added an implementation of the Mersenne twister pseudo random number generator

the implementation comes from Mantissa and was a translation of the 2002 version
in C by the algorithm authors, which was published under a BSD license

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@796546 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2009-07-21 21:38:55 +00:00
parent c705d93e2b
commit f42fe54595
7 changed files with 715 additions and 1 deletions

View File

@ -22,6 +22,11 @@ This product includes software translated from some LAPACK Fortran routines
and distributed under the following license: and distributed under the following license:
http://www.netlib.org/lapack/LICENSE http://www.netlib.org/lapack/LICENSE
This product includes software translated from the 2002-01-26 version of
the Mersenne-Twister generator written in C by Makoto Matsumoto and Takuji
Nishimura which is distributed une a BSD license :
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
For convenience, the text of these licenses and disclaimers as available at For convenience, the text of these licenses and disclaimers as available at
time of code inclusion are provided below. time of code inclusion are provided below.
@ -149,3 +154,35 @@ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------- http://www.netlib.org/lapack/LICENSE ---------- ---------- http://www.netlib.org/lapack/LICENSE ----------
---------- excerpt from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c ----------
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------- excerpt from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c ----------

View File

@ -20,6 +20,7 @@ changes to existing features. Most notable among the new features are:
variable stepsize variable stepsize
- regression algorithms - regression algorithms
- rank transformations - rank transformations
- Mersenne twister pseudo random number generator
This release is NOT source and binary compatible with earlier versions This release is NOT source and binary compatible with earlier versions
of Commons Math. Starting with version 2.0 of the library, the minimal of Commons Math. Starting with version 2.0 of the library, the minimal
@ -48,6 +49,9 @@ o Added a way to limit the number of functions evaluations in
o Added support for rank transformations. o Added support for rank transformations.
o Added an implementation of the Mersenne twister pseudo random number
generator from Makoto Matsumoto and Takuji Nishimura
o Added support for any type of field in linear algebra (FielxMatrix, o Added support for any type of field in linear algebra (FielxMatrix,
FieldVector, FieldLUDecomposition) FieldVector, FieldLUDecomposition)

View File

@ -345,6 +345,7 @@ public class MessagesResources_fr
"l''adresse {0} ne contient aucune donn\u00e9e" }, "l''adresse {0} ne contient aucune donn\u00e9e" },
// org.apache.commons.math.random.AbstractRandomGenerator // org.apache.commons.math.random.AbstractRandomGenerator
// org.apache.commons.math.random.BitsStreamGenerator
{ "upper bound must be positive ({0})", { "upper bound must be positive ({0})",
"la borne sup\u00e9rieure doit \u00eatre positive ({0})" }, "la borne sup\u00e9rieure doit \u00eatre positive ({0})" },

