Field-based version of classical Runge-Kutta method for solving ODE.
This commit is contained in:
parent
d509c4a2a0
commit
f4286ec262
|
@ -0,0 +1,79 @@
|
||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.commons.math3.ode.nonstiff;
|
||||||
|
|
||||||
|
import org.apache.commons.math3.Field;
|
||||||
|
import org.apache.commons.math3.RealFieldElement;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This class implements the classical fourth order Runge-Kutta
|
||||||
|
* integrator for Ordinary Differential Equations (it is the most
|
||||||
|
* often used Runge-Kutta method).
|
||||||
|
*
|
||||||
|
* <p>This method is an explicit Runge-Kutta method, its Butcher-array
|
||||||
|
* is the following one :
|
||||||
|
* <pre>
|
||||||
|
* 0 | 0 0 0 0
|
||||||
|
* 1/2 | 1/2 0 0 0
|
||||||
|
* 1/2 | 0 1/2 0 0
|
||||||
|
* 1 | 0 0 1 0
|
||||||
|
* |--------------------
|
||||||
|
* | 1/6 1/3 1/3 1/6
|
||||||
|
* </pre>
|
||||||
|
* </p>
|
||||||
|
*
|
||||||
|
* @see EulerFieldIntegrator
|
||||||
|
* @see GillFieldIntegrator
|
||||||
|
* @see MidpointFieldIntegrator
|
||||||
|
* @see ThreeEighthesFieldIntegrator
|
||||||
|
* @see LutherFieldIntegrator
|
||||||
|
* @param <T> the type of the field elements
|
||||||
|
* @since 3.6
|
||||||
|
*/
|
||||||
|
|
||||||
|
public class ClassicalRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
|
||||||
|
extends RungeKuttaFieldIntegrator<T> {
|
||||||
|
|
||||||
|
/** Time steps Butcher array. */
|
||||||
|
private static final double[] STATIC_C = {
|
||||||
|
1.0 / 2.0, 1.0 / 2.0, 1.0
|
||||||
|
};
|
||||||
|
|
||||||
|
/** Internal weights Butcher array. */
|
||||||
|
private static final double[][] STATIC_A = {
|
||||||
|
{ 1.0 / 2.0 },
|
||||||
|
{ 0.0, 1.0 / 2.0 },
|
||||||
|
{ 0.0, 0.0, 1.0 }
|
||||||
|
};
|
||||||
|
|
||||||
|
/** Propagation weights Butcher array. */
|
||||||
|
private static final double[] STATIC_B = {
|
||||||
|
1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0
|
||||||
|
};
|
||||||
|
|
||||||
|
/** Simple constructor.
|
||||||
|
* Build a fourth-order Runge-Kutta integrator with the given step.
|
||||||
|
* @param field field to which the time and state vector elements belong
|
||||||
|
* @param step integration step
|
||||||
|
*/
|
||||||
|
public ClassicalRungeKuttaFieldIntegrator(final Field<T> field, final T step) {
|
||||||
|
super(field, "classical Runge-Kutta", STATIC_C, STATIC_A, STATIC_B,
|
||||||
|
new ClassicalRungeKuttaFieldStepInterpolator<T>(), step);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -0,0 +1,141 @@
|
||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.commons.math3.ode.nonstiff;
|
||||||
|
|
||||||
|
import org.apache.commons.math3.RealFieldElement;
|
||||||
|
import org.apache.commons.math3.ode.FieldEquationsMapper;
|
||||||
|
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
|
||||||
|
import org.apache.commons.math3.util.MathArrays;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This class implements a step interpolator for the classical fourth
|
||||||
|
* order Runge-Kutta integrator.
|
||||||
|
*
|
||||||
|
* <p>This interpolator allows to compute dense output inside the last
|
||||||
|
* step computed. The interpolation equation is consistent with the
|
||||||
|
* integration scheme :
|
||||||
|
* <ul>
|
||||||
|
* <li>Using reference point at step start:<br>
|
||||||
|
* y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>)
|
||||||
|
* + θ (h/6) [ (6 - 9 θ + 4 θ<sup>2</sup>) y'<sub>1</sub>
|
||||||
|
* + ( 6 θ - 4 θ<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
|
||||||
|
* + ( -3 θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
|
||||||
|
* ]
|
||||||
|
* </li>
|
||||||
|
* <li>Using reference point at step end:<br>
|
||||||
|
* y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h)
|
||||||
|
* + (1 - θ) (h/6) [ (-4 θ^2 + 5 θ - 1) y'<sub>1</sub>
|
||||||
|
* +(4 θ^2 - 2 θ - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
|
||||||
|
* -(4 θ^2 + θ + 1) y'<sub>4</sub>
|
||||||
|
* ]
|
||||||
|
* </li>
|
||||||
|
* </ul>
|
||||||
|
* </p>
|
||||||
|
*
|
||||||
|
* where θ belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
|
||||||
|
* evaluations of the derivatives already computed during the
|
||||||
|
* step.</p>
|
||||||
|
*
|
||||||
|
* @see ClassicalRungeKuttaFieldIntegrator
|
||||||
|
* @param <T> the type of the field elements
|
||||||
|
* @since 3.6
|
||||||
|
*/
|
||||||
|
|
||||||
|
class ClassicalRungeKuttaFieldStepInterpolator<T extends RealFieldElement<T>>
|
||||||
|
extends RungeKuttaFieldStepInterpolator<T> {
|
||||||
|
|
||||||
|
/** Simple constructor.
