In distribution.FastCosineTransformer, replaced the pair transform2() / inverseTransform2() with two factory methods: create() and createOrthogonal() (MATH-677).

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1212262 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2011-12-09 06:47:23 +00:00
parent 50ab4b74b2
commit f4f2b63702
2 changed files with 98 additions and 122 deletions

View File

@ -40,167 +40,142 @@ import org.apache.commons.math.util.FastMath;
* @since 1.2
*/
public class FastCosineTransformer implements RealTransformer {
/**
* {@code true} if the orthogonal version of the DCT should be used.
*
* @see #create()
* @see #createOrthogonal()
*/
private final boolean orthogonal;
/** Construct a default transformer. */
public FastCosineTransformer() {
super();
/**
* Creates a new instance of this class, with various normalization
* conventions.
*
* @param orthogonal {@code false} if the DCT is <em>not</em> to be scaled,
* {@code true} if it is to be scaled so as to make the transform
* orthogonal.
* @see #create()
* @see #createOrthogonal()
*/
public FastCosineTransformer(final boolean orthogonal) {
this.orthogonal = orthogonal;
}
/**
* Transform the given real data set.
* <p>
* The formula is F<sub>n</sub> = (1/2) [f<sub>0</sub> + (-1)<sup>n</sup> f<sub>N</sub>] +
* &sum;<sub>k=1</sub><sup>N-1</sup> f<sub>k</sub> cos(&pi; nk/N)
* Returns a new instance of this class. The returned transformer uses the
* normalizing conventions described below.
* <ul>
* <li>Forward transform:
* y<sub>n</sub> = (1/2) [x<sub>0</sub> + (-1)<sup>n</sup>x<sub>N-1</sub>]
* + &sum;<sub>k=1</sub><sup>N-2</sup>
* x<sub>k</sub> cos[&pi; nk / (N - 1)],</li>
* <li>Inverse transform:
* x<sub>k</sub> = [1 / (N - 1)] [y<sub>0</sub>
* + (-1)<sup>k</sup>y<sub>N-1</sub>]
* + [2 / (N - 1)] &sum;<sub>n=1</sub><sup>N-2</sup>
* y<sub>n</sub> cos[&pi; nk / (N - 1)],</li>
* </ul>
* where N is the size of the data sample.
* </p>
*
* @return a new DCT transformer, with "standard" normalizing conventions
*/
public static FastCosineTransformer create() {
return new FastCosineTransformer(false);
}
/**
* <p>
* Returns a new instance of this class. The returned transformer uses the
* normalizing conventions described below.
* <ul>
* <li>Forward transform:
* y<sub>n</sub> = [2(N - 1)]<sup>-1/2</sup> [x<sub>0</sub>
* + (-1)<sup>n</sup>x<sub>N-1</sub>]
* + [2 / (N - 1)]<sup>1/2</sup> &sum;<sub>k=1</sub><sup>N-2</sup>
* x<sub>k</sub> cos[&pi; nk / (N - 1)],</li>
* <li>Inverse transform:
* x<sub>k</sub> = [2(N - 1)]<sup>-1/2</sup> [y<sub>0</sub>
* + (-1)<sup>k</sup>y<sub>N-1</sub>]
* + [2 / (N - 1)]<sup>1/2</sup> &sum;<sub>n=1</sub><sup>N-2</sup>
* y<sub>n</sub> cos[&pi; nk / (N - 1)],</li>
* </ul>
* which make the transform orthogonal. N is the size of the data sample.
* </p>
*
* @return a new DCT transformer, with "orthogonal" normalizing conventions
*/
public static FastCosineTransformer createOrthogonal() {
return new FastCosineTransformer(true);
}
/**
* Returns the forward transform of the specified real data set.
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(double[] f) throws IllegalArgumentException {
if (orthogonal) {
final double s = FastMath.sqrt(2.0 / (f.length - 1));
return FastFourierTransformer.scaleArray(fct(f), s);
}
return fct(f);
}
/**
* Transform the given real function, sampled on the given interval.
* <p>
* The formula is F<sub>n</sub> = (1/2) [f<sub>0</sub> + (-1)<sup>n</sup> f<sub>N</sub>] +
* &sum;<sub>k=1</sub><sup>N-1</sup> f<sub>k</sub> cos(&pi; nk/N)
* </p>
* Returns the forward transform of the specified real function, sampled on
* the specified interval.
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param min the (inclusive) lower bound for the interval
* @param max the (exclusive) upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(UnivariateFunction f,
double min, double max, int n)
throws IllegalArgumentException {
double[] data = FastFourierTransformer.sample(f, min, max, n);
return fct(data);
double min, double max, int n) throws IllegalArgumentException {
final double[] data = FastFourierTransformer.sample(f, min, max, n);
return transform(data);
}
/**
* Transform the given real data set.
* <p>
* The formula is F<sub>n</sub> = &radic;(1/2N) [f<sub>0</sub> + (-1)<sup>n</sup> f<sub>N</sub>] +
* &radic;(2/N) &sum;<sub>k=1</sub><sup>N-1</sup> f<sub>k</sub> cos(&pi; nk/N)
* </p>
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(double[] f) throws IllegalArgumentException {
double scalingCoefficient = FastMath.sqrt(2.0 / (f.length - 1));
return FastFourierTransformer.scaleArray(fct(f), scalingCoefficient);
}
/**
* Transform the given real function, sampled on the given interval.
* <p>
* The formula is F<sub>n</sub> = &radic;(1/2N) [f<sub>0</sub> + (-1)<sup>n</sup> f<sub>N</sub>] +
* &radic;(2/N) &sum;<sub>k=1</sub><sup>N-1</sup> f<sub>k</sub> cos(&pi; nk/N)
*
* </p>
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(UnivariateFunction f,
double min, double max, int n)
throws IllegalArgumentException {
double[] data = FastFourierTransformer.sample(f, min, max, n);
double scalingCoefficient = FastMath.sqrt(2.0 / (n - 1));
return FastFourierTransformer.scaleArray(fct(data), scalingCoefficient);
}
/**
* Inversely transform the given real data set.
* <p>
* The formula is f<sub>k</sub> = (1/N) [F<sub>0</sub> + (-1)<sup>k</sup> F<sub>N</sub>] +
* (2/N) &sum;<sub>n=1</sub><sup>N-1</sup> F<sub>n</sub> cos(&pi; nk/N)
* </p>
* Returns the inverse transform of the specified real data set.
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inverseTransform(double[] f)
throws IllegalArgumentException {
throws IllegalArgumentException {
double scalingCoefficient = 2.0 / (f.length - 1);
return FastFourierTransformer.scaleArray(fct(f), scalingCoefficient);
final double s2 = 2.0 / (f.length - 1);
final double s1 = orthogonal ? FastMath.sqrt(s2) : s2;
return FastFourierTransformer.scaleArray(fct(f), s1);
}
/**
* Inversely transform the given real function, sampled on the given
* interval.
* <p>
* The formula is f<sub>k</sub> = (1/N) [F<sub>0</sub> + (-1)<sup>k</sup> F<sub>N</sub>] +
* (2/N) &sum;<sub>n=1</sub><sup>N-1</sup> F<sub>n</sub> cos(&pi; nk/N)
* </p>
* Returns the inverse transform of the specified real function, sampled
* on the given interval.
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param min the (inclusive) lower bound for the interval
* @param max the (exclusive) upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inverseTransform(UnivariateFunction f,
double min, double max, int n)
throws IllegalArgumentException {
double min, double max, int n) throws IllegalArgumentException {
double[] data = FastFourierTransformer.sample(f, min, max, n);
double scalingCoefficient = 2.0 / (n - 1);
return FastFourierTransformer.scaleArray(fct(data), scalingCoefficient);
}
/**
* Inversely transform the given real data set.
* <p>
* The formula is f<sub>k</sub> = &radic;(1/2N) [F<sub>0</sub> + (-1)<sup>k</sup> F<sub>N</sub>] +
* &radic;(2/N) &sum;<sub>n=1</sub><sup>N-1</sup> F<sub>n</sub> cos(&pi; nk/N)
* </p>
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inverseTransform2(double[] f)
throws IllegalArgumentException {
return transform2(f);
}
/**
* Inversely transform the given real function, sampled on the given
* interval.
* <p>
* The formula is f<sub>k</sub> = &radic;(1/2N) [F<sub>0</sub> + (-1)<sup>k</sup> F<sub>N</sub>] +
* &radic;(2/N) &sum;<sub>n=1</sub><sup>N-1</sup> F<sub>n</sub> cos(&pi; nk/N)
* </p>
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inverseTransform2(UnivariateFunction f,
double min, double max, int n)
throws IllegalArgumentException {
return transform2(f, min, max, n);
final double[] data = FastFourierTransformer.sample(f, min, max, n);
return inverseTransform(data);
}
/**