View File

@ -0,0 +1,263 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.random;
import java.io.Serializable;
/** This class implements a powerful pseudo-random number generator
* developed by Makoto Matsumoto and Takuji Nishimura during
* 1996-1997.
* <p>This generator features an extremely long period
* (2<sup>19937</sup>-1) and 623-dimensional equidistribution up to 32
* bits accuracy. The home page for this generator is located at <a
* href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html</a>.</p>
* <p>This generator is described in a paper by Makoto Matsumoto and
* Takuji Nishimura in 1998: <a
* href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf">Mersenne
* Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random
* Number Generator</a>, ACM Transactions on Modeling and Computer
* Simulation, Vol. 8, No. 1, January 1998, pp 3--30</p>
* <p>The class is implemented as a specialization of the standard
* <code>java.util.Random</code> class. This allows to use it in
* algorithms expecting a standard random generator, and hence benefit
* from a better generator without code change.</p>
* <p>This class is mainly a Java port of the 2002-01-26 version of
* the generator written in C by Makoto Matsumoto and Takuji
* Nishimura. Here is their original copyright:</p>
* <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
* <tr><td>Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
* All rights reserved.</td></tr>
* <tr><td>Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* <ol>
* <li>Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.</li>
* <li>Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.</li>
* <li>The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.</li>
* </ol></td></tr>
* <tr><td><strong>THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.</strong></td></tr>
* </table>
* @version $Revision$ $Date$
* @since 2.0
*/
public class MersenneTwister extends BitsStreamGenerator implements Serializable {
/** Serializable version identifier. */
private static final long serialVersionUID = 8661194735290153518L;
/** Size of the bytes pool. */
private static final int N = 624;
/** Period second parameter. */
private static final int M = 397;
/** X * MATRIX_A for X = {0, 1}. */
private static final int[] MAG01 = { 0x0, 0x9908b0df };
/** Bytes pool. */
private int[] mt;
/** Current index in the bytes pool. */
private int mti;
/** Creates a new random number generator.
* <p>The instance is initialized using the current time as the
* seed.</p>
*/
public MersenneTwister() {
mt = new int[N];
setSeed(System.currentTimeMillis());
}
/** Creates a new random number generator using a single int seed.
* @param seed the initial seed (32 bits integer)
*/
public MersenneTwister(int seed) {
mt = new int[N];
setSeed(seed);
}
/** Creates a new random number generator using an int array seed.
* @param seed the initial seed (32 bits integers array), if null
* the seed of the generator will be related to the current time
*/
public MersenneTwister(int[] seed) {
mt = new int[N];
setSeed(seed);
}
/** Creates a new random number generator using a single long seed.
* @param seed the initial seed (64 bits integer)
*/
public MersenneTwister(long seed) {
mt = new int[N];
setSeed(seed);
}
/** Reinitialize the generator as if just built with the given int seed.
* <p>The state of the generator is exactly the same as a new
* generator built with the same seed.</p>
* @param seed the initial seed (32 bits integer)
*/
public void setSeed(int seed) {
// we use a long masked by 0xffffffffL as a poor man unsigned int
long longMT = seed;
mt[0]= (int) longMT;
for (mti = 1; mti < N; ++mti) {
// See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier.
// initializer from the 2002-01-09 C version by Makoto Matsumoto
longMT = (1812433253l * (longMT ^ (longMT >> 30)) + mti) & 0xffffffffL;
mt[mti]= (int) longMT;
}
}
/** Reinitialize the generator as if just built with the given int array seed.
* <p>The state of the generator is exactly the same as a new
* generator built with the same seed.</p>
* @param seed the initial seed (32 bits integers array), if null
* the seed of the generator will be related to the current time
*/
public void setSeed(int[] seed) {
if (seed == null) {
setSeed(System.currentTimeMillis());
return;
}
setSeed(19650218);
int i = 1;
int j = 0;
for (int k = Math.max(N, seed.length); k != 0; k--) {
long l0 = (mt[i] & 0x7fffffffl) | ((mt[i] < 0) ? 0x80000000l : 0x0l);
long l1 = (mt[i-1] & 0x7fffffffl) | ((mt[i-1] < 0) ? 0x80000000l : 0x0l);
long l = (l0 ^ ((l1 ^ (l1 >> 30)) * 1664525l)) + seed[j] + j; // non linear
mt[i] = (int) (l & 0xffffffffl);
i++; j++;
if (i >= N) {
mt[0] = mt[N - 1];
i = 1;
}
if (j >= seed.length) {
j = 0;
}
}
for (int k = N - 1; k != 0; k--) {
long l0 = (mt[i] & 0x7fffffffl) | ((mt[i] < 0) ? 0x80000000l : 0x0l);
long l1 = (mt[i-1] & 0x7fffffffl) | ((mt[i-1] < 0) ? 0x80000000l : 0x0l);
long l = (l0 ^ ((l1 ^ (l1 >> 30)) * 1566083941l)) - i; // non linear
mt[i] = (int) (l & 0xffffffffL);
i++;
if (i >= N) {
mt[0] = mt[N - 1];
i = 1;
}
}
mt[0] = 0x80000000; // MSB is 1; assuring non-zero initial array
}
/** Reinitialize the generator as if just built with the given long seed.
* <p>The state of the generator is exactly the same as a new
* generator built with the same seed.</p>
* @param seed the initial seed (64 bits integer)
*/
public void setSeed(long seed) {
if (mt == null) {
// this is probably a spurious call from base class constructor,
// we do nothing and wait for the setSeed in our own
// constructors after array allocation
return;
}
setSeed(new int[] { (int) (seed >>> 32), (int) (seed & 0xffffffffl) });
}
/** Generate next pseudorandom number.
* <p>This method is the core generation algorithm. It is used by all the
* public generation methods for the various primitive types {@link
* #nextBoolean()}, {@link #nextBytes(byte[])}, {@link #nextDouble()},
* {@link #nextFloat()}, {@link #nextGaussian()}, {@link #nextInt()},
* {@link #next(int)} and {@link #nextLong()}.</p>
* @param bits number of random bits to produce
*/
protected int next(int bits) {
int y;
if (mti >= N) { // generate N words at one time
int mtNext = mt[0];
for (int k = 0; k < N - M; ++k) {
int mtCurr = mtNext;
mtNext = mt[k + 1];
y = (mtCurr & 0x80000000) | (mtNext & 0x7fffffff);
mt[k] = mt[k + M] ^ (y >>> 1) ^ MAG01[y & 0x1];
}
for (int k = N - M; k < N - 1; ++k) {
int mtCurr = mtNext;
mtNext = mt[k + 1];
y = (mtCurr & 0x80000000) | (mtNext & 0x7fffffff);
mt[k] = mt[k + (M - N)] ^ (y >>> 1) ^ MAG01[y & 0x1];
}
y = (mtNext & 0x80000000) | (mt[0] & 0x7fffffff);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ MAG01[y & 0x1];
mti = 0;
}
y = mt[mti++];
// tempering
y ^= (y >>> 11);
y ^= (y << 7) & 0x9d2c5680;
y ^= (y << 15) & 0xefc60000;
y ^= (y >>> 18);
return y >>> (32 - bits);
}
}

View File

@ -39,6 +39,10 @@ The <action> type attribute can be add,update,fix,remove.
</properties> </properties>
<body> <body>
<release version="2.0" date="TBD" description="TBD"> <release version="2.0" date="TBD" description="TBD">
<action dev="luc" type="add" >
Added an implementation of the Mersenne twister pseudo random number generator
from Makoto Matsumoto and Takuji Nishimura
</action>
<action dev="luc" type="update" due-to="Gilles Sadowski"> <action dev="luc" type="update" due-to="Gilles Sadowski">
Changed the return type of the various interpolation algorithms to the Changed the return type of the various interpolation algorithms to the
specific implementation of UnivariateRealFunction each one uses specific implementation of UnivariateRealFunction each one uses

View File

@ -48,7 +48,10 @@
pluggable. By default, the JDK-supplied PseudoRandom Number Generator pluggable. By default, the JDK-supplied PseudoRandom Number Generator
(PRNG) is used, but alternative generators can be "plugged in" using an (PRNG) is used, but alternative generators can be "plugged in" using an
adaptor framework, which provides a generic facility for replacing adaptor framework, which provides a generic facility for replacing
<code>java.util.Random</code> with an alternative PRNG. <code>java.util.Random</code> with an alternative PRNG. Another very
good PRNG suitable for Monte-Carlo analysis (but <strong>not</strong>
for cryptography) provided by the library is the Mersenne twister from
Makoto Matsumoto and Takuji Nishimura
</p> </p>
<p> <p>
Sections 2.2-2.6 below show how to use the commons math API to generate Sections 2.2-2.6 below show how to use the commons math API to generate

View File

@ -0,0 +1,402 @@
package org.apache.commons.math.random;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.apache.commons.math.stat.descriptive.SummaryStatistics;
import org.junit.Test;
public class MersenneTwisterTest {
@Test
public void testGaussian() {
MersenneTwister mt = new MersenneTwister(42853252100l);
SummaryStatistics sample = new SummaryStatistics();
for (int i = 0; i < 1000; ++i) {
sample.addValue(mt.nextGaussian());
}
assertEquals(0.0, sample.getMean(), 0.005);
assertEquals(1.0, sample.getStandardDeviation(), 0.025);
}
@Test
public void testDouble() {
MersenneTwister mt = new MersenneTwister(195357343514l);
SummaryStatistics sample = new SummaryStatistics();
for (int i = 0; i < 1000; ++i) {
sample.addValue(mt.nextDouble());
}
assertEquals(0.5, sample.getMean(), 0.02);
assertEquals(1.0 / (2.0 * Math.sqrt(3.0)),
sample.getStandardDeviation(),
0.002);
}
@Test
public void testFloat() {
MersenneTwister mt = new MersenneTwister(4442733263l);
SummaryStatistics sample = new SummaryStatistics();
for (int i = 0; i < 1000; ++i) {
sample.addValue(mt.nextFloat());
}
assertEquals(0.5, sample.getMean(), 0.01);
assertEquals(1.0 / (2.0 * Math.sqrt(3.0)),
sample.getStandardDeviation(),
0.006);
}
@Test
public void testNextIntN() {
MersenneTwister mt = new MersenneTwister(0x12b8a7412bb25el);
for (int n = 1; n < 20; ++n) {
int[] count = new int[n];
for (int k = 0; k < 10000; ++k) {
int l = mt.nextInt(n);
++count[l];
assertTrue(l >= 0);
assertTrue(l < n);
}
for (int i = 0; i < n; ++i) {
assertTrue(n * count[i] > 8600);
assertTrue(n * count[i] < 11200);
}
}
}
@Test
public void testNextInt() {
MersenneTwister mt = new MersenneTwister(new int[] { 1, 2, 3, 4, 5 });
int walk = 0;
for (int k = 0; k < 10000; ++k) {
if (mt.nextInt() >= 0) {
++walk;
} else {
--walk;
}
}
assertTrue(Math.abs(walk) < 120);
}
@Test
public void testNextLong() {
MersenneTwister mt = new MersenneTwister(12345);
int walk = 0;
for (int k = 0; k < 10000; ++k) {
if (mt.nextLong() >= 0) {
++walk;
} else {
--walk;
}
}
assertTrue(Math.abs(walk) < 50);
}
@Test
public void testNexBoolean() {
MersenneTwister mt = new MersenneTwister(76342);
int walk = 0;
for (int k = 0; k < 10000; ++k) {
if (mt.nextBoolean()) {
++walk;
} else {
--walk;
}
}
assertTrue(Math.abs(walk) < 250);
}
@Test
public void testNexBytes() {
MersenneTwister mt = new MersenneTwister(0);
int[] count = new int[256];
byte[] bytes = new byte[10];
for (int k = 0; k < 100000; ++k) {
mt.nextBytes(bytes);
for (byte b : bytes) {
++count[b + 128];
}
}
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;
for (int c : count) {
min = Math.min(min, c);
max = Math.max(max, c);
}
int expected = (100000 * bytes.length) / count.length;
assertTrue((expected - 200) < min);
assertTrue(max < (expected + 200));
}
@Test
public void testMakotoNishimura() {
MersenneTwister mt = new MersenneTwister(new int[] {0x123, 0x234, 0x345, 0x456});
long[] refInt = {
1067595299l, 955945823l, 477289528l, 4107218783l, 4228976476l, 3344332714l, 3355579695l, 227628506l,
810200273l, 2591290167l, 2560260675l, 3242736208l, 646746669l, 1479517882l, 4245472273l, 1143372638l,
3863670494l, 3221021970l, 1773610557l, 1138697238l, 1421897700l, 1269916527l, 2859934041l, 1764463362l,
3874892047l, 3965319921l, 72549643l, 2383988930l, 2600218693l, 3237492380l, 2792901476l, 725331109l,
605841842l, 271258942l, 715137098l, 3297999536l, 1322965544l, 4229579109l, 1395091102l, 3735697720l,
2101727825l, 3730287744l, 2950434330l, 1661921839l, 2895579582l, 2370511479l, 1004092106l, 2247096681l,
2111242379l, 3237345263l, 4082424759l, 219785033l, 2454039889l, 3709582971l, 835606218l, 2411949883l,
2735205030l, 756421180l, 2175209704l, 1873865952l, 2762534237l, 4161807854l, 3351099340l, 181129879l,
3269891896l, 776029799l, 2218161979l, 3001745796l, 1866825872l, 2133627728l, 34862734l, 1191934573l,
3102311354l, 2916517763l, 1012402762l, 2184831317l, 4257399449l, 2899497138l, 3818095062l, 3030756734l,
1282161629l, 420003642l, 2326421477l, 2741455717l, 1278020671l, 3744179621l, 271777016l, 2626330018l,
2560563991l, 3055977700l, 4233527566l, 1228397661l, 3595579322l, 1077915006l, 2395931898l, 1851927286l,
3013683506l, 1999971931l, 3006888962l, 1049781534l, 1488758959l, 3491776230l, 104418065l, 2448267297l,
3075614115l, 3872332600l, 891912190l, 3936547759l, 2269180963l, 2633455084l, 1047636807l, 2604612377l,
2709305729l, 1952216715l, 207593580l, 2849898034l, 670771757l, 2210471108l, 467711165l, 263046873l,
3569667915l, 1042291111l, 3863517079l, 1464270005l, 2758321352l, 3790799816l, 2301278724l, 3106281430l,
7974801l, 2792461636l, 555991332l, 621766759l, 1322453093l, 853629228l, 686962251l, 1455120532l,
957753161l, 1802033300l, 1021534190l, 3486047311l, 1902128914l, 3701138056l, 4176424663l, 1795608698l,
560858864l, 3737752754l, 3141170998l, 1553553385l, 3367807274l, 711546358l, 2475125503l, 262969859l,
251416325l, 2980076994l, 1806565895l, 969527843l, 3529327173l, 2736343040l, 2987196734l, 1649016367l,
2206175811l, 3048174801l, 3662503553l, 3138851612l, 2660143804l, 1663017612l, 1816683231l, 411916003l,
3887461314l, 2347044079l, 1015311755l, 1203592432l, 2170947766l, 2569420716l, 813872093l, 1105387678l,
1431142475l, 220570551l, 4243632715l, 4179591855l, 2607469131l, 3090613241l, 282341803l, 1734241730l,
1391822177l, 1001254810l, 827927915l, 1886687171l, 3935097347l, 2631788714l, 3905163266l, 110554195l,
2447955646l, 3717202975l, 3304793075l, 3739614479l, 3059127468l, 953919171l, 2590123714l, 1132511021l,
3795593679l, 2788030429l, 982155079l, 3472349556l, 859942552l, 2681007391l, 2299624053l, 647443547l,
233600422l, 608168955l, 3689327453l, 1849778220l, 1608438222l, 3968158357l, 2692977776l, 2851872572l,
246750393l, 3582818628l, 3329652309l, 4036366910l, 1012970930l, 950780808l, 3959768744l, 2538550045l,
191422718l, 2658142375l, 3276369011l, 2927737484l, 1234200027l, 1920815603l, 3536074689l, 1535612501l,
2184142071l, 3276955054l, 428488088l, 2378411984l, 4059769550l, 3913744741l, 2732139246l, 64369859l,
3755670074l, 842839565l, 2819894466l, 2414718973l, 1010060670l, 1839715346l, 2410311136l, 152774329l,
3485009480l, 4102101512l, 2852724304l, 879944024l, 1785007662l, 2748284463l, 1354768064l, 3267784736l,
2269127717l, 3001240761l, 3179796763l, 895723219l, 865924942l, 4291570937l, 89355264l, 1471026971l,
4114180745l, 3201939751l, 2867476999l, 2460866060l, 3603874571l, 2238880432l, 3308416168l, 2072246611l,
2755653839l, 3773737248l, 1709066580l, 4282731467l, 2746170170l, 2832568330l, 433439009l, 3175778732l,
26248366l, 2551382801l, 183214346l, 3893339516l, 1928168445l, 1337157619l, 3429096554l, 3275170900l,
1782047316l, 4264403756l, 1876594403l, 4289659572l, 3223834894l, 1728705513l, 4068244734l, 2867840287l,
1147798696l, 302879820l, 1730407747l, 1923824407l, 1180597908l, 1569786639l, 198796327l, 560793173l,
2107345620l, 2705990316l, 3448772106l, 3678374155l, 758635715l, 884524671l, 486356516l, 1774865603l,
3881226226l, 2635213607l, 1181121587l, 1508809820l, 3178988241l, 1594193633l, 1235154121l, 326117244l,
2304031425l, 937054774l, 2687415945l, 3192389340l, 2003740439l, 1823766188l, 2759543402l, 10067710l,
1533252662l, 4132494984l, 82378136l, 420615890l, 3467563163l, 541562091l, 3535949864l, 2277319197l,
3330822853l, 3215654174l, 4113831979l, 4204996991l, 2162248333l, 3255093522l, 2219088909l, 2978279037l,
255818579l, 2859348628l, 3097280311l, 2569721123l, 1861951120l, 2907080079l, 2719467166l, 998319094l,
2521935127l, 2404125338l, 259456032l, 2086860995l, 1839848496l, 1893547357l, 2527997525l, 1489393124l,
2860855349l, 76448234l, 2264934035l, 744914583l, 2586791259l, 1385380501l, 66529922l, 1819103258l,
1899300332l, 2098173828l, 1793831094l, 276463159l, 360132945l, 4178212058l, 595015228l, 177071838l,
2800080290l, 1573557746l, 1548998935l, 378454223l, 1460534296l, 1116274283l, 3112385063l, 3709761796l,
827999348l, 3580042847l, 1913901014l, 614021289l, 4278528023l, 1905177404l, 45407939l, 3298183234l,
1184848810l, 3644926330l, 3923635459l, 1627046213l, 3677876759l, 969772772l, 1160524753l, 1522441192l,
452369933l, 1527502551l, 832490847l, 1003299676l, 1071381111l, 2891255476l, 973747308l, 4086897108l,
1847554542l, 3895651598l, 2227820339l, 1621250941l, 2881344691l, 3583565821l, 3510404498l, 849362119l,
862871471l, 797858058l, 2867774932l, 2821282612l, 3272403146l, 3997979905l, 209178708l, 1805135652l,
6783381l, 2823361423l, 792580494l, 4263749770l, 776439581l, 3798193823l, 2853444094l, 2729507474l,
1071873341l, 1329010206l, 1289336450l, 3327680758l, 2011491779l, 80157208l, 922428856l, 1158943220l,
1667230961l, 2461022820l, 2608845159l, 387516115l, 3345351910l, 1495629111l, 4098154157l, 3156649613l,
3525698599l, 4134908037l, 446713264l, 2137537399l, 3617403512l, 813966752l, 1157943946l, 3734692965l,
1680301658l, 3180398473l, 3509854711l, 2228114612l, 1008102291l, 486805123l, 863791847l, 3189125290l,
1050308116l, 3777341526l, 4291726501l, 844061465l, 1347461791l, 2826481581l, 745465012l, 2055805750l,
4260209475l, 2386693097l, 2980646741l, 447229436l, 2077782664l, 1232942813l, 4023002732l, 1399011509l,
3140569849l, 2579909222l, 3794857471l, 900758066l, 2887199683l, 1720257997l, 3367494931l, 2668921229l,
955539029l, 3818726432l, 1105704962l, 3889207255l, 2277369307l, 2746484505l, 1761846513l, 2413916784l,
2685127085l, 4240257943l, 1166726899l, 4215215715l, 3082092067l, 3960461946l, 1663304043l, 2087473241l,
