Field-based version of classical Runge-Kutta method for solving ODE.

This commit is contained in:
Luc Maisonobe 2015-11-15 11:17:05 +01:00
parent d509c4a2a0
commit f4286ec262
2 changed files with 220 additions and 0 deletions

View File

@ -0,0 +1,79 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
/**
* This class implements the classical fourth order Runge-Kutta
* integrator for Ordinary Differential Equations (it is the most
* often used Runge-Kutta method).
*
* <p>This method is an explicit Runge-Kutta method, its Butcher-array
* is the following one :
* <pre>
* 0 | 0 0 0 0
* 1/2 | 1/2 0 0 0
* 1/2 | 0 1/2 0 0
* 1 | 0 0 1 0
* |--------------------
* | 1/6 1/3 1/3 1/6
* </pre>
* </p>
*
* @see EulerFieldIntegrator
* @see GillFieldIntegrator
* @see MidpointFieldIntegrator
* @see ThreeEighthesFieldIntegrator
* @see LutherFieldIntegrator
* @param <T> the type of the field elements
* @since 3.6
*/
public class ClassicalRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
extends RungeKuttaFieldIntegrator<T> {
/** Time steps Butcher array. */
private static final double[] STATIC_C = {
1.0 / 2.0, 1.0 / 2.0, 1.0
};
/** Internal weights Butcher array. */
private static final double[][] STATIC_A = {
{ 1.0 / 2.0 },
{ 0.0, 1.0 / 2.0 },
{ 0.0, 0.0, 1.0 }
};
/** Propagation weights Butcher array. */
private static final double[] STATIC_B = {
1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0
};
/** Simple constructor.
* Build a fourth-order Runge-Kutta integrator with the given step.
* @param field field to which the time and state vector elements belong
* @param step integration step
*/
public ClassicalRungeKuttaFieldIntegrator(final Field<T> field, final T step) {
super(field, "classical Runge-Kutta", STATIC_C, STATIC_A, STATIC_B,
new ClassicalRungeKuttaFieldStepInterpolator<T>(), step);
}
}

View File

@ -0,0 +1,141 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
/**
* This class implements a step interpolator for the classical fourth
* order Runge-Kutta integrator.
*
* <p>This interpolator allows to compute dense output inside the last
* step computed. The interpolation equation is consistent with the
* integration scheme :
* <ul>
* <li>Using reference point at step start:<br>
* y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
* + &theta; (h/6) [ (6 - 9 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
* + ( 6 &theta; - 4 &theta;<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
* + ( -3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
* ]
* </li>
* <li>Using reference point at step end:<br>
* y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
* + (1 - &theta;) (h/6) [ (-4 &theta;^2 + 5 &theta; - 1) y'<sub>1</sub>
* +(4 &theta;^2 - 2 &theta; - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
* -(4 &theta;^2 + &theta; + 1) y'<sub>4</sub>
* ]
* </li>
* </ul>
* </p>
*
* where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
* evaluations of the derivatives already computed during the
* step.</p>
*
* @see ClassicalRungeKuttaFieldIntegrator
* @param <T> the type of the field elements
* @since 3.6
*/
class ClassicalRungeKuttaFieldStepInterpolator<T extends RealFieldElement<T>>
extends RungeKuttaFieldStepInterpolator<T> {
/** Simple constructor.
* This constructor builds an instance that is not usable yet, the
* {@link RungeKuttaFieldStepInterpolator#reinitialize} method should be
* called before using the instance in order to initialize the
* internal arrays. This constructor is used only in order to delay
* the initialization in some cases. The {@link RungeKuttaFieldIntegrator}
* class uses the prototyping design pattern to create the step
* interpolators by cloning an uninitialized model and latter initializing
* the copy.
*/
ClassicalRungeKuttaFieldStepInterpolator() {
}
/** Copy constructor.
* @param interpolator interpolator to copy from. The copy is a deep
* copy: its arrays are separated from the original arrays of the
* instance
*/
ClassicalRungeKuttaFieldStepInterpolator(final ClassicalRungeKuttaFieldStepInterpolator<T> interpolator) {
super(interpolator);
}
/** {@inheritDoc} */
@Override
protected ClassicalRungeKuttaFieldStepInterpolator<T> doCopy() {
return new ClassicalRungeKuttaFieldStepInterpolator<T>(this);
}
/** {@inheritDoc} */
@Override
protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
final T time, final T theta,
final T oneMinusThetaH) {
final T one = time.getField().getOne();
final T oneMinusTheta = one.subtract(theta);
final T oneMinus2Theta = one.subtract(theta.multiply(2));
final T coeffDot1 = oneMinusTheta.multiply(oneMinus2Theta);
final T coeffDot23 = theta.multiply(oneMinusTheta).multiply(2);
final T coeffDot4 = theta.multiply(oneMinus2Theta).negate();
final T[] interpolatedState = MathArrays.buildArray(theta.getField(), previousState.length);
final T[] interpolatedDerivatives = MathArrays.buildArray(theta.getField(), previousState.length);
if ((previousState != null) && (theta.getReal() <= 0.5)) {
final T fourTheta2 = theta.multiply(theta).multiply(4);
final T s = theta.multiply(h).divide(6.0);
final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6));
final T coeff23 = s.multiply(theta.multiply(6).subtract(fourTheta2));
final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3)));
for (int i = 0; i < interpolatedState.length; ++i) {
final T yDot1 = yDotK[0][i];
final T yDot23 = yDotK[1][i].add(yDotK[2][i]);
final T yDot4 = yDotK[3][i];
interpolatedState[i] =
previousState[i].add(coeff1.multiply(yDot1)).add(coeff23.multiply(yDot23)).add(coeff4.multiply(yDot4));
interpolatedDerivatives[i] =
coeffDot1.multiply(yDot1).add(coeffDot23.multiply(yDot23)).add(coeffDot4.multiply(yDot4));
}
} else {
final T fourTheta = theta.multiply(4);
final T s = oneMinusThetaH.divide(6);
final T coeff1 = s.multiply(theta.multiply(fourTheta.negate().add(5)).subtract(1));
final T coeff23 = s.multiply(theta.multiply(fourTheta.subtract(2)).subtract(2));
final T coeff4 = s.multiply(theta.multiply(fourTheta.negate().subtract(1)).subtract(1));
for (int i = 0; i < interpolatedState.length; ++i) {
final T yDot1 = yDotK[0][i];
final T yDot23 = yDotK[1][i].add(yDotK[2][i]);
final T yDot4 = yDotK[3][i];
interpolatedState[i] =
currentState[i].add(coeff1.multiply(yDot1)).add(coeff23.multiply(yDot23)).add(coeff4.multiply(yDot4));
interpolatedDerivatives[i] =
coeffDot1.multiply(yDot1).add(coeffDot23.multiply(yDot23)).add(coeffDot4.multiply(yDot4));
}
}
return new FieldODEStateAndDerivative<T>(time, interpolatedState, yDotK[0]);
}
}