|
||||||
|
* This constructor builds an instance that is not usable yet, the
|
||||||
|
* {@link RungeKuttaFieldStepInterpolator#reinitialize} method should be
|
||||||
|
* called before using the instance in order to initialize the
|
||||||
|
* internal arrays. This constructor is used only in order to delay
|
||||||
|
* the initialization in some cases. The {@link RungeKuttaFieldIntegrator}
|
||||||
|
* class uses the prototyping design pattern to create the step
|
||||||
|
* interpolators by cloning an uninitialized model and latter initializing
|
||||||
|
* the copy.
|
||||||
|
*/
|
||||||
|
ClassicalRungeKuttaFieldStepInterpolator() {
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Copy constructor.
|
||||||
|
* @param interpolator interpolator to copy from. The copy is a deep
|
||||||
|
* copy: its arrays are separated from the original arrays of the
|
||||||
|
* instance
|
||||||
|
*/
|
||||||
|
ClassicalRungeKuttaFieldStepInterpolator(final ClassicalRungeKuttaFieldStepInterpolator<T> interpolator) {
|
||||||
|
super(interpolator);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** {@inheritDoc} */
|
||||||
|
@Override
|
||||||
|
protected ClassicalRungeKuttaFieldStepInterpolator<T> doCopy() {
|
||||||
|
return new ClassicalRungeKuttaFieldStepInterpolator<T>(this);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** {@inheritDoc} */
|
||||||
|
@Override
|
||||||
|
protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
|
||||||
|
final T time, final T theta,
|
||||||
|
final T oneMinusThetaH) {
|
||||||
|
|
||||||
|
final T one = time.getField().getOne();
|
||||||
|
final T oneMinusTheta = one.subtract(theta);
|
||||||
|
final T oneMinus2Theta = one.subtract(theta.multiply(2));
|
||||||
|
final T coeffDot1 = oneMinusTheta.multiply(oneMinus2Theta);
|
||||||
|
final T coeffDot23 = theta.multiply(oneMinusTheta).multiply(2);
|
||||||
|
final T coeffDot4 = theta.multiply(oneMinus2Theta).negate();
|
||||||
|
final T[] interpolatedState = MathArrays.buildArray(theta.getField(), previousState.length);
|
||||||
|
final T[] interpolatedDerivatives = MathArrays.buildArray(theta.getField(), previousState.length);
|
||||||
|
|
||||||
|
if ((previousState != null) && (theta.getReal() <= 0.5)) {
|
||||||
|
final T fourTheta2 = theta.multiply(theta).multiply(4);
|
||||||
|
final T s = theta.multiply(h).divide(6.0);
|
||||||
|
final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6));
|
||||||
|
final T coeff23 = s.multiply(theta.multiply(6).subtract(fourTheta2));
|
||||||
|
final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3)));
|
||||||
|
for (int i = 0; i < interpolatedState.length; ++i) {
|
||||||
|
final T yDot1 = yDotK[0][i];
|
||||||
|
final T yDot23 = yDotK[1][i].add(yDotK[2][i]);
|
||||||
|
final T yDot4 = yDotK[3][i];
|
||||||
|
interpolatedState[i] =
|
||||||
|
previousState[i].add(coeff1.multiply(yDot1)).add(coeff23.multiply(yDot23)).add(coeff4.multiply(yDot4));
|
||||||
|
interpolatedDerivatives[i] =
|
||||||
|
coeffDot1.multiply(yDot1).add(coeffDot23.multiply(yDot23)).add(coeffDot4.multiply(yDot4));
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
final T fourTheta = theta.multiply(4);
|
||||||
|
final T s = oneMinusThetaH.divide(6);
|
||||||
|
final T coeff1 = s.multiply(theta.multiply(fourTheta.negate().add(5)).subtract(1));
|
||||||
|
final T coeff23 = s.multiply(theta.multiply(fourTheta.subtract(2)).subtract(2));
|
||||||
|
final T coeff4 = s.multiply(theta.multiply(fourTheta.negate().subtract(1)).subtract(1));
|
||||||
|
for (int i = 0; i < interpolatedState.length; ++i) {
|
||||||
|
final T yDot1 = yDotK[0][i];
|
||||||
|
final T yDot23 = yDotK[1][i].add(yDotK[2][i]);
|
||||||
|
final T yDot4 = yDotK[3][i];
|
||||||
|
interpolatedState[i] =
|
||||||
|
currentState[i].add(coeff1.multiply(yDot1)).add(coeff23.multiply(yDot23)).add(coeff4.multiply(yDot4));
|
||||||
|
interpolatedDerivatives[i] =
|
||||||
|
coeffDot1.multiply(yDot1).add(coeffDot23.multiply(yDot23)).add(coeffDot4.multiply(yDot4));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return new FieldODEStateAndDerivative<T>(time, interpolatedState, yDotK[0]);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
Loading…
Reference in New Issue