4162589986l, 2507310778l, 1579665506l, 767234210l, 970676017l, 492207530l, 1441679602l, 1314785090l,
3262202570l, 3417091742l, 1561989210l, 3011406780l, 1146609202l, 3262321040l, 1374872171l, 1634688712l,
1280458888l, 2230023982l, 419323804l, 3262899800l, 39783310l, 1641619040l, 1700368658l, 2207946628l,
2571300939l, 2424079766l, 780290914l, 2715195096l, 3390957695l, 163151474l, 2309534542l, 1860018424l,
555755123l, 280320104l, 1604831083l, 2713022383l, 1728987441l, 3639955502l, 623065489l, 3828630947l,
4275479050l, 3516347383l, 2343951195l, 2430677756l, 635534992l, 3868699749l, 808442435l, 3070644069l,
4282166003l, 2093181383l, 2023555632l, 1568662086l, 3422372620l, 4134522350l, 3016979543l, 3259320234l,
2888030729l, 3185253876l, 4258779643l, 1267304371l, 1022517473l, 815943045l, 929020012l, 2995251018l,
3371283296l, 3608029049l, 2018485115l, 122123397l, 2810669150l, 1411365618l, 1238391329l, 1186786476l,
3155969091l, 2242941310l, 1765554882l, 279121160l, 4279838515l, 1641578514l, 3796324015l, 13351065l,
103516986l, 1609694427l, 551411743l, 2493771609l, 1316337047l, 3932650856l, 4189700203l, 463397996l,
2937735066l, 1855616529l, 2626847990l, 55091862l, 3823351211l, 753448970l, 4045045500l, 1274127772l,
1124182256l, 92039808l, 2126345552l, 425973257l, 386287896l, 2589870191l, 1987762798l, 4084826973l,
2172456685l, 3366583455l, 3602966653l, 2378803535l, 2901764433l, 3716929006l, 3710159000l, 2653449155l,
3469742630l, 3096444476l, 3932564653l, 2595257433l, 318974657l, 3146202484l, 853571438l, 144400272l,
3768408841l, 782634401l, 2161109003l, 570039522l, 1886241521l, 14249488l, 2230804228l, 1604941699l,
3928713335l, 3921942509l, 2155806892l, 134366254l, 430507376l, 1924011722l, 276713377l, 196481886l,
3614810992l, 1610021185l, 1785757066l, 851346168l, 3761148643l, 2918835642l, 3364422385l, 3012284466l,
3735958851l, 2643153892l, 3778608231l, 1164289832l, 205853021l, 2876112231l, 3503398282l, 3078397001l,
3472037921l, 1748894853l, 2740861475l, 316056182l, 1660426908l, 168885906l, 956005527l, 3984354789l,
566521563l, 1001109523l, 1216710575l, 2952284757l, 3834433081l, 3842608301l, 2467352408l, 3974441264l,
3256601745l, 1409353924l, 1329904859l, 2307560293l, 3125217879l, 3622920184l, 3832785684l, 3882365951l,
2308537115l, 2659155028l, 1450441945l, 3532257603l, 3186324194l, 1225603425l, 1124246549l, 175808705l,
3009142319l, 2796710159l, 3651990107l, 160762750l, 1902254979l, 1698648476l, 1134980669l, 497144426l,
3302689335l, 4057485630l, 3603530763l, 4087252587l, 427812652l, 286876201l, 823134128l, 1627554964l,
3745564327l, 2589226092l, 4202024494l, 62878473l, 3275585894l, 3987124064l, 2791777159l, 1916869511l,
2585861905l, 1375038919l, 1403421920l, 60249114l, 3811870450l, 3021498009l, 2612993202l, 528933105l,
2757361321l, 3341402964l, 2621861700l, 273128190l, 4015252178l, 3094781002l, 1621621288l, 2337611177l,
1796718448l, 1258965619l, 4241913140l, 2138560392l, 3022190223l, 4174180924l, 450094611l, 3274724580l,
617150026l, 2704660665l, 1469700689l, 1341616587l, 356715071l, 1188789960l, 2278869135l, 1766569160l,
2795896635l, 57824704l, 2893496380l, 1235723989l, 1630694347l, 3927960522l, 428891364l, 1814070806l,
2287999787l, 4125941184l, 3968103889l, 3548724050l, 1025597707l, 1404281500l, 2002212197l, 92429143l,
2313943944l, 2403086080l, 3006180634l, 3561981764l, 1671860914l, 1768520622l, 1803542985l, 844848113l,
3006139921l, 1410888995l, 1157749833l, 2125704913l, 1789979528l, 1799263423l, 741157179l, 2405862309l,
767040434l, 2655241390l, 3663420179l, 2172009096l, 2511931187l, 1680542666l, 231857466l, 1154981000l,
157168255l, 1454112128l, 3505872099l, 1929775046l, 2309422350l, 2143329496l, 2960716902l, 407610648l,
2938108129l, 2581749599l, 538837155l, 2342628867l, 430543915l, 740188568l, 1937713272l, 3315215132l,
2085587024l, 4030765687l, 766054429l, 3517641839l, 689721775l, 1294158986l, 1753287754l, 4202601348l,
1974852792l, 33459103l, 3568087535l, 3144677435l, 1686130825l, 4134943013l, 3005738435l, 3599293386l,
426570142l, 754104406l, 3660892564l, 1964545167l, 829466833l, 821587464l, 1746693036l, 1006492428l,
1595312919l, 1256599985l, 1024482560l, 1897312280l, 2902903201l, 691790057l, 1037515867l, 3176831208l,
1968401055l, 2173506824l, 1089055278l, 1748401123l, 2941380082l, 968412354l, 1818753861l, 2973200866l,
3875951774l, 1119354008l, 3988604139l, 1647155589l, 2232450826l, 3486058011l, 3655784043l, 3759258462l,
847163678l, 1082052057l, 989516446l, 2871541755l, 3196311070l, 3929963078l, 658187585l, 3664944641l,
2175149170l, 2203709147l, 2756014689l, 2456473919l, 3890267390l, 1293787864l, 2830347984l, 3059280931l,
4158802520l, 1561677400l, 2586570938l, 783570352l, 1355506163l, 31495586l, 3789437343l, 3340549429l,
