[MATH-977] Added implementation of a HaltonSequence.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1485346 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
03df648a2d
commit
f4b634bff3
|
@ -0,0 +1,184 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.random;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.NotPositiveException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
import org.apache.commons.math3.util.MathUtils;
|
||||
|
||||
/**
|
||||
* Implementation of a Halton sequence.
|
||||
* <p>
|
||||
* A Halton sequence is a low-discrepancy sequence generating points in the interval [0, 1] according to
|
||||
* <pre>
|
||||
* H(n) = d_0 / b + d_1 / b^2 .... d_j / b^j+1
|
||||
*
|
||||
* with
|
||||
*
|
||||
* n = d_j * b^j-1 + ... d_1 * b + d_0 * b^0
|
||||
* </pre>
|
||||
* For higher dimensions, subsequent prime numbers are used as base, e.g. { 2, 3, 5 } for a Halton sequence in R^3.
|
||||
* <p>
|
||||
* Halton sequences are known to suffer from linear correlation for larger prime numbers, thus the individual digits
|
||||
* are usually scrambled. This implementation already comes with support for up to 40 dimensions with optimal weight
|
||||
* numbers from <a href="http://etd.lib.fsu.edu/theses/available/etd-07062004-140409/unrestricted/dissertation1.pdf">
|
||||
* H. Chi: Scrambled quasirandom sequences and their applications</a>.
|
||||
* <p>
|
||||
* The generator supports two modes:
|
||||
* <ul>
|
||||
* <li>sequential generation of points: {@link #nextVector()}</li>
|
||||
* <li>random access to the i-th point in the sequence: {@link #skipTo(int)}</li>
|
||||
* </ul>
|
||||
*
|
||||
* @see <a href="http://en.wikipedia.org/wiki/Halton_sequence">Halton sequence (Wikipedia)</a>
|
||||
* @see <a href="https://lirias.kuleuven.be/bitstream/123456789/131168/1/mcm2005_bartv.pdf">
|
||||
* On the Halton sequence and its scramblings</a>
|
||||
* @version $Id$
|
||||
* @since 4.0
|
||||
*/
|
||||
public class HaltonSequenceGenerator implements RandomVectorGenerator {
|
||||
|
||||
/** The first 40 primes. */
|
||||
private static final int[] PRIMES = new int[] {
|
||||
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
|
||||
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
|
||||
149, 151, 157, 163, 167, 173
|
||||
};
|
||||
|
||||
/** The optimal weights used for scrambling of the first 40 dimension. */
|
||||
private static final int[] WEIGHTS = new int[] {
|
||||
1, 2, 3, 3, 8, 11, 12, 14, 7, 18, 12, 13, 17, 18, 29, 14, 18, 43, 41,
|
||||
44, 40, 30, 47, 65, 71, 28, 40, 60, 79, 89, 56, 50, 52, 61, 108, 56,
|
||||
66, 63, 60, 66
|
||||
};
|
||||
|
||||
/** Space dimension. */
|
||||
private final int dimension;
|
||||
|
||||
/** The current index in the sequence. */
|
||||
private int count = 0;
|
||||
|
||||
/** The base numbers for each component. */
|
||||
private final int[] base;
|
||||
|
||||
/** The scrambling weights for each component. */
|
||||
private final int[] weight;
|
||||
|
||||
/**
|
||||
* Construct a new Halton sequence generator for the given space dimension.
|
||||
*
|
||||
* @param dimension the space dimension
|
||||
* @throws OutOfRangeException if the space dimension is outside the allowed range of [1, 40]
|
||||
*/
|
||||
public HaltonSequenceGenerator(final int dimension) throws OutOfRangeException {
|
||||
this(dimension, PRIMES, WEIGHTS);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a new Halton sequence generator with the given base numbers and weights for each dimension.
|
||||
* The length of the bases array defines the space dimension and is required to be > 0.
|
||||
*
|
||||
* @param dimension the space dimension
|
||||
* @param bases the base number for each dimension, entries should be (pairwise) prime, may not be null
|
||||
* @param weights the weights used during scrambling, may be null in which case no scrambling will be performed
|
||||
* @throws NullArgumentException if base is null
|
||||
* @throws OutOfRangeException if the space dimension is outside the range [1, len], where
|
||||
* len refers to the length of the bases array
|
||||
* @throws DimensionMismatchException if weights is non-null and the length of the input arrays differ
|
||||
*/
|
||||
public HaltonSequenceGenerator(final int dimension, final int[] bases, final int[] weights)
|
||||
throws NullArgumentException, OutOfRangeException, DimensionMismatchException {
|
||||
|
||||
MathUtils.checkNotNull(bases);
|
||||
|
||||
if (dimension < 1 || dimension > bases.length) {
|
||||
throw new OutOfRangeException(dimension, 1, PRIMES.length);
|
||||
}
|
||||
|
||||
if (weights != null && weights.length != bases.length) {
|
||||
throw new DimensionMismatchException(weights.length, bases.length);
|
||||
}
|
||||
|
||||
this.dimension = dimension;
|
||||
this.base = bases.clone();
|
||||
this.weight = weights == null ? null : weights.clone();
|
||||
count = 0;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double[] nextVector() {
|
||||
final double[] v = new double[dimension];
|
||||
for (int i = 0; i < dimension; i++) {
|
||||
int index = count;
|
||||
double f = 1.0 / base[i];
|
||||
|
||||
int j = 0;
|
||||
while (index > 0) {
|
||||
final int digit = scramble(i, j, base[i], index % base[i]);
|
||||
v[i] += f * digit;
|
||||
index /= base[i]; // floor( index / base )
|
||||
f /= base[i];
|
||||
}
|
||||
}
|
||||
count++;
|
||||
return v;
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs scrambling of digit {@code d_j} according to the formula:
|
||||
* <pre>
|
||||
* ( weight_i * d_j ) mod base
|
||||
* </pre>
|
||||
* Implementations can override this method to do a different scrambling.
|
||||
*
|
||||
* @param i the dimension index
|
||||
* @param j the digit index
|
||||
* @param b the base for this dimension
|
||||
* @param digit the j-th digit
|
||||
* @return the scrambled digit
|
||||
*/
|
||||
protected int scramble(final int i, final int j, final int b, final int digit) {
|
||||
return weight != null ? (weight[i] * digit) % b : digit;
|
||||
}
|
||||
|
||||
/**
|
||||
* Skip to the i-th point in the Halton sequence.
|
||||
* <p>
|
||||
* This operation can be performed in O(1).
|
||||
*
|
||||
* @param index the index in the sequence to skip to
|
||||
* @return the i-th point in the Halton sequence
|
||||
* @throws NotPositiveException if index < 0
|
||||
*/
|
||||
public double[] skipTo(final int index) throws NotPositiveException {
|
||||
count = index;
|
||||
return nextVector();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the index i of the next point in the Halton sequence that will be returned
|
||||
* by calling {@link #nextVector()}.
|
||||
*
|
||||
* @return the index of the next point
|
||||
*/
|
||||
public int getNextIndex() {
|
||||
return count;
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue