MannWhitneyUTestImpl implements MannWhitneyUTest {
* @param tiesStrategy
* specifies the strategy that should be used for ties
*/
- public MannWhitneyUTestImpl(NaNStrategy nanStrategy,
- TiesStrategy tiesStrategy) {
+ public MannWhitneyUTestImpl(final NaNStrategy nanStrategy,
+ final TiesStrategy tiesStrategy) {
naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
}
diff --git a/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java b/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java
index f35f10ae0..201e7d7ff 100644
--- a/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java
+++ b/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java
@@ -67,7 +67,7 @@ public class OneWayAnovaImpl implements OneWayAnova {
* are as defined
* here
*/
- public double anovaFValue(Collection categoryData)
+ public double anovaFValue(final Collection categoryData)
throws NullArgumentException, DimensionMismatchException {
AnovaStats a = anovaStats(categoryData);
@@ -85,7 +85,7 @@ public class OneWayAnovaImpl implements OneWayAnova {
* where F
is the F value and cumulativeProbability
* is the commons-math implementation of the F distribution.
*/
- public double anovaPValue(Collection categoryData)
+ public double anovaPValue(final Collection categoryData)
throws NullArgumentException, DimensionMismatchException,
ConvergenceException, MaxCountExceededException {
@@ -106,13 +106,15 @@ public class OneWayAnovaImpl implements OneWayAnova {
* is the commons-math implementation of the F distribution.
* True is returned iff the estimated p-value is less than alpha.
*/
- public boolean anovaTest(Collection categoryData, double alpha)
- throws NullArgumentException, DimensionMismatchException, OutOfRangeException,
- ConvergenceException, MaxCountExceededException {
+ public boolean anovaTest(final Collection categoryData,
+ final double alpha)
+ throws NullArgumentException, DimensionMismatchException,
+ OutOfRangeException, ConvergenceException, MaxCountExceededException {
if ((alpha <= 0) || (alpha > 0.5)) {
- throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
- alpha, 0, 0.5);
+ throw new OutOfRangeException(
+ LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
+ alpha, 0, 0.5);
}
return anovaPValue(categoryData) < alpha;
@@ -130,7 +132,7 @@ public class OneWayAnovaImpl implements OneWayAnova {
* array is less than 2 or a contained double[]
array does not contain
* at least two values
*/
- private AnovaStats anovaStats(Collection categoryData)
+ private AnovaStats anovaStats(final Collection categoryData)
throws NullArgumentException, DimensionMismatchException {
if (categoryData == null) {
@@ -139,8 +141,9 @@ public class OneWayAnovaImpl implements OneWayAnova {
// check if we have enough categories
if (categoryData.size() < 2) {
- throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_CATEGORIES_REQUIRED,
- categoryData.size(), 2);
+ throw new DimensionMismatchException(
+ LocalizedFormats.TWO_OR_MORE_CATEGORIES_REQUIRED,
+ categoryData.size(), 2);
}
// check if each category has enough data and all is double[]
diff --git a/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java b/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java
index 4ebf6e61e..2f6476647 100644
--- a/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java
+++ b/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java
@@ -57,8 +57,8 @@ public class WilcoxonSignedRankTestImpl implements WilcoxonSignedRankTest {
* @param tiesStrategy
* specifies the strategy that should be used for ties
*/
- public WilcoxonSignedRankTestImpl(NaNStrategy nanStrategy,
- TiesStrategy tiesStrategy) {
+ public WilcoxonSignedRankTestImpl(final NaNStrategy nanStrategy,
+ final TiesStrategy tiesStrategy) {
naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
}
@@ -226,7 +226,7 @@ public class WilcoxonSignedRankTestImpl implements WilcoxonSignedRankTest {
/** {@inheritDoc} */
public double wilcoxonSignedRankTest(final double[] x, final double[] y,
- boolean exactPValue)
+ final boolean exactPValue)
throws NullArgumentException, NoDataException, DimensionMismatchException,
NumberIsTooLargeException, ConvergenceException, MaxCountExceededException {