2092501630l, 896419368l, 671715824l, 3530450081l, 3603554138l, 1055991716l, 3442308219l, 1499434728l,
3130288473l, 3639507000l, 17769680l, 2259741420l, 487032199l, 4227143402l, 3693771256l, 1880482820l,
3924810796l, 381462353l, 4017855991l, 2452034943l, 2736680833l, 2209866385l, 2128986379l, 437874044l,
595759426l, 641721026l, 1636065708l, 3899136933l, 629879088l, 3591174506l, 351984326l, 2638783544l,
2348444281l, 2341604660l, 2123933692l, 143443325l, 1525942256l, 364660499l, 599149312l, 939093251l,
1523003209l, 106601097l, 376589484l, 1346282236l, 1297387043l, 764598052l, 3741218111l, 933457002l,
1886424424l, 3219631016l, 525405256l, 3014235619l, 323149677l, 2038881721l, 4100129043l, 2851715101l,
2984028078l, 1888574695l, 2014194741l, 3515193880l, 4180573530l, 3461824363l, 2641995497l, 3179230245l,
2902294983l, 2217320456l, 4040852155l, 1784656905l, 3311906931l, 87498458l, 2752971818l, 2635474297l,
2831215366l, 3682231106l, 2920043893l, 3772929704l, 2816374944l, 309949752l, 2383758854l, 154870719l,
385111597l, 1191604312l, 1840700563l, 872191186l, 2925548701l, 1310412747l, 2102066999l, 1504727249l,
3574298750l, 1191230036l, 3330575266l, 3180292097l, 3539347721l, 681369118l, 3305125752l, 3648233597l,
950049240l, 4173257693l, 1760124957l, 512151405l, 681175196l, 580563018l, 1169662867l, 4015033554l,
2687781101l, 699691603l, 2673494188l, 1137221356l, 123599888l, 472658308l, 1053598179l, 1012713758l,
3481064843l, 3759461013l, 3981457956l, 3830587662l, 1877191791l, 3650996736l, 988064871l, 3515461600l,
4089077232l, 2225147448l, 1249609188l, 2643151863l, 3896204135l, 2416995901l, 1397735321l, 3460025646l
};
double[] refDouble = {
0.76275443, 0.99000644, 0.98670464, 0.10143112, 0.27933125, 0.69867227, 0.94218740, 0.03427201,
0.78842173, 0.28180608, 0.92179002, 0.20785655, 0.54534773, 0.69644020, 0.38107718, 0.23978165,
0.65286910, 0.07514568, 0.22765211, 0.94872929, 0.74557914, 0.62664415, 0.54708246, 0.90959343,
0.42043116, 0.86334511, 0.19189126, 0.14718544, 0.70259889, 0.63426346, 0.77408121, 0.04531601,
0.04605807, 0.88595519, 0.69398270, 0.05377184, 0.61711170, 0.05565708, 0.10133577, 0.41500776,
0.91810699, 0.22320679, 0.23353705, 0.92871862, 0.98897234, 0.19786706, 0.80558809, 0.06961067,
0.55840445, 0.90479405, 0.63288060, 0.95009721, 0.54948447, 0.20645042, 0.45000959, 0.87050869,
0.70806991, 0.19406895, 0.79286390, 0.49332866, 0.78483914, 0.75145146, 0.12341941, 0.42030252,
0.16728160, 0.59906494, 0.37575460, 0.97815160, 0.39815952, 0.43595080, 0.04952478, 0.33917805,
0.76509902, 0.61034321, 0.90654701, 0.92915732, 0.85365931, 0.18812377, 0.65913428, 0.28814566,
0.59476081, 0.27835931, 0.60722542, 0.68310435, 0.69387186, 0.03699800, 0.65897714, 0.17527003,
0.02889304, 0.86777366, 0.12352068, 0.91439461, 0.32022990, 0.44445731, 0.34903686, 0.74639273,
0.65918367, 0.92492794, 0.31872642, 0.77749724, 0.85413832, 0.76385624, 0.32744211, 0.91326300,
0.27458185, 0.22190155, 0.19865383, 0.31227402, 0.85321225, 0.84243342, 0.78544200, 0.71854080,
0.92503892, 0.82703064, 0.88306297, 0.47284073, 0.70059042, 0.48003761, 0.38671694, 0.60465770,
0.41747204, 0.47163243, 0.72750808, 0.65830223, 0.10955369, 0.64215401, 0.23456345, 0.95944940,
0.72822249, 0.40888451, 0.69980355, 0.26677428, 0.57333635, 0.39791582, 0.85377858, 0.76962816,
0.72004885, 0.90903087, 0.51376506, 0.37732665, 0.12691640, 0.71249738, 0.81217908, 0.37037313,
0.32772374, 0.14238259, 0.05614811, 0.74363008, 0.39773267, 0.94859135, 0.31452454, 0.11730313,
0.62962618, 0.33334237, 0.45547255, 0.10089665, 0.56550662, 0.60539371, 0.16027624, 0.13245301,
0.60959939, 0.04671662, 0.99356286, 0.57660859, 0.40269560, 0.45274629, 0.06699735, 0.85064246,
0.87742744, 0.54508392, 0.87242982, 0.29321385, 0.67660627, 0.68230715, 0.79052073, 0.48592054,
0.25186266, 0.93769755, 0.28565487, 0.47219067, 0.99054882, 0.13155240, 0.47110470, 0.98556600,
0.84397623, 0.12875246, 0.90953202, 0.49129015, 0.23792727, 0.79481194, 0.44337770, 0.96564297,
0.67749118, 0.55684872, 0.27286897, 0.79538393, 0.61965356, 0.22487929, 0.02226018, 0.49248200,
0.42247006, 0.91797788, 0.99250134, 0.23449967, 0.52531508, 0.10246337, 0.78685622, 0.34310922,
0.89892996, 0.40454552, 0.68608407, 0.30752487, 0.83601319, 0.54956031, 0.63777550, 0.82199797,
0.24890696, 0.48801123, 0.48661910, 0.51223987, 0.32969635, 0.31075073, 0.21393155, 0.73453207,
0.15565705, 0.58584522, 0.28976728, 0.97621478, 0.61498701, 0.23891470, 0.28518540, 0.46809591,
0.18371914, 0.37597910, 0.13492176, 0.66849449, 0.82811466, 0.56240330, 0.37548956, 0.27562998,
0.27521910, 0.74096121, 0.77176757, 0.13748143, 0.99747138, 0.92504502, 0.09175241, 0.21389176,