View File

@ -36,7 +36,7 @@ public final class FastCosineTransformerTest {
*/
@Test
public void testAdHocData() {
FastCosineTransformer transformer = new FastCosineTransformer();
FastCosineTransformer transformer = FastCosineTransformer.create();
double result[], tolerance = 1E-12;
double x[] = { 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0 };
@ -56,12 +56,13 @@ public final class FastCosineTransformerTest {
FastFourierTransformer.scaleArray(x, FastMath.sqrt(0.5 * (x.length-1)));
result = transformer.transform2(y);
transformer = FastCosineTransformer.createOrthogonal();
result = transformer.transform(y);
for (int i = 0; i < result.length; i++) {
Assert.assertEquals(x[i], result[i], tolerance);
}
result = transformer.inverseTransform2(x);
result = transformer.inverseTransform(x);
for (int i = 0; i < result.length; i++) {
Assert.assertEquals(y[i], result[i], tolerance);
}
@ -73,7 +74,7 @@ public final class FastCosineTransformerTest {
@Test
public void testSinFunction() {
UnivariateFunction f = new SinFunction();
FastCosineTransformer transformer = new FastCosineTransformer();
FastCosineTransformer transformer = FastCosineTransformer.create();
double min, max, result[], tolerance = 1E-12; int N = 9;
double expected[] = { 0.0, 3.26197262739567, 0.0,
@ -98,7 +99,7 @@ public final class FastCosineTransformerTest {
@Test
public void testParameters() throws Exception {
UnivariateFunction f = new SinFunction();
FastCosineTransformer transformer = new FastCosineTransformer();
FastCosineTransformer transformer = FastCosineTransformer.create();
try {
// bad interval