0.21766512, 0.31183245, 0.23271221, 0.21207367, 0.57903312, 0.77523344, 0.13242613, 0.31037988,
0.01204835, 0.71652949, 0.84487594, 0.14982178, 0.57423142, 0.45677888, 0.48420169, 0.53465428,
0.52667473, 0.46880526, 0.49849733, 0.05670710, 0.79022476, 0.03872047, 0.21697212, 0.20443086,
0.28949326, 0.81678186, 0.87629474, 0.92297064, 0.27373097, 0.84625273, 0.51505586, 0.00582792,
0.33295971, 0.91848412, 0.92537226, 0.91760033, 0.07541125, 0.71745848, 0.61158698, 0.00941650,
0.03135554, 0.71527471, 0.24821915, 0.63636652, 0.86159918, 0.26450229, 0.60160194, 0.35557725,
0.24477500, 0.07186456, 0.51757096, 0.62120362, 0.97981062, 0.69954667, 0.21065616, 0.13382753,
0.27693186, 0.59644095, 0.71500764, 0.04110751, 0.95730081, 0.91600724, 0.47704678, 0.26183479,
0.34706971, 0.07545431, 0.29398385, 0.93236070, 0.60486023, 0.48015011, 0.08870451, 0.45548581,
0.91872718, 0.38142712, 0.10668643, 0.01397541, 0.04520355, 0.93822273, 0.18011940, 0.57577277,
0.91427606, 0.30911399, 0.95853475, 0.23611214, 0.69619891, 0.69601980, 0.76765372, 0.58515930,
0.49479057, 0.11288752, 0.97187699, 0.32095365, 0.57563608, 0.40760618, 0.78703383, 0.43261152,
0.90877651, 0.84686346, 0.10599030, 0.72872803, 0.19315490, 0.66152912, 0.10210518, 0.06257876,
0.47950688, 0.47062066, 0.72701157, 0.48915116, 0.66110261, 0.60170685, 0.24516994, 0.12726050,
0.03451185, 0.90864994, 0.83494878, 0.94800035, 0.91035206, 0.14480751, 0.88458997, 0.53498312,
0.15963215, 0.55378627, 0.35171349, 0.28719791, 0.09097957, 0.00667896, 0.32309622, 0.87561479,
0.42534520, 0.91748977, 0.73908457, 0.41793223, 0.99279792, 0.87908370, 0.28458072, 0.59132853,
0.98672190, 0.28547393, 0.09452165, 0.89910674, 0.53681109, 0.37931425, 0.62683489, 0.56609740,
0.24801549, 0.52948179, 0.98328855, 0.66403523, 0.55523786, 0.75886666, 0.84784685, 0.86829981,
0.71448906, 0.84670080, 0.43922919, 0.20771016, 0.64157936, 0.25664246, 0.73055695, 0.86395782,
0.65852932, 0.99061803, 0.40280575, 0.39146298, 0.07291005, 0.97200603, 0.20555729, 0.59616495,
0.08138254, 0.45796388, 0.33681125, 0.33989127, 0.18717090, 0.53545811, 0.60550838, 0.86520709,
0.34290701, 0.72743276, 0.73023855, 0.34195926, 0.65019733, 0.02765254, 0.72575740, 0.32709576,
0.03420866, 0.26061893, 0.56997511, 0.28439072, 0.84422744, 0.77637570, 0.55982168, 0.06720327,
0.58449067, 0.71657369, 0.15819609, 0.58042821, 0.07947911, 0.40193792, 0.11376012, 0.88762938,
0.67532159, 0.71223735, 0.27829114, 0.04806073, 0.21144026, 0.58830274, 0.04140071, 0.43215628,
0.12952729, 0.94668759, 0.87391019, 0.98382450, 0.27750768, 0.90849647, 0.90962737, 0.59269720,
0.96102026, 0.49544979, 0.32007095, 0.62585546, 0.03119821, 0.85953001, 0.22017528, 0.05834068,
0.80731217, 0.53799961, 0.74166948, 0.77426600, 0.43938444, 0.54862081, 0.58575513, 0.15886492,
0.73214332, 0.11649057, 0.77463977, 0.85788827, 0.17061997, 0.66838056, 0.96076133, 0.07949296,
0.68521946, 0.89986254, 0.05667410, 0.12741385, 0.83470977, 0.63969104, 0.46612929, 0.10200126,
0.01194925, 0.10476340, 0.90285217, 0.31221221, 0.32980614, 0.46041971, 0.52024973, 0.05425470,
0.28330912, 0.60426543, 0.00598243, 0.97244013, 0.21135841, 0.78561597, 0.78428734, 0.63422849,
0.32909934, 0.44771136, 0.27380750, 0.14966697, 0.18156268, 0.65686758, 0.28726350, 0.97074787,
0.63676171, 0.96649494, 0.24526295, 0.08297372, 0.54257548, 0.03166785, 0.33735355, 0.15946671,
0.02102971, 0.46228045, 0.11892296, 0.33408336, 0.29875681, 0.29847692, 0.73767569, 0.02080745,
0.62980060, 0.08082293, 0.22993106, 0.25031439, 0.87787525, 0.45150053, 0.13673441, 0.63407612,
0.97907688, 0.52241942, 0.50580158, 0.06273902, 0.05270283, 0.77031811, 0.05113352, 0.24393329,
0.75036441, 0.37436336, 0.22877652, 0.59975358, 0.85707591, 0.88691457, 0.85547165, 0.36641027,
0.58720133, 0.45462835, 0.09243817, 0.32981586, 0.07820411, 0.25421519, 0.36004706, 0.60092307,
0.46192412, 0.36758683, 0.98424170, 0.08019934, 0.68594024, 0.45826386, 0.29962317, 0.79365413,
0.89231296, 0.49478547, 0.87645944, 0.23590734, 0.28106737, 0.75026285, 0.08136314, 0.79582424,
0.76010628, 0.82792971, 0.27947652, 0.72482861, 0.82191216, 0.46171689, 0.79189752, 0.96043686,
0.51609668, 0.88995725, 0.28998963, 0.55191845, 0.03934737, 0.83033700, 0.49553013, 0.98009549,
0.19017594, 0.98347750, 0.33452066, 0.87144372, 0.72106301, 0.71272114, 0.71465963, 0.88361677,
0.85571283, 0.73782329, 0.20920458, 0.34855153, 0.46766817, 0.02780062, 0.74898344, 0.03680650,
0.44866557, 0.77426312, 0.91025891, 0.25195236, 0.87319953, 0.63265037, 0.25552148, 0.27422476,
0.95217406, 0.39281839, 0.66441573, 0.09158900, 0.94515992, 0.07800798, 0.02507888, 0.39901462,
0.17382573, 0.12141278, 0.85502334, 0.19902911, 0.02160210, 0.44460522, 0.14688742, 0.68020336,
0.71323733, 0.60922473, 0.95400380, 0.99611159, 0.90897777, 0.41073520, 0.66206647, 0.32064685,
0.62805003, 0.50677209, 0.52690101, 0.87473387, 0.73918362, 0.39826974, 0.43683919, 0.80459118,
0.32422684, 0.01958019, 0.95319576, 0.98326137, 0.83931735, 0.69060863, 0.33671416, 0.68062550,
0.65152380, 0.33392969, 0.03451730, 0.95227244, 0.68200635, 0.85074171, 0.64721009, 0.51234433,
0.73402047, 0.00969637, 0.93835057, 0.80803854, 0.31485260, 0.20089527, 0.01323282, 0.59933780,
0.31584602, 0.20209563, 0.33754800, 0.68604181, 0.24443049, 0.19952227, 0.78162632, 0.10336988,
0.11360736, 0.23536740, 0.23262256, 0.67803776, 0.48749791, 0.74658435, 0.92156640, 0.56706407,
0.36683221, 0.99157136, 0.23421374, 0.45183767, 0.91609720, 0.85573315, 0.37706276, 0.77042618,
0.30891908, 0.40709595, 0.06944866, 0.61342849, 0.88817388, 0.58734506, 0.98711323, 0.14744128,
0.63242656, 0.87704136, 0.68347125, 0.84446569, 0.43265239, 0.25146321, 0.04130111, 0.34259839,
0.92697368, 0.40878778, 0.56990338, 0.76204273, 0.19820348, 0.66314909, 0.02482844, 0.06669207,
0.50205581, 0.26084093, 0.65139159, 0.41650223, 0.09733904, 0.56344203, 0.62651696, 0.67332139,
0.58037374, 0.47258086, 0.21010758, 0.05713135, 0.89390629, 0.10781246, 0.32037450, 0.07628388,
0.34227964, 0.42190597, 0.58201860, 0.77363549, 0.49595133, 0.86031236, 0.83906769, 0.81098161,
0.26694195, 0.14215941, 0.88210306, 0.53634237, 0.12090720, 0.82480459, 0.75930318, 0.31847147,
0.92768077, 0.01037616, 0.56201727, 0.88107122, 0.35925856, 0.85860762, 0.61109408, 0.70408301,
0.58434977, 0.92192494, 0.62667915, 0.75988365, 0.06858761, 0.36156496, 0.58057195, 0.13636150,
0.57719713, 0.59340255, 0.63530602, 0.22976282, 0.71915530, 0.41162531, 0.63979565, 0.09931342,
0.79344045, 0.10893790, 0.84450224, 0.23122236, 0.99485593, 0.73637397, 0.17276368, 0.13357764,
0.74965804, 0.64991737, 0.61990341, 0.41523170, 0.05878239, 0.05687301, 0.05497131, 0.42868366,
0.42571090, 0.25810502, 0.89642955, 0.30439758, 0.39310223, 0.11357431, 0.04288255, 0.23397550,
0.11200634, 0.85621396, 0.89733974, 0.37508865, 0.42077265, 0.68597384, 0.72781399, 0.19296476,
0.61699087, 0.31667128, 0.67756410, 0.00177323, 0.05725176, 0.79474693, 0.18885238, 0.06724856,
0.68193156, 0.42202167, 0.22082041, 0.28554673, 0.64995708, 0.87851940, 0.29124547, 0.61009521,
0.87374537, 0.05743712, 0.69902994, 0.81925115, 0.45653873, 0.37236821, 0.31118709, 0.52734307,
0.39672836, 0.38185294, 0.30163915, 0.17374510, 0.04913278, 0.90404879, 0.25742801, 0.58266467,
0.97663209, 0.79823377, 0.36437958, 0.15206043, 0.26529938, 0.22690047, 0.05839021, 0.84721160,
0.18622435, 0.37809403, 0.55706977, 0.49828704, 0.47659049, 0.24289680, 0.88477595, 0.07807463,
0.56245739, 0.73490635, 0.21099431, 0.13164942, 0.75840044, 0.66877037, 0.28988183, 0.44046090,
0.24967434, 0.80048356, 0.26029740, 0.30416821, 0.64151867, 0.52067892, 0.12880774, 0.85465381,
0.02690525, 0.19149288, 0.49630295, 0.79682619, 0.43566145, 0.00288078, 0.81484193, 0.03763639,
0.68529083, 0.01339574, 0.38405386, 0.30537067, 0.22994703, 0.44000045, 0.27217985, 0.53831243,
0.02870435, 0.86282045, 0.61831306, 0.09164956, 0.25609707, 0.07445781, 0.72185784, 0.90058883,
0.30070608, 0.94476583, 0.56822213, 0.21933909, 0.96772793, 0.80063440, 0.26307906, 0.31183306,
0.16501252, 0.55436179, 0.68562285, 0.23829083, 0.86511559, 0.57868991, 0.81888344, 0.20126869,
0.93172350, 0.66028129, 0.21786948, 0.78515828, 0.10262106, 0.35390326, 0.79303876, 0.63427924,
0.90479631, 0.31024934, 0.60635447, 0.56198079, 0.63573813, 0.91854197, 0.99701497, 0.83085849,
0.31692291, 0.01925964, 0.97446405, 0.98751283, 0.60944293, 0.13751018, 0.69519957, 0.68956636,
0.56969015, 0.46440193, 0.88341765, 0.36754434, 0.89223647, 0.39786427, 0.85055280, 0.12749961,
0.79452122, 0.89449784, 0.14567830, 0.45716830, 0.74822309, 0.28200437, 0.42546044, 0.17464886,
0.68308746, 0.65496587, 0.52935411, 0.12736159, 0.61523955, 0.81590528, 0.63107864, 0.39786553,
0.20102294, 0.53292914, 0.75485590, 0.59847044, 0.32861691, 0.12125866, 0.58917183, 0.07638293,
0.86845380, 0.29192617, 0.03989733, 0.52180460, 0.32503407, 0.64071852, 0.69516575, 0.74254998,
0.54587026, 0.48713246, 0.32920155, 0.08719954, 0.63497059, 0.54328459, 0.64178757, 0.45583809,
0.70694291, 0.85212760, 0.86074305, 0.33163422, 0.85739792, 0.59908488, 0.74566046, 0.72157152
};
for (int i = 0; i < refInt.length; ++i) {
int r = mt.nextInt();
assertEquals(refInt[i], (r & 0x7fffffffl) | ((r < 0) ? 0x80000000l : 0x0l));
}
for (int i = 0; i < refDouble.length; ++i) {
int r = mt.nextInt();
assertEquals(refDouble[i],
((r & 0x7fffffffl) | ((r < 0) ? 0x80000000l : 0x0l)) / 4294967296.0,
1.0e-8);
}
}
}